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Because rate of force development (RFD) is an emerging outcome measure for the
assessment of neuromuscular function in unfatigued conditions, and it represents a
valid alternative/complement to the classical evaluation of pure maximal strength, this
scoping review aimed to map the available evidence regarding RFD as an indicator of
neuromuscular fatigue. Thus, following a general overview of the main studies published
on this topic, we arbitrarily compared the amount of neuromuscular fatigue between the
“gold standard” measure (maximal voluntary force, MVF) and peak, early (≤100 ms) and
late (>100 ms) RFD. Seventy full-text articles were included in the review. The most-
common fatiguing exercises were resistance exercises (37% of the studies), endurance
exercises/locomotor activities (23%), isokinetic contractions (17%), and simulated/real
sport situations (13%). The most widely tested tasks were knee extension (60%) and
plantar flexion (10%). The reason (i.e., rationale) for evaluating RFD was lacking in 36%
of the studies. On average, the amount of fatigue for MVF (−19%) was comparable to
late RFD (−19%) but lower compared to both peak RFD (−25%) and early RFD (−23%).
Even if the rationale for evaluating RFD in the fatigued state was often lacking and
the specificity between test task and fatiguing exercise characteristics was not always
respected in the included studies, RFD seems to be a valid indicator of neuromuscular
fatigue. Based on our arbitrary analyses, peak RFD and early phase RFD appear even
to be more sensitive to quantify neuromuscular fatigue than MVF and late phase RFD.

Keywords: contraction quickness, force-time curve, knee extension, explosiveness, fatigability

INTRODUCTION

The magnitude of neuromuscular fatigue—also referred to as muscle fatigue (Gandevia, 2001) or
neuromuscular fatigability (Chartogne et al., 2020)– is universally evaluated as the exercise-induced
decline in the isometric maximal voluntary contraction force (hereafter abbreviated as MVF) of a
muscle/muscle group. In this context, pre- to post-fatigue percent declines in knee extension MVF
ranging from 8 to 34% have been reported for a multitude of exercise types of different duration and
intensity (Millet and Lepers, 2004). Nevertheless, the validity of this approach/variable can partially
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be questioned as the characteristics of the fatiguing exercise (e.g.,
explosive jumps) do not always correspond to those of the testing
contraction/task (e.g., slow ramp and hold knee extension). This
lack of task specificity may result in an underestimation of the
magnitude of neuromuscular fatigue, thereby suggesting the need
for evaluating outcome measures other than the classical MVF.

The rate of force development (RFD)—which is basically
obtained from the ascending part of the force-time curve of an
explosive contraction either as a mean time-locked value or a
maximal force per time ratio—has received increasing interest
in the last few years for the evaluation of explosive strength
in multiple situations (Maffiuletti et al., 2016; Rodriguez-Rosell
et al., 2017). As such, RFD has been shown to be more sensitive
than MVF to detect chronic changes induced for example by
aging (Thompson et al., 2014), immobilization/disuse (de Boer
et al., 2007), strength training (Andersen et al., 2010) and
rehabilitation (Angelozzi et al., 2012), but also acute adjustments
associated to exercise (Buckthorpe et al., 2014), muscle damage
(Peñailillo et al., 2015), and pain (Rice et al., 2019). Despite being
more functionally relevant than pure maximal strength (Tillin
et al., 2010; McLellan et al., 2011), RFD—particularly the one
derived from the earlier phase of the contraction (≤100 ms; early
RFD)—has been suggested to be largely influenced by neural
mechanisms, mainly in relation with motor unit behavior (Del
Vecchio et al., 2019). This unique physiological feature of RFD
could explain, at least in part, why this variable has often been
found to be more sensitive to changes than MVF.

