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Complex systems typically demonstrate a mixture of regularity and flexibility in their
behavior, which would make them adaptive. At the same time, adapting to perturbations
is a core characteristic of resilience. The first aim of the current research was therefore
to test the possible relation between complexity and resilient motor performance (i.e.,
performance while being perturbed). The second aim was to test whether complexity
and resilient performance improve through differential learning. To address our aims, we
designed two parallel experiments involving a motor task, in which participants moved
a stick with their non-dominant hand along a slider. Participants could score points by
moving a cursor as fast and accurately as possible between two boxes, positioned on
the right- and left side of the screen in front of them. In a first session, we determined the
complexity by analyzing the temporal structure of variation in the box-to-box movement
intervals with a Detrended Fluctuation Analysis. Then, we introduced perturbations to
the task: We altered the tracking speed of the cursor relative to the stick-movements
briefly (i.e., 4 s) at intervals of 1 min (Experiment 1), or we induced a prolonged change
of the tracking speed each minute (Experiment 2). Subsequently, participants had three
sessions of either classical learning or differential learning. Participants in the classical
learning condition were trained to perform the ideal movement pattern, whereas those
in the differential learning condition had to perform additional and irrelevant movements.
Finally, we conducted a posttest that was the same as the first session. In both
experiments, results showed moderate positive correlations between complexity and
points scored (i.e., box touches) in the perturbation-period of the first session. Across
the two experiments, only differential learning led to a higher complexity index (i.e., more
prominent patterns of pink noise) from baseline to post-test. Unexpectedly, the classical
learning group improved more in their resilient performance than the differential learning
group. Together, this research provides empirical support for the relation between
complexity and resilience, and between complexity and differential learning in human
motor performance, which should be examined further.
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INTRODUCTION

Human motor performance can be considered as inherently
complex and dynamic. Whether it is about rhythmical finger
tapping, leg movements, or more complicated movements on the
sports field, an individual’s motor performance emerges out of
simultaneous processes at different levels of the motor system,
including cells, muscles, limbs, and the brain (e.g., Thelen et al.,
1987; Beek et al., 1995; Kelso, 1995; Davids et al., 2014; Den
Hartigh et al., 2015). Through these complex dynamics, the
human motor system typically organizes itself around metastable
states, meaning that its behavior demonstrates a mixture of order
(regularity) and disorder (flexibility) (e.g., Kello et al., 2007). This
optimal mixture is a hallmark of complexity and expresses itself
in the fluctuations of individuals’ repeated movements, such as
intervals between strides, arm movements or rowing strokes (e.g.,
Goldberger et al., 2002; Wijnants et al., 2009; Diniz et al., 2011;
Marmelat and Delignières, 2012; Den Hartigh et al., 2015).

The characteristic pattern of variation in complex systems
behavior is called fractal scaling, 1/f noise, or pink noise,
showing high-frequency and low-amplitude fluctuations that are
nested within low-frequency and high-amplitude fluctuations
(e.g., Wijnants et al., 2012). This nested structure reflects the idea
that a system consists of components across different structural
levels and timescales that constantly interact. Accordingly, the
current state of the system contains the “memory” of its previous
states (i.e., long-range (fractal) correlations, see Diniz et al., 2011).
In the past decades, accumulating research has demonstrated that
diseased or lower-performing systems show deviations from a
pink noise pattern, reflecting a loss of complexity. Early studies
in this direction, for instance, focused on the temporal structure
of heart beat intervals, in order to study the complexity of
the cardiovascular system (e.g., Stanley et al., 1992; Peng et al.,
1993). These studies typically showed prominent patterns of
pink noise in the time series of heart beat intervals of healthy
adults. On the other hand, a clear deviation from pink noise (e.g.,
random variation in intervals) appeared to be a signature of heart
failure (see Goldberger et al., 2002). The methods to detect and
quantify the temporal structure of heartbeat intervals could also
be applied in research on motor performance. For example, a
series of studies on human walking has demonstrated that stride
interval time series of healthy young adults reveal patterns of pink
noise, whereas the stride intervals of people with Huntington
or Parkinson disease demonstrate patterns close to so-called
white noise (e.g., Hausdorff et al., 1997b; Hausdorff, 2009). This
white noise pattern means that more random variation in stride
intervals is present, which suggests a worse dynamic organization
of the motor system. Accordingly, researchers examining cyclic
movements in sports found that skilled athletes demonstrate
more prominent patterns of pink noise in their movements than
their less-skilled counterparts (e.g., Den Hartigh et al., 2015 in
rowing ergometer performance; Nourrit-Lucas et al., 2015 in ski
simulator performance).

