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Continuous theta burst stimulation (cTBS) is a powerful form of repetitive transcranial
magnetic stimulation capable of suppressing cortical excitability for up to 50 min.
A growing number of studies have applied cTBS to the visual cortex in human subjects
to investigate the neural dynamics of visual processing, but few have specifically
examined its effects on central vision, which has crucial implications for safety and
inference on downstream cognitive effects. The present study assessed the safety
of offline, neuronavigated cTBS to V2 by examining its effects on central vision
performance. In this single-blind, randomized sham-controlled, crossover study, 17
healthy adults received cTBS (at 80% active motor threshold) and sham to V2 1–2 weeks
apart. Their central vision (≤8◦) was tested at 1-min (T1) and again at 50-min (T50) post-
stimulation. Effects of condition (cTBS vs. sham) and time (T1 vs. T50) on accuracy and
reaction time were examined using Bayes factor. Bayes factor results suggested that
cTBS did not impair stimulus detection over the entire central visual field nor subfields
at T1 or T50. Our results offer the first explicit evidence supporting that cTBS applied
to V2 does not create blind spots in the central visual field in humans during a simple
detection task. Any subtler changes to vision and downstream visual perception should
be investigated in future studies.

Keywords: transcranial magnetic stimulation, theta burst stimulation, vision, safety, V2, visual cortex

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a powerful, non-invasive technique for modulating
cortical activity. When multiple pulses are delivered in patterned succession, as occurs in repetitive
TMS (rTMS), it can excite or inhibit cortical activity within focal regions for sustained periods
(Eldaief et al., 2011). In the field of cognitive neuroscience, low-frequency rTMS protocols (e.g.,
1 Hz) – capable of eliciting long-term inhibition in the human cortex (Klomjai et al., 2015) – have
become a popular non-invasive tool for elucidating the neural mechanisms of mental processes
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through induction of “virtual lesions.” In 2005, a patterned form
of rTMS – continuous theta burst stimulation (cTBS), comprised
of three pulses of stimulation at 50 Hz delivered every 200 ms
for 40 s, for a total of 600 pulses (Huang et al., 2005) – has
gained attention because this specific pattern is capable of
suppressing activity for longer periods (up to 50-min) with briefer
administration times than more non-patterned stimulation (40 s
vs. 10–20 min) (Huang and Rothwell, 2004; Huang et al., 2005;
Nyffeler et al., 2006; Thut and Pascual-Leone, 2010). As such,
cTBS provides a quick, non-invasive, and well-tolerated (Huang
et al., 2005) means to test the causal roles of specific brain regions
in functional abnormalities observed in traumatic brain injuries
or neuropsychiatric disorders.

The inhibitory effects of cTBS have been well-studied in motor
cortices (Huang et al., 2005). Recent evidence suggesting that
cTBS similarly suppresses cortical excitability when applied to
visual cortex (Franca et al., 2006; Brückner and Kammer, 2016)
has prompted studies to use cTBS to advance our understanding
of brain dynamics underlying visual processing. For example,
applications of cTBS to late-stage visual areas such as V5 have
shown modulation of higher-level (global motion) processing
without impairing lower-level (local motion) perception (Cai
et al., 2014). However, when administering cTBS on early visual
areas (i.e., V1–V3) to examine downstream effects, one critical
challenge arises. Studies on cats have shown that brief TMS
pulse trains (1–8 Hz for 1–4 s) to early occipital regions can
generate visual field defects or scotoma for up to 10-min (Allen
et al., 2007). Given cross-species similarities in the organization
of these early areas (McKeefry et al., 2009), it is possible
that cTBS applied to early visual areas in humans can also
impair vision for extended periods. Without confirming the
integrity of vision following stimulation, altered performance
on visual tasks (Bertini et al., 2010; Rahnev et al., 2013; Cai
et al., 2014; Chiou and Lambon Ralph, 2016; Chen et al.,
2020) after cTBS to visual cortices could be merely due
to blind spots, rather than the hypothesized mechanism of
reduced feedforward activity from early visual areas to later
processing areas. Impaired vision not only threatens the internal
validity of the findings, but also constitutes a safety issue
for human subjects.