Although the effect of neuromuscular fatigue on maximal
strength was documented 130 years ago by Angelo Mosso (1891),
the impact of fatigue on the ascending part of the force-time
curve was described only recently. Royce (1964) was the first to
report a similar fatigue-related decline in MVF (47%) and peak
RFD (50%) after a sustained (1 min) maximal contraction of the
finger flexors. Later, Viitasalo and Komi (1981) found that 100
explosive contractions of the knee extensor muscles decreased
MVF and peak RFD, respectively, by 24 and 36%. In the same
year, Kearney and Stull (1981) investigated RFD across many
non-overlapping time intervals, and reported that early RFD was
more affected than late RFD (>100 ms) following a sustained
maximal contraction of the finger flexor muscles. Since these
seminal reports, numerous studies have been published on the
fatigue-related changes in RFD of different muscle groups and
for different types of exercises, including actual sport situations.
Nevertheless, a comprehensive understanding of the effect of
neuromuscular fatigue on RFD—and more particularly so in
relation with MVF—is still lacking.

Because RFD represents a valid alternative/complement to
the classical evaluation of pure maximal strength in unfatigued
conditions (Maffiuletti et al., 2016), the aim of this scoping
review was to map the available evidence regarding RFD as
a possible indicator of neuromuscular fatigue. Thus, following
a general overview of the different studies published on this
topic, we formulated two main research questions. The primary
question was: “Is RFD a valid indicator of neuromuscular
fatigue?” To address this question we arbitrarily compared
the magnitude of neuromuscular fatigue—characterized by the
exercise-induced decline in selected variables—between MVF

(“gold standard”) and peak RFD (i.e., the most commonly
evaluated RFD variable). The secondary research question of
this study was: “What is the most sensitive RFD variable for
evaluating neuromuscular fatigue?” To address this question we
arbitrarily compared the magnitude of neuromuscular fatigue
between different RFD variables—basically peak, early and late
RFD—always in relation with MVF.

METHODS

Protocol and Eligibility Criteria
The protocol was drafted using the Preferred Reporting Items
for Systematic Reviews and Meta-analysis Protocols for Scoping
Review (PRISMA-ScR) (Tricco et al., 2018). A literature search
was conducted in February 2020 on PubMed, Scopus, and Web of
Science databases. Peer-reviewed journal articles in English were
included if: (1) the study involved healthy human participants,
(2) at least one key term of the search string (see below) was
included within the title, abstract, or keywords, (3) voluntary
contractions were used to evaluate RFD before (pre-test) and
within 1 h after the end of a standardized fatiguing exercise (post-
test). The exclusion criteria were: (1) reviews, (2) studies whose
main focus was not neuromuscular fatigue (e.g., post-activation
potentiation), (3) studies in which fatigue was induced by non-
voluntary contractions, (4) studies in which RFD was evaluated
during vertical jumps due to the impossible comparison with
MVF, (5) studies with missing data not obtained even after having
contacted the corresponding author by e-mail. If the study design
included the ingestion of dietary supplements, only the control
group was considered.

Search Strategy
A Boolean search strategy was applied using the following string:
(“rate of force development” OR “rate of torque development”
OR “explosive contraction” OR “ballistic contraction” OR “time
to peak force” OR “time to peak torque” OR “time to maximal
force” OR “rate of force production” OR “force pulses” OR “force
impulses” OR “torque pulses” OR “torque impulses” OR “rapid
contraction”) AND (“fatigue” OR “fatiguing” OR “fatigability”).

Selection of Sources of Evidence
The final search results were exported into EndNote1, and
duplicates were removed. Further on, the reference list
was imported into Rayyan2 and abstracts were evaluated
independently by two authors (SD’E and GB), in a blinded mode.
At last, all selected articles were read. Corresponding authors
of the selected articles were eventually contacted by e-mail to
request any missing relevant information.

Data Items
We extracted the following data from the included articles:
(1) subject characteristics (sample size, gender, age group,
sport/training status); (2) fatiguing exercise characteristics; (3)

1https://endnote.com
2https://rayyan.qcri.org
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test task characteristics; (4) percent decline (pre- to post-test) for
four variables of interest: MVF, peak RFD, early RFD (≤100 ms),
and late RFD (>100 ms). If there was more than one estimate for
early and late RFD (e.g., RFD 0–50 and 0–100 ms for early RFD)
or more than one arm for each study, we averaged the values for
each variable of interest. If percent declines of MVF and RFD
were not available, they were calculated from absolute data using
the following formula: % = (post − pre)

pre · 100.

