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While several biomarkers have been developed for the detection of Alzheimer’s disease

(AD), not many are available for the prediction of disease severity, particularly for patients

in themild stages of AD. In this paper, we explore themultimodal prediction of Mini-Mental

State Examination (MMSE) scores using resting-state electroencephalography (EEG)

and structural magnetic resonance imaging (MRI) scans. Analyses were carried out

on a dataset comprised of EEG and MRI data collected from 89 patients diagnosed

with minimal-mild AD. Three feature selection algorithms were assessed alongside four

machine learning algorithms. Results showed that while MRI features alone outperformed

EEG features, when both modalities were combined, improved results were achieved.

The top-selected EEG features conveyed information about amplitude modulation

rate-of-change, whereas top-MRI features comprised information about cortical area and

white matter volume. Overall, a root mean square error between predicted MMSE values

and true MMSE scores of 1.682 was achieved with a multimodal system and a random

forest regression model.

Keywords: Alzheimer’s disease, electroencephalography, magnetic resonance imaging, AD severity, multimodal

prediction

1. INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative condition that progressively affects cognitive
functioning by impairing nerve cell function in the brain (Gross et al., 2016). This process may
start 20 years or more before symptoms become evident (Alzheimer’s Association, 2019). The
progression of AD negatively influences the lives of people living with the disease, their families,
and their caregivers, since the pathology is linked to decline or loss of mental abilities, which are
essential for many daily activities (Qiu et al., 2017).

One topic of intense research focus has been on improving early diagnosis of Alzheimer’s disease.
Whilst definitive diagnosis of AD is currently only achievable with postmortem neuropathological
examination, in vivo diagnosis is often based on clinical criteria, which rely on clinical interview
with support from cognitive assessments. Global cognitive assessment is often accomplished using
paper and pencil tests such as theMontreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005)
or the Mini-Mental State Examination (MMSE) (Folstein et al., 1975). Given the co-occurrence
of neuropathological and structural brain changes that occur alongside cognitive impairment,
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research has also focused on developing biomarkers of the
disease that may help to increase confidence in the diagnosis.
Over the last two decades, a number of biomarkers have been
proposed, including those based on structural neuroimaging
(e.g., hippocampal volume from magnetic resonance imaging)
(Chetelat and Baron, 2003; Frisoni et al., 2010), cerebral
spinal fluid (e.g., tau and beta-amyloid levels) (Caroli et al.,
2010), blood and urine samples (Mayeux and Schupf, 2011),
electroencephalography (Cassani et al., 2018), and more recently,
genetic risk profiling (Van Cauwenberghe et al., 2016). Given
that changes in biomarkers can also precede clinical symptoms
and overt cognitive impairment, attempts have been made
to use certain biomarker measures (e.g., amyloid deposition
and hippocampal atrophy) to identify people who are at risk
of developing dementia in the future and for whom disease
modifying therapies may be suitable. It is thought that disease-
modifying therapeutic interventions should be most effective
when administered in the early stages of the disease, before
neuronal loss occurs (Jedynak et al., 2012), thus early detection
is crucial.

A research topic that has received relatively less attention
is that which aims to determine biomarker features that are
associated with increasing disease severity. With the availability
of such biomarker features, healthcare professionals and clinical
trial teams would have additional tools to monitor the disease.
Relying upon cognitive assessment only may be problematic,
as performance on tasks such as the MMSE may be subject to
confounding variables, such as stress levels (e.g., Freidl et al.,
1996) or sleep duration (e.g., Ramos et al., 2013). Importantly,
when measured across multiple time-points, cognitive tests such
as the MMSE are also prone to practice effects (e.g., Galasko
et al., 1993) that may mask any decline, whereas biomarkers
avoid this issue. Biomarkers may offer measurement along
multiple dimensions, and some biomarkers, for example, those
that utilize electroencephalography (EEG), might also have
analogs that can be adopted in drug trials using animal models,
where assessment of some cognitive functions (e.g., language,
visuoconstruction) would not be possible. As more therapies,
drugs, and interventions appear, monitoring the progression and
slowing of the disease will become crucial to gauge the benefits
of the different interventions (Wild et al., 2008). Monitoring
change may be particularly challenging when confined to the
early stages of disease, as symptoms may not be as pronounced,
and knowledge of subtle changes to biomarkers will therefore
be relevant.

In relation to monitoring disease progression, in Jedynak et al.
(2012), for example, several biomarkers from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database have been
suggested, such as hippocampal volume, tau and beta-amyloid
levels. In Eskildsen et al. (2015), in turn, hippocampal atrophy
and cortical thickness of a selection of temporo-parietal regions
were shown to be useful predictors of mild cognitive impairment
progressing to AD. More recently, in Cassani et al. (2018), it
was shown that only a few studies have explored the effects
of disease progression on EEG. In particular, earlier work
showed that changes in specific frequency subbands could be
seen with disease progression (e.g., Kuskowski et al., 1993;

Kowalski et al., 2001). More recently, spectrotemporal energy
patches were shown to provide improved accuracy (relative to
conventional subband powers) when predicting disease severity
levels (Cassani and Falk, 2020).