Relatively few studies applying cTBS to early visual areas
in humans have examined its effects on vision. Among those
that have, many have focused on more peripheral locations in
the visual field. From both the safety and scientific integrity
perspectives, blind spots to the central visual field would
be more problematic and thus warrant more attention for
investigation. Additionally, findings from these studies have been
inconsistent – reporting impairments (Rahnev et al., 2013; Cai
et al., 2014; Chiou and Lambon Ralph, 2016; Chen et al., 2020),
improvements (Waterston and Pack, 2010; Clavagnier et al.,
2013), and non-significant changes (Waterston and Pack, 2010;
Brückner and Kammer, 2014; Kaderali et al., 2015; Abuleil et al.,
2021) to vision. This is likely due to variability in methods,
including differences in stimulation intensity, performance
measurement, target localization, and task demands. In many
cases, these results were also based on extremely small samples
(many had N < 10) (e.g., Waterston and Pack, 2010; Brückner

and Kammer, 2014; Kaderali et al., 2015; Abuleil et al., 2021),
and therefore negative findings could reflect a failure to reject the
null hypothesis due to limited power rather than a true absence
of stimulation effect on vision. As a result, it is unclear whether
cTBS can be safely applied to early visual areas without inducing
transient blind spots in central vision.

The present study assessed the effects of cTBS to an early
visual area, V2, on central vision under a “typical” stimulation
intensity level used in the majority of cTBS studies, 80% active
motor threshold (Turi et al., 2021). We used a single-blind
crossover design, in which participants received both conditions
(randomized to receive either cTBS first or sham first) and
underwent central vision testing at 1-min and 50-min post-
stimulation. V2 was targeted because it is one of the earliest
visual processing regions and has strong feedforward connections
to higher-level processing areas in both the dorsal and ventral
visual streams. We tested central vision (visual angle ≤8◦) which
is critical to performing most visual perception tasks and may
be particularly susceptible to cTBS effects due to the size and
depth of the cortical surface it occupies (Raz and Levin, 2014).
We stimulated at 80% of active motor threshold (AMT) because
the majority of cTBS studies use AMT to determine stimulation
intensity, and of those, ∼90% utilize an intensity of 80% AMT
(Turi et al., 2021). Thus, cTBS to V2 at 80% AMT can be
considered a “standard” intensity for V2-cTBS and will allow us
to determine whether central vision changes with safety and data
integrity implications (i.e., causing blind spots) occur under a
typical cTBS protocol.

Lesion studies in macaques show that V2 has unique
functionality in visual detection dependent on task demands –
V2 lesions impair complex but spare basic stimulus detection
(Merigan et al., 1993). Here, “basic detection” requires accurate
distinctions between coarsely discriminable stimuli (e.g.,
discriminate horizontal from vertical lines displayed on plain
background), while “complex detection” places more demands
on the visual system (e.g., judge orientation of shapes comprised
of disconnected dots displayed against background distractors).
Thus, we hypothesized that cTBS to V2 in humans would not
impact detection accuracy on a basic visual task. Given previous
reports of slowed visual detection following cTBS to early
occipital targets (Fiori et al., 2015), we hypothesized that reaction
time (RT) would increase after cTBS.

METHODS

Participants
Participants were N = 17 healthy adults (six females; age
24.8 ± 8.6; education 16.5 ± 2.3 years). Inclusion criteria
consisted of the following: ages 18–55, visual acuity equal to or
better than 20/30 on a Snellen chart, intact central/peripheral
vision (test details below), no contraindication to TMS
(see Rossi et al., 2009) or MRI, not taking psychotropic
medication, no medical conditions with neurological sequelae
(e.g., traumatic brain injury), no prior mental illness according
to Structured Clinical Interview for DSM-IV-TR, non-patient
version [SCID-NP (First et al., 2002)], and no substance abuse
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in past month (according to SCID-NP; corroborated by passing
urine drug screenings in each visit).

Procedure
The study protocol was approved by the Institutional Review
Board at the University of Michigan Medical School and
conducted in accordance with the Declaration of Helsinki. Prior
to data collection, written informed consent was collected from
all participants.

Participants completed three sessions: baseline, cTBS, and
sham (Figure 1). Order for cTBS and sham sessions was
counterbalanced across participants. At baseline, each participant
completed a screening assessment, high-resolution T1-weighted
(T1w) and T2-weighted (T2w) structural MRI scans, and
a procedure to determine active motor threshold. Vision
tests (central, acuity, peripheral) were administered to allow
participants to become acclimated with the tasks and to confirm
all had normal vision. TMS was delivered with a MagVenture
MagPro X100 70 mm figure-8 shaped TMS coil (MCF-B70). In
each stimulation session (cTBS, sham), central vision was tested
∼1 min after stimulation (“T1”) and then again at ∼50-min
(“T50”) after completing a ∼40-min fMRI scan. Note that the
fMRI scans/tasks were unrelated to the research question being
addressed in this paper (whether cTBS applied to V2 at 80%
AMT causes blind spots) and thus are outside the scope of the
present paper and will be reported elsewhere. Beyond monitoring
for common adverse events associated with TMS (e.g., headache,
syncope), we also tested for additional vision-related adverse
events following cTBS (and sham) that would pose a safety
concern for participants. These “vision safety checks” involved
a peripheral vision test and a visual acuity test that were
administered at the end of each stimulation session, to ensure
intact vision and safety before participants leave the laboratory.

