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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive-behavior
deficits, which strongly impact daily-life activities (Weintraub et al., 2012). Currently, the
limited efficacy of pharmacological treatments has encouraged researchers to develop non-
pharmacological interventions, such as cognitive training and non-invasive brain stimulation
(NIBS) treatments, designed to prevent or delay cognitive impairment (Cass, 2017; Cespón et al.,
2018).

In recent years, there has been growing interest in evaluating the use of NIBS to improve
cognitive functioning in healthy and pathological aging (Hsu et al., 2015; Cappon et al., 2016),
and to integrate this modality in dementia rehabilitation programs (Prehn and Flöel, 2015). In
particular, some experimental (Ferrucci et al., 2008; Boggio et al., 2012; Marceglia et al., 2016) and
meta-analytical (Hill et al., 2016; Indahlastari et al., 2021) studies have supported the clinical utility
of transcranial direct current stimulation (tDCS). The potential of tDCS lies on its mechanisms
of action. Specifically, tDCS has local impacts on the GABA/glutamate balance (Stagg et al., 2009),
which has been found to be altered in AD patients (Guerra et al., 2011). It also influences functional
connectivity, synchronization, and oscillatory activities in prefrontal cortex (Keeser et al., 2011), a
region substantially affected by AD. In addition, tDCS may have non-neuronal effects, as almost
all tissues and cells are sensitive to electric fields (Ruohonen and Karhu, 2012). For instance, tDCS
could potentially modulate the inflammatory response and the conformation of beta-amyloid and
other pathological proteins (Toschi et al., 2009), involved in the progression of AD.

Nevertheless, several studies have found very little or null effects (e.g., Horvath et al., 2015)
of tDCS on various cognitive domains. These results have been attributed to high inter-study
(Pellicciari andMiniussi, 2018) and inter-individual variability in response to tDCS (Li et al., 2015),
even though the sources of inter-individual variability were not clearly identified. Importantly,
although the sheer number of parameters (e.g., polarity, intensity, location, electrodes size) that
can be varied could represent a weakness of these protocols, they also mean the application of tDCS
is highly customizable. Consequently, exploring inter-individual differences and how these might
influence the effects of tDCS has become crucial. In the following section, we point to Brain Reserve
(and the related grade of brain atrophy), Cognitive Reserve and baseline performance measures
as potential sources for the inter-individual variability reflected in results obtained after applying
tES protocols.

SOURCES OF INTER-INDIVIDUAL VARIABILITY: BRAIN AND

COGNITIVE RESERVE

Cognitive aging is characterized by high inter-individual variability. The concept of reserve explains
why there are different pathways in aging; some individuals may possess resources that allow them
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to mitigate physiological cognitive impairments or to prevent
or delay potential neuropathologies (Stern et al., 2019). Brain
Reserve (BR) specifically refers to neuroanatomic resources, such
as the number of neurons and synapses, that allow a person
to maintain cognitive function despite significant loss of neural
material substrate (Satz, 1993). By contrast, Cognitive Reserve
(CR) explains why individuals with the same brain damage
exhibit different clinical outcomes, cognitive performances, and
rates of recovery (Stern, 2009). CR is usually enhanced by
experiences occurring before the onset of neural decline and
is measured using proxy variables, such as education level and
occupational status (Barulli and Stern, 2013). Several studies
have demonstrated that individuals with high CR exhibit greater
neural capacity to cope with structural damage, through more
efficient deployment of functional compensatory mechanisms,
such as strengthened functional connectivity (Serra et al., 2017).
For this reason, high-CR individuals may suffer a higher degree
of pathology before they begin to exhibit clinical symptoms of
AD (Arenaza-Urquijo et al., 2015) and AD neuropathological
markers may be evident in absence of clinical symptoms (Jansen
et al., 2015). Robertson (2014) proposed a model of CR, which
posits a positive correlation between CR and the presence of a
right-lateralized fronto-parietal network, due to compensatory
functional re-organization of brain areas. In other words, higher
CR promotes bilateral activation during cognitive processes
typically lateralized in younger adults, as a function of the
re-allocation of brain resources that allow healthy elderly to
compensate for physiological decline (Cabeza, 2002). Brosnan
et al. (2017) tested this model on visual information processing in
elderly subjects, applying anodal tDCS over the right prefrontal
cortex, to enhance cortical excitability, and consequently
facilitate compensatory mechanisms. Results showed that older
adults with lower levels of CR reported improved performance
in the left but not right items, such that tDCS temporarily
altered their processing speed asymmetry, allowing them to
perform at the level of their high-CR peers. Faster processing
speeds have been associated with a greater neural efficiency
(Speer and Soldan, 2015), due not only to functional, but also
to structural differences in high-CR individuals, including, for
instance, cortical thickness (Menardi et al., 2018). Thus, CR and
BR could potentially be related, in countering brain atrophy,
which characterizes physiological and, above all, pathological
aging. However, in AD patients this link is not always evident,
as higher levels of CR can promote compensatory mechanisms
even in the presence of relevant brain damage.