As AD manifests itself across different facets, it is expected
that a single biomarker may not provide sufficient information
to determine disease severity accurately (Gross et al., 2016) and
that instead, a multimodal biomarker system would be needed
(Hampel et al., 2010). Despite multimodal biomarkers being
explored for the detection of AD and mild cognitive impairment
(MCI) (Zhang et al., 2011), research is again limited on
multimodal systems for AD severity detection (Martínez-Torteya
et al., 2015). Moreover, of those studies that have investigated
multimodal biomarkers for early detection, most have relied on
structural neuroimaging tools (Falahati et al., 2014) and only
a handful have explored the fusion of structural neuroimaging
with electro-neurophysiology (Cassani et al., 2018). This paper
aims to fill these gaps, by investigating multimodal biomarker
features that are associated with increasing disease severity,
and demonstrate that EEG tests, with minimal interventions
from the participants (i.e., resting state 3-min recordings) and
a semi-automated processing pipeline, could further improve
the accuracy of a disease severity monitoring system relying on
neuroimaging information.

Focusing on the fusion of electrophysiological and structural
neuroimaging features should have utility in predicting the
severity of the disease, and in identifying useful markers for
monitoring disease progression, as together they contribute
information on neuronal injury, atrophy and synaptic
integrity. Considering the amyloid-tau-neurodegeneration
(A/T/N) biomarker framework proposed in Jack et al. (2016),
electrophysiological and structural magnetic resonance
imaging (MRI) measures can provide information on the
neurodegeneration/neuronal injury (N) aspect of disease
progression (with structural MRI mentioned explicitly as a
recommended technique in the framework). To measure disease
severity, we chose to use the MMSE due to its widespread
use in clinical practice. In this test, a clinician asks the patient
several questions about daily mental competencies to evaluate
their cognitive state. The participant is then given a score based
on their answers, with a maximum of 30 points. Often scores
of 20–24 are taken to be indicative of mild dementia, scores
of 13–20 suggest moderate dementia, and those less than 12
are indicative of severe dementia. The MMSE scores of the
patients in our sample were subsequently used to derive the
multimodal features (MRI and EEG) that could also be used to
track disease severity.

In preview, this paper reports the development of multimodal
markers of AD severity for patients in the early stages of
the disease (minimal to mild dementia; MMSE scores between
21 and 26). We explore the fusion of cortical, subcortical
and white matter features extracted from MRI, as well as
conventional EEG features alongside ones recently developed,
such as the spectrotemporal energy patch features (Cassani
and Falk, 2020). Analyses on data from 89 patients show
the usefulness of multimodal AD severity level models for
patients at these stages of AD, and access to an automated tool
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FIGURE 1 | Block diagram of the processing pipeline for AD severity level prediction.

could be useful for clinicians to help with better diagnostics
and monitoring.

2. MATERIALS AND METHODS

2.1. Participants
The data used herein was collected from a multi-site clinical
trial exploring the use of electrophysiological markers to study
Alzheimer’s disease (Cecchi et al., 2015). Initial recruitment
included 103 subjects with probable AD and 101 healthy controls.
The study was approved by the institutional review boards for
each trial site and consent was obtained from each participant.
The interested reader is referred to Cecchi et al. (2015) for more
details about inclusion and exclusion criteria, as well as all the
tests and criteria performed for diagnostics.

Here, we were particularly interested in the target population
from whom cognitive data, resting-state EEG and structural
MRI scans were all available. As MRI scans were only available
for the patients with AD, the healthy controls were excluded
from our analyses. EEG data was available for 99 of the
AD patients, and of these, 5 did not have MRI scans. After
further careful screening for sufficient scan quality to enable
accurate MRI segmentation/parcellation (e.g., removing scans
with motion/ringing artifacts), five more participants were
excluded. This left data from a total of 89 (46 females)
participants for the analyses. The participants had an average age
of 75.8 ± 7.3 years and average of 14.5 ± 3.3 years of education.
All patients hadMMSE scores between 21 and 26, with an average
of 23.3± 1.8.

2.2. Semi-automated Analysis Pipeline
The system analysis pipeline follows the diagram depicted by
Figure 1. The pipeline is comprised of a signal acquisition step,
followed by pre-processing, feature extraction, feature selection,
and finally a regression mapping to predict disease severity level.
Here, the main goal is to predict the patient’s MMSE score
based on EEG features alone, MRI features alone, as well as with
a combined multimodal feature set. The next sections details
these steps.

2.3. Signal Acquisition
EEG signals were acquired using the COGNISION R© device
(Casey, 2010), a seven-channel device operating at a sampling

FIGURE 2 | EEG electrode placement, adapted from Cassani et al. (2017).

frequency of 125 Hz. Bi-auricular referential electrodes were
also attached during the collection procedure. For each of the
participants, we are interested in the EEG collected during a
3-min resting awake eyes-open period. Figure 2 displays the
placement of the EEG electrodes located at the F3, Fz, F4, Cz,
P3, Pz, and P4 locations. Motivated from Falk et al. (2012), two
virtual inter-hemispheric bipolar signals are also used, namely:
F3-F4 and P3-P4.

Depending on the scanning site (n = 6), 1.5 Tesla or 3 Tesla
scanners were used. T1-weighted MRI scans were acquired for
the structural analyses. After the exclusions due to artifacts,
24 scans remained for the analysis at 1.5 Tesla and 65 at
3 Tesla. Varying across scanning site, slice thickness ranged
from 1-1.2 mm, and dimensions in the axial plane from 0.5 to
1.25 mm2. In the set of scans used for the analyses no movement
artifacts were visible, nor were any artifacts thought to affect
segmentation/parcellation.