In line with the findings mentioned above, researchers have
suggested that a loss of complexity likely accompanies an
impaired ability to adapt to stress or perturbations (e.g., Lipsitz
and Goldberger, 1992; Stergiou and Decker, 2011). This fits with

the findings by Hausdorff et al. (1997a) that elderly people with
higher propensities to fall show more prominent patterns of white
noise in their stride intervals compared to elderly “non-fallers”
and healthy young adults. It thereby appears that complexity
provides the system with both robustness (maintaining proper
functioning despite perturbations) and adaptability (adapting
to changes or stressors in the environment) (Delignières and
Marmelat, 2013; Almurad et al., 2018).

In the behavioral sciences, an individual’s ability to maintain
robust functioning despite perturbations and to adapt to stressors
is called resilience (e.g., Carver, 1998; Luthar et al., 2000;
Masten, 2001; Smith et al., 2008; Pincus and Metten, 2010;
Hill et al., 2018a). Although specific definitions of resilience
show some variations, “each of these definitions encompasses
complex adaptive change over time” (Pincus and Metten, 2010,
p. 357). This complex adaptive change entails that a person is not
governed by one fixed state, but can quickly transition between
equally functional states if the environment demands adaptations
(Kiefer et al., 2018). Proceeding from the idea that the concepts of
complexity and resilience are probably related, our first aim was
to test this relation in a motor task.

Another topic that has gained significant interest in the
past two decades is how complexity, adaptation, and resilience
may be improved in human behavior (e.g., Schöllhorn et al.,
2012; Kiefer and Myer, 2015; Almurad et al., 2018; Hill et al.,
2020b). According to various researchers, system complexity
can be improved by exploiting variability (e.g., Van Emmerik
and Van Wegen, 2000; Riley and Turvey, 2002; Davids et al.,
2003; Stergiou and Decker, 2011; Schöllhorn et al., 2012; Seifert
et al., 2013; Liu et al., 2015). Hence, a promising avenue is
to apply interventions that take advantage of the important
role of variability in finding functionally adaptive movement
patterns. A particularly interesting application of this idea is
differential learning, which is developed from the perspective of
complex dynamical systems (e.g., Schöllhorn et al., 2006, 2009,
2010, 2012; Savelsbergh et al., 2010; Santos et al., 2018). In
brief, a differential learning program introduces random noise to
destabilize the system, and possibly strengthen the development
of metastable states (e.g., Schöllhorn et al., 2009; Gray, 2020).
This is in stark contrast with classical learning, which focuses on
the development of an ideal movement pattern, deviations from
which are considered detrimental to performance. Repetition and
corrective feedback are therefore core ingredients of the latter
approach. In a differential learning approach, on the other hand,
performing various movements for the same task is stimulated
without any corrective feedback while performing (Schöllhorn
et al., 2006, 2009, 2012; Savelsbergh et al., 2010). Thereby,
the learner actively explores a large range of possible motor
solutions to a given task, which fosters behavioral adaptations
(cf. Latash, 2012). Consequently, differential learning may lead to
improved resilient motor performance (i.e., performance while
being perturbed by stressors).