Transcranial Magnetic Stimulation
Intensity
Stimulation intensity for the cTBS or sham was based on the
participant’s active motor threshold (AMT), determined as the
lowest intensity eliciting motor-evoked potentials of the first
dorsal interosseous muscle (right hand; 20% maximum voluntary

contraction) ≥100 µV on 5/10 trials. Mean raw AMT across
participants was 36 ± 6% of maximum stimulator output (MSO).

Target Localization
Individual structural brain images were used to localize V2. High-
resolution T1w and T2w anatomical images [256 × 256 FOV,
208 slices, 1 mm isotropic voxels, PROMO correction (White
et al., 2010)] were acquired using a GE (MR750 DV25.0) 3T
scanner and used to generate subject-specific masks of V2 and V1
(to facilitate determination of V2 boundaries). Details of image
processing are provided in the Supplementary Material.

As shown in Figure 2A, V1 and V2 masks (right hemisphere)
were superimposed on the native T1w volume in Brainsight
software (Version 8; Rogue Research Inc., Montreal, QC,
Canada). A target was placed in the center of a gyrus within
the V2 cortex. Care was taken to avoid V1 and to ensure coil
placement that minimized the scalp-to-target distance, as E-field
strength reduces as a function of distance (Ilmoniemi et al., 1999).
Across participants, the average distance from coil to target was
16.9 ± 3.7 mm. Figure 2B shows V2 targets for all subjects.

Continuous Theta Burst Stimulation
Continuous theta burst stimulation was delivered to V2 off-line
at 80% of AMT with the coil oriented perpendicular to the gyrus
of the target to optimize effects of the E-field (Janssen et al., 2015).
Average stimulation intensity across participants was 29 ± 5%
of MSO. cTBS parameters consisted of three 50 Hz pulse trains
delivered every 200 ms continuously for 40 s, totaling 600 pulses
(Huang et al., 2005). Brainsight Neuronavigation software with
Polaris 3D Tracking (Version 8; Rogue Research Inc., Montreal,
QC, Canada) utilizing T1w images enabled precise localization of
target-centric subject/coil tracking during stimulation.

During stimulation, participants’ forehead was stabilized
against a headrest to minimize movements. Given that research
on state-dependent effects suggest that TMS to visual areas (V1–
V4) maximally affects neuronal populations that are minimally
active during stimulation (Silvanto et al., 2008), cTBS was
administered while participants were blindfolded to control
visual sensory input. For sham, the coil was rotated 90◦ so that
the handle was perpendicular to the scalp.

FIGURE 1 | Overview of study procedures. Participants completed three sessions: baseline, cTBS, and sham-cTBS. Session order was randomized and
counterbalanced across participants. T1 and T50, 1- and 50-min post-stimulation; cTBS, continuous theta burst stimulation; V2, secondary visual cortex. MRI scans
were collected on Day 1 to guide target selection and TMS neuronavigation during subsequent visits. Note that the fMRI scans/tasks were unrelated to the research
question being addressed in this paper (whether cTBS applied to V2 at 80% AMT causes blind spots) and thus are outside the scope of the present paper and will
be reported elsewhere.
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FIGURE 2 | V2 localization overview. (A) Target selection for a single representative subject. Individualized overlays were superimposed on the T1 anatomical image
(native space) – V1 colored orange, V2 colored pink – and used as guides in the V2 localization process; (B) V2 targets for all participants standardized in MNI space
(average location: x = 21 ± 5, y = –95 ± 6, z = 19 ± 12; see Supplementary Material for individual subject coordinates). V1, primary visual cortex; V2, secondary
visual cortex.