2.4. Pre-processing
EEG signals were first pre-processed through a zero-phase
finite impulse response (FIR) band-pass filter with a bandwidth
of 0.5–45 Hz to eliminate any power grid measurement
interference. Moreover, motivated by the results presented
in Cassani et al. (2014a), a wavelet-independent component
analysis (wICA) was further applied to remove unwanted ocular
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and muscular artifacts. The interested reader is referred to
Mammone et al. (2011) for more details about this EEG artifact
removal algorithm.

The T1-weighted MRI scans, in turn, were processed using
FreeSurfer1, a universally used open-access software package
to process and analyze structural brain MRI scans that has
been developed and validated by MRI researchers (Fischl,
2012). The images captured from the MRI scanner were pre-
processed using the default command “recon-all” provided
in the FreeSurfer (v6) pipeline. The “recon-all” procedure,
when used with the “-all” flag instructs FreeSurfer to perform
its full reconstruction pipeline, which provides subcortical
segmentation and volume measurement, in addition to cortical
reconstruction, and measurement of a set of regions of
interest (thickness and area). For the pre-processing of the
3 Tesla scans, the additional “-3T” flag was applied, and
the “-mprage” flag was applied where appropriate. Aiming
for automaticity, reliability and reproducibility, the pipeline
was applied without manual intervention. Although there may
be some benefits to measurement accuracy through a semi-
automated approach with manual edits, the fully automated
pipeline has been demonstrated to be consistent with manual
measurements made both in and ex vivo (e.g., Fischl et al., 2002;
Cardinale et al., 2014). Briefly, the FreeSurfer pre-processing
pipeline involves non-uniform intensity normalization, Talairach
transform computation, intensity normalization, skull stripping,
subcortical segmentation (including volumetric labeling and
measurement), intensity normalization (this time with the brain
volume as the input, in the absence of the skull), white
matter segmentation, tessellation (of the gray and white matter
boundary), automatic topology correction, creation of final
surfaces (pial and white matter), and parcellation (creation
and measurement). Key papers that cover the methodology
underpinning the pre-processing pipeline can be found in Dale
et al. (1999), Fischl et al. (1999), Fischl et al. (2002), and
Fischl et al. (2004).

2.5. Feature Extraction
2.5.1. EEG Features
In the context of Alzheimer’s disease, four different features were
computed from the acquired EEG signals based on insights from
Cassani et al. (2017) and Cassani and Falk (2020). These included:
spectral power, magnitude squared coherence, amplitude
modulation rate-of-change, and modulation frequency “patches”
features. Features were extracted over 8-s epochs with 1-s shifts
between consecutive epochs.

2.5.1.1. Spectral Power
Spectral power features are defined by the power measurements
within each of the following EEG frequency subbands: delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), low-alpha (8–
10 Hz), high-alpha (10–12 Hz), beta (12–30 Hz), delta-to-beta
(0.5–30 Hz), theta-to-beta (4–30 Hz), and low-gamma (30–
45 Hz). To calculate the spectral power features, zero-phase FIR
bandpass filters were used to decompose the EEG signal into

1https://surfer.nmr.mgh.harvard.edu.

different frequency bands of interest. Then, power is computed
for each different subband time series. Next, normalization was
performed by dividing the subband power by the full-band EEG
power. A total of 81 spectral power features were computed,
corresponding to the nine frequency bands, per seven electrode
locations plus the two virtual inter-hemispheric channels.

2.5.1.2. Coherence
Here, the magnitude squared coherence (MSC) feature is used to
measure the co-variance between two power spectra. Coherence
features were computed for delta, theta, alpha, beta, and gamma
bands for five electrode connections, namely: Fz-Pz, F3-F4, P3-
P4, F3-P3, and F4-P4. A total of 25 features were calculated for
this type of feature (5 frequency bands× 5 pairs of electrodes).

2.5.1.3. Amplitude Modulation Rate-of-Change
Figure 3 depicts the signal processing steps involved in
the computation of the amplitude modulation rate-of-change
features proposed in Falk et al. (2012). To compute the amplitude
modulation features, the EEG signal is first decomposed in
the delta, theta, beta, and gamma bands. Next, the Hilbert
transform is applied to compute each subband envelope. A
second frequency decomposition is then applied to the band
envelope signals to identify the changes in their amplitude
modulation. Lastly, the average energy per frequency-modulation
band is computed, normalized by the total signal energy, and
used as a feature. Given properties of the Hilbert transform, not
all frequency-modulation frequency combinations are possible,
thus the following combinations were used: delta-mdelta, theta-
mdelta, theta-mtheta, alpha-mdelta, alpha-mtheta, beta-mdelta,
beta-mtheta, beta-malpha, beta-mbeta, gamma-mdelta, gamma-
mtheta, gamma-malpha, gamma-mbeta, and gamma-mgamma.
Hence, a total of 126 features were extracted (14 frequency-
modulation bands × 9 electrodes) to quantify amplitude
modulation spectra rate-of-change.