The benefits of differential learning have already been
demonstrated in the domain of sports, such as soccer (Schöllhorn
et al., 2006, 2012; Santos et al., 2018; Gaspar et al., 2019), speed
skating (Savelsbergh et al., 2010), and baseball (Gray, 2020). For
instance, Savelsbergh et al. (2010) trained novice speed skaters
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in their starting posture. The differential learning group began
every start with a different posture and received no feedback on
their performance. On the other hand, a classical learning group
learned the starting posture as described in a skating handbook.
A control group just engaged in regular speed skating lessons. The
speed skating performance improved most for the participants
in the differential learning group, suggesting that their system
was better able to adapt to changing environmental constraints,
resulting in better performance (Schöllhorn et al., 2006). In line
with the possible benefits of differential learning, the second aim
of the current study was to examine the effects of this type of
learning on complexity and resilient motor performance.

In summary, complex systems tend to organize themselves
around metastable states that would allow for adaptation when
perturbations are imposed on their behavior. At the same time,
the adaptation of a system to perturbations is a core characteristic
of resilience (e.g., Pincus and Metten, 2010; Hosseini et al.,
2016; Hill et al., 2018a,b). Hence, it is plausible that there is
a link between the complexity of a system and its resilient
performance. In order to improve complexity, and possibly
resilience, differential learning may provide an interesting
intervention that exploits the functional role of variability in
system behavior. Following this rationale, our research question
was: What is the relation between complexity and resilient motor
performance, and can they be improved through differential
learning? In order to answer this question, we developed a
motor task that allowed us to (1) let participants perform
repetitive (cyclical) movements, which are particularly useful for
the analysis of complexity in time series (e.g., Wijnants et al.,
2009, 2012), and (2) introduce perturbations while participants
are performing the task. The specific task we used was a
lateral movement task in which participants had to move a
stick from left to right in order to move a cursor between
two boxes on a screen in front of them. We conducted two
parallel experiments with this task: one that included maintaining
performance while being briefly perturbed at regular intervals,
thereby emphasizing the robustness side of resilience, and one
including prolonged perturbations that required changes to other
performance states, thereby emphasizing the adaptability side.
Across the two experiments, we expected a positive relation
between complexity and resilient performance (hypothesis 1).
Furthermore, in contrast to classical learning, we expected that
differential learning leads to an improvement of complexity (i.e.,
more prominent patterns of pink noise in temporal performance
fluctuations — hypothesis 2). Relatedly, we expected that, in
contrast to classical learning, differential learning leads to better
resilient motor performance (hypothesis 3). Finally, we explored
whether the hypothesized effects differ depending on the type of
stressors (brief vs. prolonged) introduced.

MATERIALS AND METHODS

Participants
We recruited 82 participants who were living in The Netherlands.
Most of these participants were first year psychology students
recruited through a participant pool of the university. Thirty-nine

participants started, and completed Experiment 1 (Mage = 20.54,
SD = 2.06; 59% female), and 43 participants started the parallel
Experiment 2, of which 40 actually completed it (Mage = 21.60,
SD = 3.76; 58% female). In both experiments, participants were
randomly allocated to either a classical learning condition or
a differential learning condition. None of the participants had
motor impairments, and all of them had normal or corrected-to-
normal vision.

Materials
The device used was designed for the purpose of the current
research (see Figure 1). This device consisted of a meter-long
rail, on which a stick was attached that could move along the
entire length of the rail. The position of the stick was recorded
with a frequency of 20Hz, and the movements were projected
on a screen (Iiyama, 27 inch) in front of the participants. The
screen was placed behind the device on a table with adjustable
height. Participants could sit down on a non-adjustable chair
without armrests.

The task consisted of a game in which participants had to
move the cursor from left-to-right between two boxes on the
screen. Each time they touched the box, the box turned green and
participants won a point, but when overshooting the box turned
red and a point was subtracted. The software we made for this
research allowed us to manage different settings of the game, such
as playing time, tracking speed of the cursor, size and placement
of the squares, and graphic cues for the player (e.g., seeing elapsed
time, points, or squares changing color when touched).