Vision Tests
Central Vision Task
A computerized task was used to examine binocular detection of
visual stimuli across the central visual field (≤8◦). Participants
looked at a central fixation (size = 1◦) while target stimuli
(“1” or “2”; size = 0.75◦) flashed briefly for 50 ms at
different locations, one at a time, on the screen. Participants
pressed the number key “1” or “2” to indicate what they
saw and were given an indefinite period of time to respond.
Following a response, a 200 ms interval elapsed before the
next trial. Each trial was signaled by a 50 ms tone to
minimize attention lapses. Modeled on Barendregt et al. (2014),
targets were presented at 32 locations across the central visual
field (Figure 3). These locations covered four visual angle
eccentricities (2◦, 4◦, 6◦, and 8◦) and eight polarities rotated
about a central fixation (22.5◦, 67.5◦, 112.5◦, 157.5◦, 202.5◦,
247.5◦, 292.5◦, and 337.5◦). Five presentations occurred at each
of the 32 locations in randomized order, resulting in 160
trials and a task duration of ∼3-min. The task was presented
in Psychtoolbox-3 (Brainard, 1997; Pelli, 1997; Kleiner et al.,
2007) in MATLAB (R2019a) using a HP EliteBook laptop
(Windows 10, 1920 × 1080 resolution, 33.5 cm × 17.5 cm
display, 60 Hz refresh rate, 6-bit color depth) placed at an
eye-level viewing distance of 55 cm. A headrest was used to
minimize movements. Vision performance was evaluated by
accuracy and RT for each stimulation condition (cTBS, sham)
and administration time (T1, T50).

Vision Safety Checks
The integrity of peripheral vision was assessed monocularly using
an experimenter-administered visual confrontation task (see
Supplementary Material for description). Normal peripheral
vision (requisite for participation) was defined as reliable
identification on four trials in all quadrants of both eyes at
baseline. Visual acuity was tested binocularly using a Snellen
chart. Normal visual acuity (requisite for participation) was
defined as 20/30 or better, with corrective lenses if needed.
When re-tested after cTBS and sham stimulation sessions, any

reductions in acuity or identification of stimuli in a quadrant were
used to test for safety concerns related to stimulation.

Statistical Analyses
The question of whether cTBS applied to an early visual
area induces (temporary) blindness can be more meaningfully
addressed by evaluating the comparative evidence for the
null vs. alternative hypothesis. This can be achieved only by
Bayesian analysis and not traditional null hypothesis significance
testing. Therefore, we used a Bayesian model comparison
approach to evaluate the relative strength of evidence for
the null and alternative hypotheses (Quintana and Williams,
2018). We compared central vision performance following cTBS
vs. sham by calculating the Bayes Factor (BF) – the ratio
of Bayesian evidence for the alternative model (cTBS-related
vision changes) to the null model (no cTBS-related vision
changes). BF < 1 offers evidence for the null and BF > 1
offers evidence for the alternative. The strength of evidence is
interpreted as follows (Jarosz and Wiley, 2014): evidence for
null = 0.33–1 (anecdotal), 0.10–0.33 (substantial), 0.033–0.10
(strong), 0.01–0.033 (very strong), <0.01 (decisive); evidence for
alternative = 1–3 (anecdotal), 3–10 (substantial), 10–30 (strong),
30–100 (very strong), >100 (decisive).

We used the “anovaBF” function in the “BayesFactor” (Morey
and Rouder, 2015) R package to compute the BF of each
possible alternative model with Stimulation (cTBS, sham) and
Time (T1, T50) as possible fixed factors and subjects as a
random effect, against the null model (subjects as random effect
only) (Morey and Rouder, 2015). This was run separately for
accuracy and RT as dependent variable. All outputs are provided
in Supplementary Material and R analysis code is available
at https://osf.io/3vxyn/.

RESULTS

Continuous theta burst stimulation to V2 was well-tolerated and
no participants reported common adverse side effects related to
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FIGURE 3 | Central vision task. (A) Stimulus presentation locations. (B) Trial structure of the task. Each stimulus was preceded by a 50 ms tone, presented briefly for
50 ms, and followed by an indefinite response period. A 200 ms inter-trial interval (ITI) elapsed between trials. Five stimulus presentations occurred at each of the 32
locations shown, resulting in 160 trials. ms, milliseconds.

TMS (e.g., headache, syncope). Our vision safety checks revealed
that no participants experienced reductions in visual acuity or
impaired peripheral vision at the end of cTBS (or sham) visits.
Accuracy and RT results are summarized in Figure 4.

Accuracy
Accuracy on the central vision task was high both after
cTBS (T1 = 98.4 ± 5.8%; T50 = 97.2 ± 8.2%) and sham
(T1 = 98.3 ± 5.8%; T50 = 97.9 ± 6.7%). Similarly, accuracy at
all individual stimulus locations was also high (above 90% for all
locations in both conditions). Vision performance for individual
subjects is provided in Supplementary Material.