2.5.1.4. Modulation Frequency “Patches”
Recently, the work by Cassani and Falk (2020) showed that
improved AD diagnostics could be achieved if non-conventional
bands were used in the calculation of the above-mentioned
amplitude modulation rate-of-change features. These so-called
“patches,” as seen in Figure 4, were shown to be important
in discriminating mild cognitive impairment from AD, as well
as moderate AD from severe AD. A total of three patches
(termed R1-R3 in the figure) and their ratios provided the
most discriminatory information. Here, a total of 54 features
are extracted corresponding to the three patches and their ratio
combinations for each of the seven electrodes and two virtual
bipolar channels. Overall, a total of 286 features were extracted
from each of the 8-s epochs. Table 1 summarizes the features
calculated for each EEG epoch.

2.5.2. EEG Feature Functionals
As mentioned above, EEG features are computed per time epoch.
MRI features, in turn, are available per subject. As such, in order
to enable feature-level fusion experiments, we must aggregate all
EEG features into one final per-subject feature. Here, summary
statistics are used for this purpose. More specifically, mean,
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FIGURE 3 | (A) Signal processing steps involved in computation of amplitude modulation rate-of-change features. (B) Bandpass filtered EEG signals and their time

envelopes. Adapted from Falk et al. (2012).

FIGURE 4 | Three regions (patches) identified in the modulation spectral

domain to provide best AD diagnostic accuracy, adapted from

Cassani and Falk (2020).

standard deviation, coefficient of variation, median, skewness,
and kurtosis were obtained for each of the four EEG feature
types (spectral power, coherence, amplitude modulation, and
modulation patches) (Devore, 2008). In the end, a total of 1716
EEG features exist corresponding to the 286 per-epoch features
times their six summary statistics.

2.5.3. MRI Feature Extraction
As described above, the MRI features were extracted using
the FreeSurfer software package. Subcortical volumes, cortical
thickness (CT), surface area, and white matter volume measures
were extracted from different regions-of-interest (ROIs). The
interested reader is referred to Fischl et al. (2002) and Fischl
et al. (2004) for more details on the Freesurfer methods for
feature extraction.

2.5.3.1. Subcortical Segmentation
Subcortical segmentation of the brain volumes were performed
using the automatic subcortical segmentation provided in
FreeSurfer. Segmentation based on the ASEG atlas was used,
which locates and labels the structure using probabilistic means
(Fischl et al., 2002, 2004). A detailed list of the volumes of
anatomical structures that were included in the study is specified
in the Supplementary Materials. A total of 62 features of
subcortical segmentation measurements were available.

2.5.3.2. Cortical Parcellation
Average thickness and surface area of the cortical parcellation
were calculated. To this end, the MRI scans were parcellated
into distinct anatomical regions, according to the boundaries
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TABLE 1 | Summary of the features computed from EEG signals.

Features category Features

Spectral power

delta

theta

alpha

low-alpha

high-alpha

beta

delta-beta

theta-beta

gamma

Coherence

MSC: delta

MSC: theta

MSC: alpha

MSC: beta

MSC: gamma

Amplitude modulation rate-of-change

delta-mdelta

theta-mdelta

theta-mtheta

alpha-mdelta

alpha-mtheta

beta-mdelta

beta-mtheta

beta-malpha

beta-mbeta

gamma-mdelta

gamma-mtheta

gamma-malpha

gamma-mbeta

gamma-mgamma

Modulation frequency-patches

R 1

R 2

R 3

R 1 /R 3

R 2 /R 1

R 2 /R 3

and labeling of the Desikan-Killiany atlas (Desikan et al.,
2006). Cortical thickness measures were taken as the distance
between the boundary between the white matter/gray matter
and the pial surface (in mm), and these were averaged for each
ROI (Fischl and Dale, 2000). Surface area for each ROI was
calculated (in mm2). Measurements of cortical structure were
determined for the left and right hemisphere ROIs, and a list
with the measurements considered for the study is added in the
supplementary materials. A total of 148 features were computed
for cortical parcellation measurements.

2.5.3.3. White Matter Parcellation
White matter parcellation was performed based on the labeling
provided by the Desikan-Killiany atlas. White matter volumes

TABLE 2 | Summary of the MRI computed features.

Features category Features

Subcortical

segmentation-ASEG

62 volume measurements of anatomical

structures provided by the subcortical

segmentation.

Cortical parcellation-APARC 148 thickness and area measurements of

anatomical structures resulted from the cortical

parcellation.

White matter

parcellation-WM

75 volume measurements of anatomical

structures resulted from the white matter

parcellation.

were calculated based on proximity to the cortical label, and
a constraint in the form of an extension of 5 mm into the
white matter (Salat et al., 2009). White matter volume measures
were estimated for the left and right hemispheres, and the list
of ROIs utilized is presented in the supplementary materials.
There were a total of 75 features resulting from the white matter
parcellation process.

Table 2 summarizes the 285 features calculated for each
of the MRI scans. Subsequently, all the calculated features
(both EEG and MRI based) were submitted to a normalization
process. Normalization was utilized to scale all the features in
a comparable range from the value of –1 to 1 and avoid future
problems with regression models that could be dependent on
distance calculations. Each individual feature were scaled by its
maximum absolute value.