Procedure
The protocol of the study was approved by the Ethics
Committee Psychology of the University of Groningen. The
parallel experiments consisted of three meetings, each lasting
about 1 h, with a maximum of 5 days in between meetings to
retain the influence of the preceding session. The first meeting
included a baseline session and a first training session; the second

FIGURE 1 | Illustration of the research setup.
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meeting consisted of two training sessions; and the third meeting
consisted of the last training session and a posttest. Participants
had a 10 min break in between two sessions on the same day.
Before the first meeting, we randomly allocated participants to
either a classical learning condition or a differential learning
condition. At the start of the first meeting, we explained the
nature of the experiment and the task participants would have
to carry out. We explained how the game had to be played
(how to win points), and we told them that there were four
sessions in which we aimed to train participants to improve in the
game. Subsequently, we asked participants to fill out an informed
consent form and a brief questionnaire including questions about
age, gender, dominant hand, and possible visual impairments.

Baseline Session
In the baseline session, we asked participants to play the game for
15 min. We specifically instructed them to move the cursor with
the stick as fast and accurately as possible between two boxes.
Each time they touched a box, it turned green and participants
earned a point (which would be lost again when overshooting
the target). To avoid interruptions in the task performance,
we instructed participants to always maintain the box-to-box
movement rhythm, regardless of whether they hit or missed the
box. We also emphasized that the goal of the game was to gain
as many points as possible and that this could be reached with
speed and accuracy.

While playing the game, participants used their non-dominant
hand to move the stick, to make the game more challenging
(cf. Wijnants et al., 2009, 2012). The first 30 s of the game
were not measured so that participants could get used to
the task, after which they performed this task for 10 min,
uninterrupted. This period was chosen, because it allowed us
to collect (at least) 512 data points, which is required for a
reliable analysis of the complexity index (Delignières et al.,
2006; see section “Complexity” for more information). When
the 10 min had passed, we introduced perturbations during the
last 5 min of the task. In Experiment 1, these perturbations
were brief: every minute we increased the tracking speed of
the cursor relative to the stick movement for 4 s, thereby
interrupting the cyclic performance that participants needed to
maintain. More specifically, when the tracking speed changed,
identical movements of the stick temporarily resulted in faster
movements of the cursor on the screen. In Experiment 2, these
perturbations were prolonged: every minute we changed the
tracking speed of the cursor for an entire minute, thereby forcing
the participants to adapt and find another performance rhythm.
In both experiments, the intensity of the change in tracking speed
was different for each perturbation to make sure the participants
could not get used to the changes (see Table 1).

Training Sessions
Following the baseline session, participants of Experiments 1
and 2 were involved in four training sessions, each lasting 20
min. The type of training depended on the condition—classical
or differential learning—to which participants were allocated. In
accordance with previous literature, at the start of each classical
learning session, we provided participants with instructions on

TABLE 1 | Schedule of tracking speed changes during the last 5 min of the task in
Experiment 1 (Brief perturbation) and Experiment 2 (Prolonged perturbation).

Brief perturbation Prolonged perturbation

Time (in seconds) Sensitivity Time (in seconds) Sensitivity

630 2 630–690 2

634 1

690 1.5 691–750 1

694 1

750 2.5 751–810 1.5

754 1

810 1.25 811–870 2.5

814 1

870 1.75 870–930 1.25

874 1

When the tracking speed changes from 1 to a higher number, identical movements
of the stick result in faster movements of the cursor on the screen.

how to best execute their movements while performing the task
(e.g., Schöllhorn et al., 2006, 2009, 2012). Hence, in our study
we instructed participants to, amongst others, maintain a stable
position; keep a delicate grip; and position the playing shoulder
to the middle of the device to make sure the distance to the left
and right box is equal. The remainder of each training session
consisted of 10 blocks of 1.5 min each, in which the participants
practiced the ideal movement, with breaks of 30 s in between
the blocks. During the breaks, we gave participants corrective
feedback if necessary.