The null model had stronger evidence than all six models that
contained Stimulation (as main effect or interaction with Time).
Specifically, the evidence for the null model was “substantial”
relative to three of these alternative models (BF = 0.31 to 0.14)
and “anecdotal” relative to the other three alternative models
(BF = 0.92 to 0.61). Together, the results suggest that cTBS to
V2 did not impair accuracy of stimulus detection over the central
visual field. The only alternative model with superior evidence
than the null model was the one with Time as main effect
(BF = 1.98, “anecdotal” evidence), indicating reduced accuracy
at T50 relative to T1.

RT
The null model had stronger evidence (“anecdotal” to
“substantial” evidence; BF = 0.46 to 0.16) than three of the
models containing Stimulation (as main effect or interaction
with Time). The “winning” model with the strongest evidence
contained Time as a main effect (BF = 24.91, “strong” evidence),

suggesting learning effects for RT, marked by faster response at
T50 relative to T1 in both stimulation conditions (Figure 4B).
The other three alternative models containing Stimulation
(as main effect or interaction with Time) had “substantial” to
“strong” evidence relative the null (BF = 4.42 to 11.62). However,
each of these alternative models also contained Time as a main
effect. To confirm that these models won over the null model
because of the Time effect, we performed comparisons showing
that Stimulation did not affect RT in addition to Time. We
compared the model with Time as a main effect against each of
these three alternative models by dividing the BF of the former
by that of the latter. In all cases, results favored the Time model,
offering “anecdotal” to “substantial” evidence (BF = 2.14 to 5.63)
supporting that Stimulation did not affect central vision RT in
addition to Time. These results suggest that cTBS to V2 did not
impact RT of detection over the central visual field immediately
following or 50 min post-stimulation.

Exploratory Analysis
We explored whether cTBS differentially impacted subareas of
the visual field by considering the factors of Hemifield (ipsilateral
vs. contralateral) and Vision Type [foveal (2◦) vs. parafoveal (4–
8◦)]. Neither Hemifield nor Vision Type was found to have effects
on accuracy and RT (see Supplementary Material).

DISCUSSION

The present study examined the effects of off-line,
neuronavigated cTBS to V2 on central vision performance.
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FIGURE 4 | Results of central vision performance analysis. (A) Mean accuracy for each condition and administration time; (B) Mean RT for each condition and
administration time; (C) Bayesian model comparison results for all models relative to ID-only model. BF > 1 suggest change in vision performance while BF < 1
suggest no change. RT, reaction time; cTBS, continuous theta burst stimulation; V2, secondary visual cortex; ms, milliseconds; T1 and T50, 1- and 50-min
post-stimulation.

Detection accuracy and RT over the central visual field were
tested on a simple detection task following cTBS to V2 (at
1-min and 50-min post-stimulation) and compared to sham.
We hypothesized that cTBS to V2 would not disrupt detection
accuracy [based on results from lesion studies of the visual cortex
(Merigan et al., 1993)] and would lead to slowed RT’s [based on
previous TMS results (Fiori et al., 2015)].

As expected, cTBS to V2 did not affect the accuracy of
central vision performance on a simple detection task. This
held when hemifield and vision type were accounted for (see
Supplementary Material), which helped rule out the possibility
that cTBS to V2 differentially affected detection over a particular
portion of the visual field. This extends on previous negative
findings [obtained using null hypothesis significance testing
(Brückner and Kammer, 2014; Kaderali et al., 2015)] related
to discrimination accuracy following visual cortex cTBS. Our
findings conflicted with a previous report of low-level visual
processing impairment following cTBS to early visual areas
(Rahnev et al., 2013), but this was likely due to the methodological
differences. The Rahnev et al. (2013) study, along with the
majority of previous studies on this topic (Waterston and Pack,
2010; Clavagnier et al., 2013; Nuruki et al., 2013; Rahnev et al.,
2013; Brückner and Kammer, 2014; Kaderali et al., 2015), used the
phosphene threshold (PT) hotspot as their “early visual” target,
whereas we used an anatomical map of V2 (Glasser et al., 2016).