Arbitrary Synthesis of the Data
We arbitrarily clustered the fatiguing exercises in two groups:
“strength exercises,” including isometric and isokinetic
contractions, vertical jumps, resistance/strength exercises, etc.,
and “other exercises” including endurance exercises/locomotor
activities (e.g., running, cycling, swimming), simulated/real sport
situations (e.g., half-marathon, soccer match, handball training
session) and combined (strength and endurance) exercises. To
arbitrarily synthesize the results, we averaged the percent declines
of MVF, peak RFD, early and late RFD by fatiguing exercise type
(strength vs. other exercises). The primary research question
(concurrent validity of RFD) was addressed by comparing the
percent decline of MVF to peak RFD. The secondary research
question (sensitivity of RFD to changes induced by exercise)
was addressed by comparing percent declines between the
different RFD variables. Then, we also categorized studies based
on whether the test task corresponded or not to the fatiguing
task. When fatigue was evaluated with the same task adopted
to induce fatigue (e.g., knee extension)—irrespective of the
action mode—the test was considered “specific,” otherwise it was
considered “non-specific.” Finally, we also verified if the reason
(i.e., the scientific rationale) for evaluating RFD was provided in
the introduction of all selected studies.

RESULTS

Selection of Sources of Evidence
The electronic database search resulted in the identification
of 8,867 potential studies after duplicate removal (Figure 1).
Following a preliminary inspection of title, abstract and
keywords, 8,066 articles were excluded and 801 studies were
available for screening. Through accurate examination of the
abstracts, 678 studies were excluded and 123 studies were
assessed for eligibility. Based on the exclusion criteria, 53
studies were excluded and 70 full-text articles were ultimately
included in the review.

Results of Individual Sources of Evidence
The characteristics of the subjects, fatiguing exercise and test task,
as well as the pre- to post-test percent declines for MVF, peak
RFD, early RFD and late RFD are presented in Tables 1, 2 for
strength exercises (43 studies) and other exercises (27 studies),
respectively. Publication dates ranged from 1981 to 2020 with a
notable increment starting from 2012. Only 14.5% of the total
number of subjects (n = 1,206) were women. The training status
of the participants was distributed as follows: physically active
(56%), elite/professional athletes (11%), inactive (7%), or not

declared (26%). Age groups were distributed as follows: adults
(51%), young adults (43%), old (4%), middle-aged adults (1%),
and children (1%). The fatiguing exercise was conducted in
laboratory conditions in 59 studies (84%) and on the field in 11
studies (16%). The most-common fatiguing exercises consisted
of resistance exercises (37%), endurance exercises/locomotor
activities (23%), isokinetic contractions (17%), simulated/real
sport situations (13%), and vertical jumps (6%). The most widely
tested task was knee extension (42 studies, 60%), followed by
plantar flexion (7 studies, 10%), and knee flexion (6 studies,
9%). RFD was tested using isometric contractions in 67 studies
(96%), and with dynamic actions in only three studies (4%). The
rationale for evaluating RFD was lacking in 25 studies (36%), this
variable not even being mentioned in the study aims.

Arbitrary Synthesis of Results
On average, the mean percent decline of peak RFD (−25%)
was 6% larger compared to MVF (−19%), and this result was
observed in 28 out of 41 studies. The greater decline of peak
RFD against MVF was consistently observed for both strength
exercises (MVF: −23%, peak RFD: −30%) and other exercises
(MVF: −14%, peak RFD: −20%). Similarly, the mean percent
decline of early RFD (−23%) was 4% larger compared to late RFD
(−19%), this result being observed in 13 out of 21 studies and for
both strength and other exercises. Of note, percent declines were
similar for late RFD and MVF (both −19%), as well as for early
RFD and peak RFD (−23 and−25%, respectively).

When fatigue was evaluated with the same task adopted to
induce fatigue (50% of the studies), both MVF and peak RFD
percent declines (MVF: −27%, peak RFD: −33%) were larger
compared to when fatigue was evaluated with a non-specific task
(MVF: −15%, peak RFD: −23%), e.g., when knee extension was
used to quantify fatigue induced by a locomotor exercise.