2.6. Feature Selection
At the end of the feature extraction procedure, a total of 1,716
features were calculated from the EEG signals and a total of 285
features were calculated from MRI scans. While our main goal is
to explore the benefits of a multimodal system, one exploratory
aim we have is to also gauge the benefits of one single modality
over the other. In the multimodal system, we use the feature
fusion technique to combine modalities. In our experiments,
feature fusion is achieved by concatenating the feature matrices
into one final larger feature matrix. Given the large number
of features and the limited size of the available dataset, feature
selection is needed to reduce the number of features to avoid
overfitting (Jović et al., 2015). Feature selection or ranking aims
to rank available features based on their potential impact on
the downstream classification task (Cai et al., 2018). This way,
irrelevant and/or redundant features are removed.

Many feature selection techniques have been reported in the
literature, and there is no consensus on what technique is ideal
for a specific application, hence different methods are commonly
explored. Here, different univariate filter techniques for feature
selection are investigated. Filter techniques do not utilize any
learning model during the feature selection process, thus, the
ranking is based solely on data characteristics (Bagherzadeh-
Khiabani et al., 2016). Combined with a univariate approach,
the feature selection step evaluates each feature in the dataset
one-by-one by determining their relationship with the dependent
variable, or label to be predicted; in our case, MMSE scores. In the
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end, the features are ranked based on this relationship and the
features with the highest scores are selected. In this study, three
different techniques of filtering the features were tested: Pearson
correlation, Spearman correlation, and Minimum Redundancy
Maximum Relevance (MRMR).

2.6.1. Correlation-Based Ranking
Correlation-based feature selection relies on correlation
measures between the tested features and the outcome variables.
Different types of correlations are available to measure different
associations between the two variables. Here, two of the most
popular indices of correlation are used, namely Pearson and
Spearman correlations. Pearson correlation ranges from –1 to 1
and measures a linear relationship between the variables, with a
correlation coefficient of zero indicating no linear relationship.
Spearman correlation, in turn, measures the ranking relationship
between variables, thus considers linear relationships and
non-linear monotonic relationships between variables (Chok,
2010). As mentioned by Cassani et al. (2018), correlation-based
methods are widely used in EEG-based AD diagnostic systems.

2.6.2. MRMR
One main drawback of correlation-based methods is that while
keeping relevant features, their redundancy is not accounted
for, thus multiple features may be kept while providing limited
additional information for the downstream classification task
(Dormann et al., 2013). As such, it may be seen as suboptimal.
To compensate for this limitation, the minimum redundancy
maximum relevance (MRMR) feature selection algorithm has
been proposed. In essence, the algorithm selects a subset of
features having the most relation with a class (relevance) and the
least relation between themselves (redundancy). Relevance can
be calculated with an F-statistic metric or mutual information,
whereas redundancy can be calculated by using Pearson
correlation coefficient or mutual information (Peng et al., 2005;
Li et al., 2017; Cai et al., 2018). For our usage, an open-source
implementation of the MRMR was used (Li et al., 2017).

2.7. Top-Feature Grouping
In an attempt to match the dimensionality reported in previous
EEG-based AD literature (e.g., Falk et al., 2012; Fraga et al.,
2013; Cassani et al., 2014b), the top 24 features from each of
the feature modalities was selected. Here, we call feature “Group
1” the top-24 features selected for the EEG modality. Group
2, in turn, corresponds to the top-24 MRI features. As we are
particularly interested in multimodal systems, two other feature
fusion strategies are explored. First, we apply feature selection to
the fused EEG-MRI features sets and keep the top 24 features of
this combined set. This is termed feature Group 3. Earlier work
has suggested some correlation between EEG and MRI features
(McGeown et al., 2019), thus performing feature selection of
the fused set may help remove redundant features from varying
modalities. Lastly, we combine the top-12 EEG and top-12 MRI
features and call this feature Group 4. Table 3 summarizes the
four top feature groups explored herein.

TABLE 3 | Top-feature grouping classes.

Groups Description

Group 1 Top 24 features from the ranking of features from EEG signals.

Group 2 Top 24 features from the ranking of features from MRI scans.

Group 3 Top 24 features from the ranking of the combination of

features from EEG and MRI.

Group 4 Combination of Top 12 features from group 1 with the top 12

features from group 2.

2.8. Data Partitioning
From the data available from the 89 patients, 25% were
exclusively dedicated to the feature selection procedure, while the
remaining 75% of the data was used for training and testing of
the regression models. Using disjoint sets for feature selection
and model training reduces any unwanted biases in the reported
performance figures. Data partitioning was done randomly while
keeping the distribution of the MMSE scores proportional to the
entire dataset. The data partitioning is illustrated in Figure 5.
This partitioning was done five times in order to assure that the
selected features are not overly sensitive to data partitioning.

2.9. Regression Analysis
Since we are interested in AD severity monitoring, a regression
task is needed. More specifically, we are interested in estimating
the MMSE score of an AD patient. Motivated by insights from
Cassani et al. (2018), three supervised regression models are
explored (Gupta et al., 2019), namely: support vector machine
regression with linear (SVM-Linear) and Gaussian (SVM-RBF)
kernels, random forest regression (RF), and k-nearest neighbors
regression (KNN). All the models were implemented with the
open-source scikit-learn library for Python (Pedregosa et al.,
2011). A brief summary of these regression models is detailed
below for the sake of completeness.

2.9.1. Support Vector Machine
The support vector machine regression (SVMR) model searches
for a regression function in which all the obtained target errors
will be under a specific value (Smola and Schölkopf, 2004). The
strategy used in the implementation of the SVMR is very similar
to the strategies used by the support vector machine classifier.
In the regression scenario, the optimal hyperplane will not be
used to separate the two sets of data but to map the training
data into a regression function, and the margin in this scenario
is used as a tolerance margin which the errors must be under
(Rodríguez-Pérez et al., 2017).