In the differential learning condition, the training sessions
were based on the differential learning principles outlined in
previous literature (e.g., Schöllhorn et al., 2006; Savelsbergh
et al., 2010; Gray, 2020). As in the classical learning condition,
participants also performed 10 blocks of 1.5 min each, with breaks
of 30 s in between. However, contrary to the idea of classical
learning, they were not trained to perform the movement in
the “right way.” Rather, in the differential learning condition
we used the breaks to give participants instructions to perform
additional and irrelevant movements while practicing, thereby
adding noise to their movement patterns. These could, for
instance, be instructions about which hand to use; sitting down
or standing up; making a turn after each movement; playing with
closed eyes; and standing on one leg. Additionally, we did not
provide participants with any feedback on their performance or
movements. This included the absence of verbal feedback, as well
as feedback by the software such as earned points, elapsed time,
or changing colors of the boxes when hitting or overshooting
them. In the differential learning condition, each training session
was different and included various instructions for the additional
and irrelevant movements. Elaborate descriptions of both the
classical and differential training programs are provided in
Supplementary Materials.

Posttest
The posttest was identical to the baseline session. Hence, the
participants performed the task and the first 30 s were not
measured. In the next 10 min the participants played the game
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without being perturbed. Then, in the last 5 min the participants
were exposed to either brief perturbations (Experiment 1) or
prolonged perturbations (Experiment 2) with the exact same
configurations as in the baseline session. At the end of the
posttest, they were debriefed about the true purpose of the study.

Measures
Complexity
In line with previous research on cyclic movements (e.g., walking,
lateral arm movements, rowing), we used the time intervals of the
left-to-right movements (between the boxes) as a unit of analysis
to determine complexity. On these intervals we conducted the
detrended fluctuation analysis (DFA) for the first 10 min of
each participant’s baseline session (i.e., while performing the task
without any perturbations). DFA is a technique to determine
complexity based on temporal structures in time-series data
(Peng et al., 1993). The procedure to perform the DFA was
as follows. First, we turned the raw data into a time series of
512 movement intervals (from box-to-box) for each participant.
These time series were then divided into bins (time scales) of
equal size, in which a least-squares line was fitted to determine
the trend in each bin. This trend was subsequently subtracted in
the bin to detrend the time series. From the detrended time series,
the root-mean-square fluctuation was calculated. This procedure
was repeated using different bin sizes (i.e., 4, 8, 16, 32, 64, and 128
intervals) to identify the average fluctuation at each bin size.

The relation between bin size and fluctuation reflects the DFA
index (α), which corresponds to the value of the slope of a log-log
plot in which fluctuation is plotted against bin size (see Figure 2).
The closer the DFA index is to 1, the more it reflects a pattern of
fractal scaling or pink noise in the time series. A DFA index of
0.5 reflects a white noise pattern, whereas a DFA index of 1.5 is
an indication of Brownian noise (i.e., an overly regular pattern,
which was not a focus in the current study).

Resilient Performance
In order to determine resilient motor performance of
participants, we scored the number of times participants
touched the boxes (without overshooting) during the periods in
which they were perturbed. In Experiment 1 this score reflected
the participants’ ability to maintain performance despite being
briefly perturbed at regular intervals. In Experiment 2 it reflected
the participants’ performance while regularly adapting to a
new pattern. Indeed, each time the tracking speed of the cursor
relative to the stick movements changed, the participants had to
adapt to another rhythmic pattern to score points.

Analysis
To test whether there is a positive relation between complexity
and resilient motor performance (hypothesis 1), we determined
the correlation between the DFA index and the box touches
during the perturbation period in the baseline sessions of
Experiments 1 and 2. To determine the effects of training on
complexity (hypothesis 2), we conducted a repeated-measures
ANOVA with DFA index (α) as the dependent variable. Session
(Baseline vs. Posttest) was the within-subjects independent
variable, and Training (i.e., Differential vs. Classical) and

Perturbation (Brief vs. Prolonged) were the between-subjects
independent variables. The latter variable allowed us to explore
whether the hypothesized effect is moderated by the type of
perturbation. Finally, to test the effects of training on resilient
performance (hypothesis 3), we also performed a repeated-
measures ANOVA with Box touches as the dependent variable,
Session (Baseline vs. Posttest) as the within-subjects variable, and
Training (i.e., Differential vs. Classical) and Perturbation (Brief
vs. Prolonged) as the between-subjects variables.