DISCUSSION

In this scoping review, we identified 70 primary studies
addressing the acute effect of different types of fatiguing exercises
on RFD. Our findings indicate that the classical exercise-induced
alteration in MVF was typically accompanied by a decline in RFD,
this latter being markedly affected by neuromuscular fatigue.
Early phase RFD and peak RFD appeared to be more sensitive
to detect neuromuscular fatigue than MVF and late phase RFD.
However, the rationale for evaluating RFD in the fatigued state
was often lacking and the specificity between test task and
fatiguing exercise characteristics was not always respected in the
included studies.

Peak RFD vs. MVF
In the presence of an exercise-induced decrease in maximal
strength (MVF), an impairment in explosive strength (RFD)
should also be expected as the force-time curve is typically shifted
to the right under fatigued conditions (Valkeinen et al., 2002).
Consequently, it takes longer to produce the same amount of
force and the force available at a given time point is lower.
Peak RFD, which is calculated as the highest rate of force
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FIGURE 1 | PRISMA flow diagram.

increase along the force-time curve (steepest slope), is usually
the most investigated RFD variable (see also Tables 1, 2). On
average, peak RFD decreased more than MVF (−25 and −19%,
respectively), and most studies reported, at least in one arm of
their experiments, a larger decline in peak RFD than in MVF.
Therefore, peak RFD was more susceptible to exercise-induced
neuromuscular fatigue compared to MVF. Interestingly, it was
true even if the between-session reliability of peak RFD—despite
being acceptable and better than the other RFD variables—was
generally lower compared to MVF (Buckthorpe et al., 2012; Haff
et al., 2015). For example, Buckthorpe et al. (2012) reported
intraclass correlation coefficients of 0.95, 0.90, and 0.80 for knee
extension MVF, peak RFD and early RFD (0–50 ms), respectively.
Nevertheless, there were also fatigue studies reporting similar or
even smaller changes for peak RFD than for MVF. The large
variety of experimental and methodological conditions did not
allow to formulate a more specific hypothesis on which fatigue
protocols may induce larger declines in RFD compared to MVF.

Early vs. Late RFD
Different mechanisms seem to govern early and late RFD
and their relative contribution may vary throughout the time
course of the force-time curve rise (Cossich and Maffiuletti,
2020). Broadly speaking, early RFD is poorly correlated to MVF
(Andersen and Aagaard, 2006) and is largely dependent on motor
unit recruitment speed and maximal discharge rate (Del Vecchio
et al., 2019). On the other hand, late RFD is strongly correlated
to MVF and therefore seems to depend more on structural

variables such as muscle cross-sectional area and architecture
(Andersen et al., 2010; Folland et al., 2014). Therefore, analyzing
RFD at different time intervals provides the framework for a
more articulated understanding of the underlying mechanisms.
On average, early RFD decreased more than late RFD (−23 and
−19%, respectively) as a result of fatiguing exercise. This may
suggest that early contraction phases may be particularly sensitive
to identifying neuromuscular fatigue. Of note, the average decline
in late RFD was very similar to the one of MVF. This seems to
confirm that late RFD would provide similar results than MVF
likely because these two variables are highly correlated and share
similar physiological determinants (Andersen et al., 2010; Folland
et al., 2014). Based on the current data, it can be recommended
that including the analysis of early RFD would add meaningful
insights to neuromuscular fatigue quantification, while late RFD
may be redundant with respect to MVF.

Peak RFD
As already discussed, the most reliable RFD variable is peak
RFD (Buckthorpe et al., 2012) and it is also probably the easiest
to calculate, as it only requires extracting the maximal value
from the first derivative of the force signal. This may explain,
for example, why Drake et al. (2019) observed a significant
decline of peak RFD after a strength training session but no
changes in RFD for different time intervals up to 200 ms. Such
higher reliability of peak RFD may help disclosing fatigue-related
differences otherwise undetected by time-locked RFD variables.
On a side note, peak RFD typically occurs between 30 and 100 ms

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2021 | Volume 15 | Article 701916

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-701916 July 3, 2021 Time: 17:33 # 5

D’Emanuele et al. Fatigue and Rate of Force Development

TABLE 1 | Study characteristics and pre-to-post fatigue percent declines of selected variables induced by “strength” exercises.