2.9.2. Random Forest
Random forest (RF), in turn, combines many decision trees into
a single model. The structure of a random forest is composed
of several decisions trees running in parallel with no interaction
between them. Ultimately, the random forest outputs the mean
value of each individual tree outputs that composes the random
forest (Lebedev et al., 2014).
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FIGURE 5 | Example of the MMSE distributions for the feature selection and the train/validation datasets. The MMSE distribution of the entire dataset is provided as

reference.

2.9.3. k-Nearest Neighbors
The k-nearest neighbor classifier (KNN) assumes that an unseen
sample likely belongs to the same class as the k most analogous-
distant neighbors (Qin et al., 2013). For regression, the algorithm
takes the weighted average of the k nearest neighbors, weighted
by the inverse of their distance.

2.10. Evaluation Metrics
To evaluate each model’s performance, we use the root mean
squared error (RMSE), Pearson, and Spearman correlation
between the predicted and the true MMSE score as metrics. Since
the dataset available is not very large, we rely on repeated k-
fold cross-validation as a testing setup. In this way, the available
train/test dataset (i.e., 75% of the original dataset) is randomly
split into k folds (per repetition). Training is done with k-1
folds and then tested on the held-out fold. This is repeated
until all folds have been used as hold-out. With repeated cross-
validation, this procedure is repeated N times, each time with
a different partition. In the end, a total of N × K RMSE values
are produced. Here, N = 50 and K = 5 are used. The average
and standard deviation of the RMSE values across these N × K
values are used to gauge system performance. In addition, average
and standard deviation of Pearson and Spearman correlation
calculated between predicted MMSE and observed MMSE per
cross-validation value are also analyzed. Ideally, we are interested
in models that i) achieve a low average RMSE, as well as a low
standard deviation, thus suggesting the model is insensitive to
data partitioning and ii) high correlation values.

3. RESULTS AND DISCUSSION

3.1. Performance
In this section, we explore the benefits of AD severity prediction
using unimodal and multimodal systems. Although we have
investigated the performance of different feature selection and
regression model algorithms, for the sake of brevity, the

discussion will be based only on the results found from the
utilization of MRMR for feature selection and random forest as a
regression model, since they provided the best overall results. As
an extension to the discussion, the interested reader is referred
to the supplementary material where results from all the tested
feature selection and regression model algorithms are presented.

First, we explore the effects of feature groups on regression
accuracy. Here, we focus on the RMSE metric. Figure 6 presents
the distributions of the overall average RMSE scores based on the
different groups of features. If we look at the average and standard
deviation of the RMSE scores computed over all the cross-
validation trials and test runs, features from group 1 achieved
1.897 ± 0.231, features from group 2 of 1.928 ± 0.226, group 3
of 1.951± 0.238, and finally group 4 presented an average RMSE
of 1.881± 0.228. For more details on the RMSE distributions per
feature group for other regression models and feature selection
algorithms, the reader is referred to Supplementary Table 1.

Looking at just average RMSE values, top EEG features seem
to outperform the top MRI features in unimodal systems (group
1 and group 2), though not significantly. Figure 6, on the other
hand, shows thatMRI features achieved somewhat lower median,
upper, and lower quartile RMSEs relative to EEG features,
further corroborating recent findings by Farina et al. (2019).
Overall, for most cases tested, multimodal systems, particularly
trained on feature Group 4, showed slight improvements in
performance relative to unimodal systems. In particular, lower
RMSE variability was seen, thus suggesting that multimodal
systems are less sensitive to data partitioning.

3.2. Feature Ranking
In order to better understand the impact of different feature
modalities on overall severity monitoring performance, an in-
depth analysis was performed to determine which features
were consistently selected during the five test setup runs.
Supplementary Tables 2–4 lists the features which were selected
more than once by each of the feature selection techniques for
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FIGURE 6 | Distribution of the RMSE scores according to the groups of features.

Groups 1-3, respectively. The Tables demonstrate that MRMR
is less sensitive to data partitioning than the other feature
selection techniques, since it was able to select similar features
across the five runs consistently. This was true for all feature
groups tested. This is an important aspect that needs to also be
taken into account when evaluating overall system performance
(Khaire and Dhanalakshmi, in press).

The features kurtosis − R2oR3 − P3 − P4, skewness − beta −
mdelta − F4, cv − theta − mdelta − P3, and cv − R2oR3 −

P3 − P4 were shown to be those most often selected from the
EEG modality, thus highlighting the importance of modulation
spectral features not only for diagnostics, but also for AD severity
monitoring. The virtual electrode P3 − P4 was also shown to
be important, thus corroborating the inter-hemispheric deficit
commonly reported with AD (Lakmache et al., 1998). More
importantly, the recently-proposed modulation spectral patch
features represented half of the top-20 EEG features selected by
MRMR, thus highlighting their importance for unimodal EEG-
based monitoring systems. From Supplementary Table 2, it can
be seen that alpha and theta related features show up in the top
rank, corroborating previous studies (Onishi et al., 2005), despite
differences in the number of channels explored and the analysis
protocol (eyes open vs. eyes closed) used.