RESULTS

Complexity and Resilient Performance
In the first 10 min of the baseline session, we determined the
DFA index and the number of box touches per minute. Taking
the two experiments together, the average value of the DFA index
was 0.70 (SD = 0.14), and the average number of box touches per
minute was 69.14 (SD = 19.84). A Pearson correlation analysis
revealed a positive correlation between the DFA index and the
number of box touches in the perturbation period of the first
session (r (78) = 0.36, p = 0.001, 95% CI [0.15, 0.54]). This
relation was comparable between the two experiments separately
(r (38) = 0.42, p = 0.008, 95% CI [0.12, 0.65] for Experiment 1,
and r (39) = 0.32, p = 0.043, 95% CI [0.005, 0.58] for Experiment
2). In accordance with hypothesis 1, these results suggest that
higher levels of complexity (i.e., α closer to 1)1 are related to better
resilient motor performance.

Training and Complexity
In the baseline- and posttest we determined the complexity,
and we analyzed whether changes in complexity were
influenced by the type of training. The repeated measures
ANOVA did not show a main effect for Session [F(1,
75) = 0.93, p = 0.34, ηp

2 = 0.012], nor an interaction effect of
Session × Perturbation [F(1, 75) = 0.002, p = 0.96, ηp

2 < 0.001],
or of Session × Training × Perturbation [F(1, 75) = 0.10,
p = 0.75, ηp

2 = 0.001]. However, as expected we found an
interaction effect of Session × Training with a medium effect size
[F(1, 75) = 5.17, p = 0.026, ηp

2 = 0.065]. This effect was qualified
by the finding that complexity increased in the Differential
learning condition, whereas it slightly decreased in the Classical
learning condition (see Figure 3). In accordance with hypothesis
2, the planned contrast (paired samples t-test) also showed a
significant improvement in complexity from the Baseline session
(α = 0.69, SD = 0.13) to the Posttest (α = 0.75, SD = 0.13) in the
Differential learning condition: t(39) = −2.56, p = 0.014, d = 0.39.

Training and Resilient Performance
In the baseline- and posttest we also determined the number
of box touches per minute, and we analyzed whether changes
in this number were influenced by the type of training. The

1Values of α above 1 are also possible, and would correspond to more prominent
patterns of Brownian noise. However, all of our participants demonstrated values
within the range from white noise and pink noise, that is, no participant had a
value of α larger than 1.
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FIGURE 2 | Log-log plots including a scaling relation reflecting simulated time series of white noise (gray line) and pink noise (pink line). The corresponding time
series on which the scaling relations are determined, are displayed in the graphs on the right.

repeated measures ANOVA revealed a main effect for Session
with a strong effect size [F(1, 75) = 292.18, p < 0.001, ηp

2 = 0.80],
reflecting a clear improvement in the number of box touches
per minute from the Baseline session (M = 63.09, SD = 16.56)
to the Posttest (M = 95.04, SD = 27.07). We also found an
interaction effect of Session × Training with a strong effect size
[F(1, 75) = 19.94, p < 0.001, ηp

2 = 0.21]. Although we detected
the expected improvement in box touches from the Baseline
session (M = 62.39, SD = 17.73) to the Posttest (M = 86.14,
SD = 27.44) in the Differential learning condition [t(39) = −8.60,

FIGURE 3 | Complexity—as expressed in the DFA index—according to
Session (Baseline and Posttest) and Training condition (Classical learning and
Differential learning). The error bars correspond to the 95% confidence
intervals.

p < 0.001, d = 1.35], the improvement was stronger in the
Classical learning condition. In the latter condition, the number
of box touches per minute increased from 63.81 (SD = 15.47) in
the Baseline session to 104.16 (SD = 23.70) in the posttest. In
line with this interaction effect, and contrary to hypothesis 3, a
post hoc independent samples t-test showed that the box touches
were higher in the Posttest for the Classical learning condition
[t(77) = −3.12, p = 0.003, d = 0.70].