Phosphene-based methods of localization can yield targets that
vary widely between V1 through V3 (Schaeffner and Welchman,
2017). This can be problematic because, from lesion studies,
we know that disruptions to different functional areas within
“early occipital” regions have drastically different effects on visual
processing [e.g., V1 lesions impair basic and complex visual
processing, while V2 lesions impair complex processing only
(Merigan et al., 1993)]. It is, therefore, possible that impairments
reported in that study were caused by suppression of activity in
V1 in some participants, which would be more likely to cause
blind spots. In contrast, given our localization method, we were
confident that V2 was stimulated in our study and thus our
findings were specific to cTBS applied to V2 (see below for
discussion of possible influences of intensity).

Contrary to hypotheses, cTBS to V2 did not impact RT of
detection over the overall visual field nor specific subfields on a
simple detection task. The discrepancy between this result and
one previous study reporting slower RT following cTBS (Fiori
et al., 2015) could be due to methodological differences. The
task in the current study was relatively easy – a basic detection
task with a fixed stimulus presentation duration (50 ms) – while
Fiori et al. (2015) utilized staircase adaptation procedures to
manipulate difficulty level, reducing stimuli viewing time in order
to keep performance at 80% accuracy. The stimuli also varied
in terms of complexity: we used coarsely discriminable targets
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while Fiori used more complex Gabor elements with varied
orientations. Together, this placed more demands on participants
in Fiori et al.’s (2015) study than those in the present study. This
is important because, as discussed previously, lesions to V1 in
macaques cause deficits on basic visual processing tasks, while
lesions to V2 leave basic discrimination and contrast sensitivity
unaffected (Merigan et al., 1993) but impair complex visual
processing. Perhaps task demand/complexity is another reason
why some have reported low-level visual impairments (Rahnev
et al., 2013; Fiori et al., 2015) after early occipital cTBS, while our
study and those using easier tasks reported no effects (Brückner
and Kammer, 2014). Others have urged the importance of task
complexity in TMS research (Waterston and Pack, 2010). Here
we add that it is also important to carefully consider the specific
visual area stimulated, because failure to consider both may have
unforeseen interaction effects on vision performance.

Regardless of stimulation condition, time appeared to impact
accuracy and RT, such that responses were less accurate but faster
at T50 (relative to T1). It may be that participants were more
comfortable with the task and thus were faster to respond (at a
slight expense of accuracy).

Finally, one might question whether the stimulation intensity
used in the present study was insufficient to adequately suppress
V2 excitation. Although the intensity we used (80% AMT) was
lower than others (i.e., using resting motor threshold, phosphene
threshold, or a fixed percentage of maximum stimulator output),
several studies have successfully modulated behavior, perception,
and cognition using visual cortex cTBS at intensities similar
to ours (van Nuenen et al., 2012; Beck et al., 2015; Adam
et al., 2016). This suggests that the absence of cTBS effects
on simple visual detection performance in this study was
not likely due to insufficient stimulation power. While visual
impairments may be possible at much higher intensities of
cTBS to V2, our goal was not to demonstrate this per se.
Rather, we sought to assess whether blind spots would occur
under a standard intensity (80% AMT) (Rossi et al., 2009)
most commonly adopted in cTBS research (Turi et al., 2021).
In doing so, we demonstrated that cTBS delivered at standard
intensities to V2 does not impair basic detection over the central
visual field. However, this does not imply that cTBS to V2
at any intensities would leave vision intact. There is evidence
that higher-intensity cTBS to early visual areas is capable of
altering visual processing, but results are heterogeneous (Bertini
et al., 2010; Waterston and Pack, 2010; Clavagnier et al., 2013;
Chen et al., 2020).

These findings should be considered in light of several
limitations. Our sample was modest and replications with larger
sample sizes are needed. Additionally, the extant TMS literature
(especially in the motor cortex) indicates that peak effects may
not occur until ∼10–20 min after stimulation (Huang et al.,
2005). Therefore, the testing points used here might not have
captured possible disruptions associated with peak effects. Future
work should use additional time intervals between 0- and 50-
min following stimulation to assess for possible vision changes
post-cTBS. This would be an important direction in future
investigations to fully understand the time course of cTBS effects
on central vision.

In summary, cTBS delivered at 80% AMT to V2 did not
impair accuracy or RT of central vision detection during a
simple detection task. Our findings provide further evidence
consistent with previous reports that cTBS can be safely applied
to V2 at standard intensities (80% AMT) and does not disrupt
basic early visual detection needed to perform tasks tapping
higher-level visual processing or cognition. Replications with
larger samples are needed to provide more definitive conclusions
about the safety of cTBS in early visual cortices and effects on
vision and behavior.
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