From the MRI modality, in turn, a larger number of
features derived from MRI scans were consistently selected (see
Supplementary Table 3), relative to the EEG feature group. Area
measures of the left frontal pole and superior temporal cortex
were selected in all the runs by the MRMR technique, thus
corroborating the importance of frontal and temporal lobes in the
ADneuropathologic process (Kehoe et al., 2014). Furthermore, as
severity increases, neurofibrillary tangles accumulate in greater
numbers within the mediotemporal regions (including the
entorhinal cortex), before extending beyond the limbic regions

to involve neocortical association areas (Braak and Braak, 1991);
as such, involvement of these frontal and temporal regions
are expected.

Moreover, while AD is mostly associated with its effects on
cortical gray matter, damage to white matter has also been
reported. For example, differences have been noted in the scans
of patients with AD compared to healthy controls in the white
matter of the frontal, temporal, and parietal lobes (Bozzali et al.,
2002; Salat et al., 2009). Here, MRMR selected gross measures
of white matter volume: white matter mask volume, cerebral
white matter volume, and estimated total intracranial volume,
in four of the five runs. Right side measurements from the
frontal pole, supramarginal, superior temporal, superior parietal,
transverse temporal, cerebral white matter vol, unsegmented
white matter, and insula were also selected in four out of
the five runs, together with the left side measurement of
cerebral white matter volume. Additionally, areas from the left
and right side of lateral occipital, and white matter right-side
measurements of the lateral occipital and fusiform were selected
at least four times from Pearson and Spearman correlation
feature selection techniques. These are all areas and features
that have been previously linked to AD (e.g., Bottino et al.,
2002; Fennema-Notestine et al., 2009; Leandrou et al., 2018;
Farina et al., 2019). Encroachment of the neuropathology (e.g.,
neurofibrillary tangles) upon the occiptotemporal cortex has
also been noted during the advancement of the disease (and
has been linked to visuoperceptive and visuospatial deficits)
(Braak and Braak, 1991).

Interestingly, of the 29 unique features consistently-selected
from group 3 (see Supplementary Table 4), only six were from
MRI. The top features also showed up previously during the
unimodal tests, thus suggesting their importance for the task
at hand.

Frontiers in Human Neuroscience | www.frontiersin.org 9 September 2021 | Volume 15 | Article 700627

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jesus et al. Multimodal Prediction of Alzheimer’s Disease Severity

TABLE 4 | Distribution of the selected features that were selected in multiple runs

for EEG groups.

EEG

Unimodal Multimodal

Summary statistics

Mean 2 4

Standard deviation 2 5

Coefficient of variation 3 4

Median 2 1

Skewness 21 4

Kurtosis 6 5

Feature category

Spectral power 4 3

Coherence 5 5

Amplitude modulation 11 10

Modulation frequency 16 5

Feature subband/region

Delta 2 1

Theta 3 -

Alpha 4 6

Beta 7 6

Gamma 4 5

R1 2 2

R3 1 -

R2/R3 10 2

R2/R1 3 1

Electrode position

P3-P4 12 4

F4 3 -

P3 2 -

P4 3 2

F3-F4 6 3

F3 3 -

Pz 3 4

Cz 2 6

F3-P3 2 2

Fz - 2

Tables 4, 5 show the overall summary of consistently selected
features based on feature category, frequency bands, electrode
positions, and neuroanatomy. From the EEG features, the
skewness features stood out in the unimodal systems, whereas
the standard deviation features stood out for multimodal ones.
Such findings suggest that feature temporal dynamics play
an important role in severity monitoring; something that is

TABLE 5 | Distribution of the selected features that were selected in multiple runs

for MRI groups.

MRI

Unimodal Multimodal

Feature category

APARC 20 3

ASEG 7 1

WM 29 2

Brain hemisphere

left 20 2

right 31 3

corroborated by the importance seen with the modulation rate-
of-change features. In fact, for both unimodal and multimodal
systems, the amplitude modulation features were shown to
be extremely important, in particular features related to
the beta frequency subband dynamics, thus corroborating
previous research (Jelles et al., 2008). The R2/R3 modulation
patch regions, in turn, were extremely important for the
unimodal systems.

Regarding electrode positions, the virtual bipolar channels
were important for unimodal systems, thus in line with previous
research showing an inter-hemispheric disconnection with AD
(Jeong, 2004). From the MRI features, in turn, features derived
from the cortical parcellation and white matter volume ROIs
were more often selected than subcortical volumetric features.
Moreover, features from the right side of the brain showed up
more often in the unimodal systems. Although some studies have
shown greater left hemispheric deterioration with Alzheimer’s
disease (e.g., Karas et al., 2003; Thompson et al., 2003; Seo
et al., 2007), our results may reflect that involvement of the right
hemisphere (most likely in addition to early damage to the left)
is associated with more widespread damage to cognitive systems
and is therefore predictive of lower MMSE scores.

3.3. Models Based on
Consistently-Selected Features
As a last experiment, we built models using only the consistently-
selected features from the MRMR algorithm, as shown in
Supplementary Tables 2–4 for EEG-only, MRI-only and EEG-
MRI, respectively. Models are all based on the random forest
regression model -and cross-validation testing scheme was used.
In this experiment, the average RMSE obtained from the model
with EEG features only was 1.798 ± 0.176, from the model with
MRI features alone was 1.715 ± 0.186, and from the model
with EEG-MRI features was 1.682 ± 0.177. As previously, for
unimodal systems, the MRI-only model outperformed the EEG-
only model, but multimodal systems were shown to always
outperform at least one of the unimodal systems.
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FIGURE 7 | Predicted MMSE vs. observed MMSE for the cross-validation trial with the best performance for (A) the proposed model and (B) the random model.