For this reason, both BR and CR should be taken into account
when applying tDCS; a certain level of gray matter preservation
is needed to obtain beneficial effects from stimulation (Thibaut
et al., 2015), and CR levels have been shown to influence
the effects of tDCS (Berryhill and Jones, 2012). Nevertheless,
controlling for the degree of atrophy or CR status is not a
common routine in tDCS studies, which often enroll patients
with different levels of pathology and they incorrectly consider
them to form part of a homogeneous sample.

Also, modeling studies (Mahdavi and Towhidkhah, 2018)
have suggested that the level of reduction of gray matter
influences the level of current density induced in the brain

by tDCS. This is due to the concurrent increase in both
cerebrospinal fluid volume and gray matter atrophy. With the
progression of illness, the distance between the scalp, where
stimulation electrodes are applied, and the cerebral cortex
increases with a consequent decrease in the electrical field
generated in the targeted areas. Based on these data, it could
be hypothesized that tDCS parameters (e.g., current intensity or
the size of electrodes) should be customized to accommodate
patients with different grades of brain atrophy.

Levels of CR represent an important inter-individual
difference that can also impact cognitive performance. More
efficient neural/network functioning, typical of high-CR
people, could influence individual cognitive ability and baseline
performance (Stern, 2009), even in the presence of similar level
of brain damage. Recent studies (Heinen et al., 2016; Hsu et al.,
2016) have demonstrated how this variable may be crucial when
a neuromodulation protocol is applied. For example, Heinen
and co-workers (2016) observed opposite effects when the
same tDCS polarity was applied to high and low performers
during a working memory task. More specifically, cathodal tDCS
resulted in impaired working memory for high but improved
working memory in low performers. Other research has also
shown that tDCS has a greater effect on memory and attention
in low compared to high performers (e.g., Learmonth et al.,
2015; Hsu et al., 2016). Nevertheless, the direction of such
effects is not always consistent. Others studies have reported
lowered cognitive capacity in low performers after anodal tDCS
(Learmonth et al., 2015; Hsu et al., 2016). As mentioned above, a
possible explanation for these mixed results could simply be that
researchers, especially in the field of cognitive rehabilitation, do
not usually account for brain damage.

Taken together, these results suggest that individual BR, CR,
and baseline performance could influence stimulation effects.
This should encourage researchers to control for or, at least,
analyze the interaction between these variables when applying
tDCS for neuro-rehabilitative aims (Benwell et al., 2015). For
instance, greater brain atrophy could suggest that higher current
(e.g., higher intensity, or bigger electrodes designed to affect a
wider area) are needed to promote the level of cortical excitability
required to activate compensatory mechanisms.