References Subjects Fatiguing exercise Test task MVF decline Peak RFD
decline

Early RFD
decline

Late RFD
decline

Alhammoud et al.
(2018)

22♂ elite alpine skiers 35 max isokinetic KE KE −20% −5%§
−5%§

Andersen et al. (2014) 20♀ 100 max isometric SE SE ↓ ↓

Balshaw et al. (2017) 10♂ resistance-trained 4 × 3 × 3
concentric-eccentric KE
protocols 6= loads and
durations

KE −4%§
−2%§

−2%§

Battazza et al. (2019) 20♂ 10 × 8 concentric KE-KF KE −55% −76%

Behrens et al. (2012) 8♂ and 7♀ 4 × 25 max
concentric-eccentric

KE −40% −40%

Brandon et al. (2015) 10♂ elite strength and
power athletes

10 × 5 50–85% max SQT KE −8%§
−17%§

Buckthorpe et al.
(2014)

11♂ untrained 10 × 5 (3 s) explosive KE KE −42% −26% −29%

Cadore et al. (2013) 11♂ national rugby players 100/200/300 hurdle jumps KE −12%§
−13%§

Cadore et al. (2018) 14♀ and 8♂ active 4 × 20 max concentric or
eccentric contractions
KF-KE

KE −24%§
−40%§

Cerqueira et al. (2019) 13♂ active/very active Time to fatigue intermittent
isometric HG 45% max

HG −44%§
−52%

Conchola et al. (2015) 17♂ resistance-trained 5 × 8 80% max or 5 × 16
40% max SQT

KE −18%§
−29%§

−27%§
−21%§

Drake et al. (2019) 8♂ and 2♀
resistance-trained

8 × 3 SQT SQT −9%§
−9%§

−1%§
−8%§

Ereline et al. (2004) 11♂ powerlifters and 14♂
untrained

30 max concentric
isokinetic KE

KE ↓ ↓

Ewing and Stull (1984) 28♀ Time to fatigue HG 40, 60
and 80%max

HG −31%§
−30%§

−36%§

Farney et al. (2018) 11♂ trained 3× barbell thrusters + jump
SQT + lunge jumps +
forward jumps

MTP −5% −4%

Gordon et al. (2017) 9♂ and 10♂ recreationally
active middle-aged adults

8 × 10 concentric
KE-eccentric KF

KE −29%§
−37%§

Häkkinen and Myllylä
(1990)

33♂ active or endurance or
resistance-trained

Time to exhaustion bilateral
KE 60% max

KE −26% −33%

Hatzikotoulas et al.
(2014)

10♂ children and 11♂
active

Time to exhaustion max PF PF −49%§
↓

§

Jenkins et al. (2014) 18♂ 6 × 10 max eccentric
isokinetic FF

FF −47% −55% −60%§
−52%

Kearney and Stull
(1981)

15♂ Time to fatigue HG 40, 60,
80% max

HG −40%§
−53%§

−29%§

King et al. (2012) 13♂ and 12♂
non-sedentary young olds

Max isokinetic PF PF −50%§
−10%§

Linnamo et al. (1998) 8♂ and 8♀ physically fit 5 × 10 and 5 × 10 40%
max KE

KE −17%§
−21%§

Marshall et al. (2012) 14♂ resistance trained 5 × 4; 5 × 4, with 20 s
inter-set rest intervals SQT

SQT −8%§
−11%§

Marshall et al. (2015) 10♂ resistance trained 2 × 30 s KE 80% max +
time to exhaustion and 2 ×
60 KE 40% max + time to
exhaustion

KE ↓
§

↓
§

↓
§

Marshall et al. (2018) 8♂ resistance trained Full-body
resistance-training 3–4 sets
× 4–12 reps

KE −28% NS NS§

Marshall et al. (2020) 8♂ and 8♀ resistance
trained

Full-body
resistance-training 4 × 6 6=
intensities

KE −11% NS

(Continued)
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TABLE 1 | Continued

References Subjects Fatiguing exercise Test task MVF decline Peak RFD
decline

Early RFD
decline

Late RFD
decline

McCaulley et al. (2009) 10♂ strength trained SQT 4 × 10 75% max or
11 × 3 90% max or 8× 6
jumps