In this scenario, we also report the Pearson and Spearman
correlation coefficients calculated between the predicted MMSE
and observed MMSE scores per cross-validation trial for the
multimodal system. An average 0.350198 ± 0.049959 was
attained for the Pearson correlation coefficient across all trials (all
significant) and an average 0.348317 ± 0.052035 was obtained
for the Spearman correlation coefficient (also significant). For
visualization, Figure 7 depicts the predicted vs. observed MMSE
scores for one of the cross-validation trials.

3.4. Statistical Significance of the Results
To test the significance of the obtained results, a “random
regression model” was also developed. In this scenario, MMSE
scores across patients were randomly permuted during the 50 x
5 cross-validation training phase of the regression models. RMSE
scores of the random regression model were compared against
the RMSE scores of the proposed models using a two-tail t-test.
For all tested cases, the proposed method achieved lower RMSE
values, suggesting better MMSE estimates. For all cases, with the
exception of the SVM-RBF with group 1 and group 2 features,
p < 0.025 were achieved, suggesting that the obtained errors were
significantly lower than those achieved by chance. In addition,
the “random regression model” for the scenario consisting of
features from group 3 selected by the MMSE feature selection
and a random forest regression model was randomly trained 500
times. All the random regressionmodels’ RMSE averages resulted
in a higher value than the original RMSE of 1.68.

3.5. Study Limitations
The results reported in this study were performed on a limited
sample size of 89 participants. While repeated cross-validation
and multiple trial runs allowed for data partitioning biases to be
explored, the generalization capability of the models to unseen
patients is still unknown. Moreover, to the best of the authors’
knowledge, no open-access dataset exists that includes EEG

signals and MRI scans. The available data has a very narrow
spread of MMSE scores, as shown in Figure 5. While this allows
for models to be built for patients with minimal-mild levels of
AD, it is still unknown how the models would behave as disease
progresses into moderate and severe stages.

A further limitation is that a single marker of disease severity
was used (i.e., MMSE), and it is unclear how the MRI/EEG
features would perform when assessing severity using a different
procedure. As such, further analyses are still needed. Moreover,
model performances showed an improvement when features
that presented stability across the feature selection experiment
runs were used. In that regard, more recent feature selection
techniques should be explored in the search and identification
of more stable selected features, in particular using wrapper
methods in which the feature selection and the regressor
are tightly coupled. Given the importance seen of features
extracted from structural MRI, it could be the case that other
measures derived from functional MRI, such as functional
connectivity measures, could show complementary information
for multimodal systems.

In this study, a range of neuroanatomical measures were
provided directly via the outputs from FreeSurfer, but additional
or alternative measures could be incorporated in the future, for
example, by including neuroanatomical measures (e.g., cortical
volume ROIs) corrected for head size (i.e., by using estimated
total intracranial volume), measures of hippocampal subfields,
laterality indices, or structural covariance, to name a few. As
the MRI data utilized in this study were collected in different
sites with different protocols, further studies should explore the
effects of different normalization procedures relative to scanner
sites and/or field strengths. While the available data was not
sufficient for such an analysis, a preliminary exploration was
conducted and we compared the initial model trained on all
data (n = 89 participants) to a model trained from data from
the single largest site (n = 43 participants). Using a two-tail
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t-test to compare the estimates from both models, we found
that for group 3 and group 4 feature sets, p = 0.15 and
p = 0.67 were achieved, respectively. This suggests that the
results are not significantly different to each other and that
additional normalization may not be crucial. Notwithstanding,
further studies with a larger population sizes are needed to obtain
more conclusive results.

Lastly, with the advances seen with deep neural network based
analyses of EEG (Roy et al., 2019) and MRI signals (Jo et al.,
2019), deep multimodal architectures should be explored once
more data is made available to the research community.

4. CONCLUSION

Although features such as beta-amyloid or tau may be used to
illustrate the progression of the hallmark neuropathology relating
to Alzheimer’s disease, additional combinations of neural features
captured through EEG and structural MRI may provide further
insight on the neurodegeneration and neuronal injury (including
synaptic dysfunction) that occurs with disease progression. This
paper has explored the use of both structural MRI and EEG
features, typically developed for Alzheimer’s disease diagnosis,
for the purpose of monitoring disease severity (as measured
by the MMSE). Various feature selection algorithms were
tested, along with cross-modality fusion schemes, and machine
learning algorithms. Experimental results showed that while
new EEG modulation spectral patch features are more relevant
than conventional spectral power ones for AD severity level
monitoring, systems trained solely on MRI features tended to
outperform EEG ones. Overall, multimodal EEG-MRI systems
showed improved accuracy and lower variability across cross-
validation runs, thus suggesting their importance for practical
applications relating to the monitoring of disease progression. In
relation to the feature selection algorithms, theMRMR algorithm
showed improved stability across different test setup runs and

stood out among the other correlation-based candidates. Across
machine learning algorithms, non-linear regression models
showed improved accuracy over linear ones.
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