APPLYING TDCS TO AD REHABILITATION:

CONTROLLING FOR INTER-INDIVIDUAL

VARIABILITY

It has been reported that online (Dedoncker et al., 2016), and
cathodal (Cespón et al., 2019) tDCS enhances neural activity
underlying performance more than offline, anodal tDCS in
cognitively declined patients, but the reverse has been observed
in healthy subjects. These findings highlight that the influence
of timing and polarity on tDCS outcomes may also depend on
the target sample. However, these results are not definitive, and
the role of inter-individual variables remains unclear. Comparing
tDCS-induced effects in subgroups of AD patients that differ
in terms of physiological markers of AD progression (e.g.,
brain atrophy, Dubois et al., 2016) might shed light on which
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stimulation parameters are most appropriate given a patient’s
physiological characteristics.

Moreover, neuroimaging and neurophysiological measures
could guide stimulation, by providing information on a patient’s
cortical status at both the structural and functional levels. For
instance, it is possible to assess brain atrophy in a separate
session and use the results to choose the more effective montage
in terms of current intensity, as well as electrode placement
and dimensions. Otherwise, when the degree of intra-individual
variability is high, online assessment (i.e., immediately before
or continuously during the stimulation) of neurophysiological
features is desirable. Cortical states can vary considerably
between sessions and also across the day (Bergmann et al., 2016).

Even though it is not always possible to change stimulation
parameters online, constant monitoring of the modifications
that occur, for example, in brain oscillations and event-
related potentials (ERPs—as assessed with EEG) or event-
related field (ERFs—as assessed with MEG) or in cortical
excitability (TMS-EEG co-registration), could lead researchers
to find the best parameters for each patient. The rehabilitation
protocol could then be adapted based on the results, in terms
of neurophysiological and behavioral modifications, obtained
after each session or small set of sessions. Adding such
neurophysiological measures to a patient profile might be
particularly useful when behavioral outcomes are not sensitive
enough to reveal physiological modifications. This intuition has
been pointed out by Bergmann et al. (2016), who have shown the
potential advantages of neuroimaging and electrophysiological
approaches in guiding neurostimulation, by suggesting precisely
where, when, and how to apply the stimulation.

Furthermore, it would be worthwhile to involve multiple
research groups, who could cooperate to characterize subsets
of patients. This would mean developing a large-scale open-
access database, collating all the data and research results on
the effects (and null-effects) of tDCS in relation to particular
subject characteristics. Such knowledge could then orientate
future rehabilitation programs, and help researchers to overcome
their own limitations. Indeed, the difficulty of controlling all the
variables (e.g., degree of atrophy, which would require access
to an MRI scanner; degree of CR, which cannot be directly
measured but estimated through proxy variables) that could
intervene when tDCS is applied for clinical purpose could

represent the reason why it is not common to customize the
intervention on patients’ differences. A starting point in this
direction is the Center for Open Science (COS), a nonprofit
technology and cultural exchange company, which has created
a powerful online tool, the Open Science Framework. Their
goal is to offer the scientific community a platform to share
knowledge, ideas, research questions, results, and hypotheses
(Miguel et al., 2014; www.cos.io). Research should be focused
on analyzing the diversity instead of the similarities among
patients, leading to profound collaboration among the research
and clinical communities, in order to promote robust studies able
to characterize subsets of patients.

CONCLUSIONS

The high variability among AD patients makes it difficult to
identify the best NIBS protocols. Understanding how interactions
between BR, CR, and performance levels may influence outcomes
and how these variables can be controlled by researchers
should represent a first step. With this aim, integration of
brain stimulation protocols and neuroimaging/neurophysiology
measures will be needed to develop customized rehabilitation
programs. Structural and functional information on patients’
cortical status could guide stimulation by pinpointing the
appropriate (1) target area(s) and/or electrode orientation(s);
(2) best stimulation onset times; and (3) tDCS parameters (e.g.,
intensity, polarity, wave form), and by (4) providing online
or offline feedback about how brain states are changed by
the stimulation.
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