SQT ↓ ↓

Metcalf et al. (2019) 8♂ and 8♀ resistance
trained

KE from 60 to 90% max +
time to exhaustion 80%
max

KE −26%§
↓

§
↓

§

Minshull and James
(2013)

10♂ recreationally active 3 × 30 s max KE KE −12% −21%

Moreira et al. (2015) 19♂ professional soccer
players

Time to fatigue max
isokinetic concentric
alternated KE and KF

KE −24% −25%§
−24%

KF −24% −38%§
−35%

Morel et al. (2015) 11♂ well trained 20 × 8 max isokinetic KE KE +33% −45%

Nicholson et al. (2014) 7♂ resistance-trained 4 × 6 85% max and 4 × 10
70% max SQT

SQT −16%§
−22%§

−21%

Orssatto et al. (2018) 7♀ and 15♂ young olds LP and KF 60 and 85%
max

KE −16%§
−26%§

−19%§

Patrizio et al. (2018) 10♂ trained Full-body
resistance-training
exercises 3 × 8 80% max

KE −9% −8%

Power et al. (2013) 8♂ and 8♀ recreationally
active

5 × 30 eccentric isokinetic
DF

DF −28%§
−22%§

Storey et al. (2012) 13♂ and 3♀ weightlifters
and 13♂ and 3♀
resistance-trained

10 front SQT 90% max SQT −16%§ NS§ NS§ NS§

Strojnik and Komi
(2000)

12♂ active Time to exhaustion sledge
jumps 60% max height

KE −18% −38%

Váczi et al. (2013) 8♂ active Two protocols: 10 × 10
one-leg stair-jump and level
jump

KE −7%§
−25%§

Valkeinen et al. (2002) 29♂ and 28♀ inactive or
moderately active

Time to exhaustion NE and
NF 60% max

NE −15%§
−17%§

NF

Vila-Chã et al. (2012) 10♂ adults 4 × 25 max eccentric KE KE −14% −14%

Wallace et al. (2016) 10♂ recreationally active
and 10♂ active olds

2 × 25 PF 20% max PF −23%§
−37%§

Zhou (1996) 7♂ and 4♀ phys. education
students

25 isometric KE max KE −57% −56%

Zhou et al. (1998) 4♂ and 3♀ 25 isometric KE max KE −55% −53%

Grand mean −23% −30% −28% −25%

For each study, empty boxes indicate that data were not measured/reported. If not otherwise specified, subjects are adults. DF, dorsiflexion; FF, forearm flexion; HG,
handgrip; KE, knee extension; KF, knee flexion; MTP, mid-thigh pull; MVF, maximal voluntary force; NE, neck extension; NF, neck flexion; NS, not significant; PF, plantar
flexion; RFD, rate of force development; SE, shoulder elevation; SQT, squat;↓ or ↑, the authors reported a decrease or increase without reporting an unequivocal value;
§, mean of values when merging arms of the study.

after contraction onset (Gruber and Gollhofer, 2004), this could
explain why fatigue-induced changes in peak RFD are consistent
with early RFD changes.

Rationale for RFD and Methodological
Considerations
Although RFD is increasingly considered as a relevant index
of neuromuscular function (Maffiuletti et al., 2016; Buckthorpe
and Roi, 2017), very few fatigue studies were specifically
designed to measure RFD as the primary outcome and no
rationale was clearly presented for its evaluation. It seems

indeed quite contradictory to implement RFD assessments
before and after fatiguing exercise induced by non-explosive
contractions such as slow resistance exercise or walking. We
rather believe that RFD should better be evaluated following
fatiguing exercises based on (relatively) rapid contractions.
Several methodological details regarding RFD evaluation were
not provided in most of the studies included in the present
review. These details (reviewed here: Maffiuletti et al., 2016)
include the instructions given to participants, the time window
for peak RFD quantification and the eventual length of the
moving window, the method adopted to identify contraction
onset, and the number of test trials (that is particularly relevant
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TABLE 2 | Study characteristics and pre-to-post fatigue percent declines of selected variables induced by “other” exercises (endurance, locomotor, sport, combined).

References Subjects Fatiguing exercise Test task MVF decline Peak RFD
decline

Early RFD
decline

Late RFD
decline

Bassan et al. (2016) 15♂ swimmers Time to exhaustion
swimming

EF −16% −18%

EE −10% −9%

Boccia et al. (2017a) 14♂ amateur runners Half-marathon KE −22% −24% −33%§
−27%

Boccia et al. (2017b) 16♂ well trained XC skiers 56 km cross-country skiing KE −13% −11% −18%§
−10%§

EE −6% −26% −22%§
−8%§

Boccia et al. (2018a) 23♂ runners Half-marathon KE −21% −19%

Boccia et al. (2018b) 11♂ and 10♀ amateur
runners

Half-marathon KE −11%§
−15%§

Conceição et al. (2014) 13♂ active 6 × 8 75% max squat or 6
× 8 counter movement
jumps + cycling time to
exhaustion 2nd ventilatory
threshold

LL −16%§
−21%§

Dorneles et al. (2020) 22♂ and 2♀ 30 min walking HF −4% −15%§
−11%

Girard et al. (2013) 12♂ active 10 × 6 s all out + 5 × 6 s
cycling sprints

KE −12% −29%§
−16%

Girard et al. (2014) 12♂ tennis players ≈2 h tennis in hot and cool
condition

KE −16%§
−16%§

PF −12%§
−1%§

Girard et al. (2015) 17♂ elite soccer players Soccer match in hot and
cool condition

PF −6%§
−13%§

Girard et al. (2016) 13♂ recreational team
sport athletes

8 × 5 s all-out run sprints KE −9% −5% −8% −10%

Grazioli et al. (2019) 16♂ professional soccer
players

Soccer match KE 0% +22% +3%

KF −1% −16% −11%

Greco et al. (2013) 22♂ professional soccer
players

Soccer specific intermittent
protocol

KE −14% −14%§

KF −18% −17%§

Kelly et al. (2011) 12♂ recreational athletes 1 h running at 1st ventilatory
threshold + 10%

PF −17% −17%

Krüger et al. (2019) 10♂ physically active Three cycling protocols: 30
s all-out/10 min
severe/90 min moderate
intensity

LL −26%§
↓

§

Lapole et al. (2013) 10♂ volleyball players 10 min volleyball specific
circuit

PF −12% −18%

Marshall et al. (2014) 8♂ amateur soccer players Soccer-specific aerobic field
test

KF −24% −31% −67%§

Oliveira et al. (2013) 8♂ physically active ≈35 min running 95% onset
blood lactate accumulation

KE −4% −15%

Peñailillo et al. (2015) 10♂ 30 min eccentric cycling
60% peak power

KE −19% −23%

Alota Ignacio Pereira et al.
(2018)

119♂ from young adults to
olds

30 min sit-to-stand or time
to exhaustion

LL −11%§
−14%§

−2%§

Ravier et al. (2018) 9♂ professional handball
players

Handball specific circuit KE −19% −24%

Rissanen et al. (2020) 27♂ active Three different protocols
with resistance exercise or
cycling or combined

LP −16%§
−27%§

Siegler et al. (2013) 8♂ and 2♀ active Time to exhaustion cycling
120% peak power for 30 s
with 30 s recovery

LL −27% −32% −55%§
−29%

Taipale and Häkkinen
(2013)

12♂ and 10♀ recreational
runners

45 min resistance-training
circuit + 60 min steady-state
running or vice versa

LP −16%§
−19%§

(Continued)
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TABLE 2 | Continued

References Subjects Fatiguing exercise Test task MVF decline Peak RFD
decline

Early RFD
decline

Late RFD
decline

Thorlund et al. (2008) 10♂ elite handball players Simulated handball match KE −11% −21% −17%§
−16%

KF −10% −21% −2%§
−17%

Thorlund et al. (2009) 9♂ soccer players Soccer match KE −11% −7% −8%

KF −7% −7% −9%

Zhou et al. (1996) 6♂ untrained Cycling 4 × 30 s all out KE −49% −62%

Grand mean −14% −20% −19% −13%

For each study, empty boxes indicate that data were not measured/reported. If not otherwise specified, subjects are adults. EE, elbow extension; EF, elbow flexion; HF,
hip flexion; KE, knee extension; KF, knee flexion; LL, lower limb; LP, leg press; MVF, maximal voluntary force; PF, plantar flexion; RFD, rate of force development; ↓ or ↑,
the authors reported a decrease or increase without reporting an unequivocal value; §, mean of values when merging arms of the study.

in fatigued conditions). More efforts should be made in future
fatigue studies in this direction.

RFD During Recovery
Besides the magnitude of neuromuscular fatigue, recovery time-
course can also be influenced by the choice of the outcome.
Four studies showed that RFD recovery was slower than MVF
after exercise termination (Viitasalo and Komi, 1981; Zhou,
1996; Conchola et al., 2015; Krüger et al., 2019). For example,
Zhou (1996) found that after 25 maximal voluntary contractions,
MVF was restored in 10 min but peak RFD did not completely
recover even after 20 min. While there were also studies showing
similar recovery profiles between RFD and MVF (Linnamo et al.,
1998; Marshall et al., 2012), there was an overall trend for
longer-lasting exercise-induced declines of RFD as compared
to MVF. If future studies would confirm this observation, it
would make RFD a promising indirect marker of post-exercise
recovery kinetics. As low-frequency fatigue is suspected to be
one of the neuromuscular impairments lasting for longer after
exercise termination (Jones, 1996), this may suggest that the
more protracted RFD depression may be linked to low-frequency
fatigue (Krüger et al., 2019), such as in the presence of eccentric-
induced muscle damage. Interestingly, both early and late RFD
have been found to be more affected than MVF following 60
eccentric contractions (Jenkins et al., 2014) and 30 min of
eccentric cycling (Peñailillo et al., 2015). This would potentially
indicate that RFD may be more sensitive than MVF to muscle
damage induced by eccentric contractions. However, it is still
unclear which time interval would be more suitable to consider.

Test Specificity
The similarity between the test and the fatiguing exercise in terms
of task and contraction characteristics is crucial. When the task
adopted to quantify fatigue was similar to the task adopted to
induce fatigue in the studies we considered, the decline in peak
RFD was on average 33 vs. 23% when fatigue was evaluated with
a non-specific task. Neuromuscular fatigue induced by locomotor
activities or multi-joint resistance exercises was often quantified
using single-joint tasks, such as the universally employed knee
extension. This was done in the hope that the single-joint task
may provide a surrogate measure of fatigue occurring in the
multi-joint task. While being the easiest and fastest way to
evaluate RFD, this approach inevitably minimizes the magnitude

of fatigue and left rooms of unknown. In an attempt to increase
the external validity of measuring RFD in fatigued conditions, we
recommend that the test task should be as specific as possible to
the fatiguing task, as done for example by Marshall et al. (2012)
and Drake et al. (2019).

Limitations
This review has some limitations. We did not perform a meta-
analysis of percent decline data because the study design and
calculating/reporting of RFD were too disparate in the included
studies. Furthermore, many studies did not fully report the
basic data (e.g., mean and standard deviation of pre- and post-
tests), and these data were still unavailable even after having
contacted the corresponding authors. When the percent decline
was lacking, we calculated it based on averaged group estimates,
and this may have induced inconsistencies among studies. As
most studies investigated the knee extensor muscles, it is unclear
if the present results may be extended with confidence to other
muscle groups. As only 14.5% of participants were women,
the main findings of the present review are probably more
meaningful for men, even though the studies that investigated
gender differences found similar percent declines between men
and women (Linnamo et al., 1998; Valkeinen et al., 2002; Lanning
et al., 2017; Boccia et al., 2018b; Marshall et al., 2020). Finally, due
to the already-discussed heterogeneity across studies, the relative
effect of age and training status could not be examined, and no
attempt was made to discuss the main results in relation with the
origin of neuromuscular fatigue (central vs. peripheral).

CONCLUSION

We conclude by suggesting that RFD is a valid indicator of
neuromuscular fatigue. More specifically, we demonstrated that
peak RFD may be more susceptible to exercise-induced fatigue
compared to the classical MVF, and the analysis of early RFD
might provide more useful information than late RFD.
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