Finally, we detected a significant Session × Training ×

Perturbation interaction with a medium effect size [F(1,
75) = 4.29, p = 0.042, ηp

2 = 0.054]. This result appears to be
qualified by the observation that the beneficial effect of classical
learning, in contrast to differential learning, is primarily apparent
when participants are exposed to brief perturbations (Figure 4A)
compared to prolonged perturbations (Figure 4B).

DISCUSSION

In the current research, we aimed to answer the question:
What is the relation between complexity and resilient motor
performance, and can they be improved through differential
learning? In order to answer this question, we developed a
task in which participants moved a stick from left-to-right to
touch two boxes on a screen in an alternate fashion with a
cursor. This task allowed us to determine the complexity of
the motor performance, and to determine resilient performance
by introducing perturbations while performing the task. In
one of the two experiments, the emphasis was on maintaining
performance while being briefly perturbed at regular intervals. In
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FIGURE 4 | Resilient motor performance—as expressed in box touches—according to Session (Baseline and Posttest) and Training condition (Classical learning and
Differential learning). (A) Displays the results when being exposed to brief perturbations (Experiment 1), and (B) displays the results when being exposed to
prolonged perturbations (Experiment 2). The error bars correspond to the 95% confidence intervals.

the other experiment, the focus was on prolonged perturbations
that required changes to new performance states.

As expected, in both experiments we found a positive relation
between complexity and resilient motor performance. Hence,
whether participants needed to maintain performance while
being exposed to brief perturbations (Experiment 1), or change
to new performance modes (Experiment 2), higher levels of
complexity were related to better performance. These results
can be considered in line with Pincus and Metten (2010), who
conceptualized resilience as the “metaflexibility” of a system.
Their conceptualization suggests that resilience is the ability to
respond to a perturbation by either becoming rigid and robust
(i.e., being able to maintain a previously displayed behavioral
state), or flexible and fluid (i.e., being able to easily switch to
new behavioral states). Accordingly, our findings support the
idea that complexity provides the system with both robustness
(maintaining proper functioning despite perturbations) and
adaptability (adapting to changes in the environment, see
Delignières and Marmelat, 2013; Almurad et al., 2018). More
generally, our results are in accordance with the consistent
finding that complexity, as expressed in more prominent patterns
of pink noise, is related to performance level (e.g., Wijnants
et al., 2009; Den Hartigh et al., 2015; Nourrit-Lucas et al., 2015).
For instance, Den Hartigh et al. (2015) found that high-skilled
rowers demonstrate more prominent patterns of pink noise in
their ergometer strokes than lower-skilled rowers. Furthermore,
Wijnants et al. (2009) showed increased pink noise scaling
when participants became trained in a simple back-and-forth
movement task on a tablet. In terms of metastability, this
relates to the idea that experts can adapt their movements
efficiently to environmental changes (Seifert et al., 2013). More
specifically, due to the abundance of motor solutions, and
thereby the variability of the movements (Latash, 2012), expert
motor systems may smoothly switch between different movement
patterns (Kiefer et al., 2018).

In line with the interest in improving complexity (e.g.,
Schöllhorn et al., 2012; Almurad et al., 2018; Hill et al., 2020a),
we tested whether a training program based on differential
learning has, in contrast to classical learning, beneficial effects

on the complexity of motor performance. Congruent with our
hypothesis, we found that only differential training led to more
prominent patterns of pink noise from baseline to posttest. Thus,
contrary to classical learning, a differential learning program
appears to increase complexity in cyclic motor performance.
These results support our idea that differential learning aids in
the self-organization of metastable states. Relatedly, this type
of learning has previously been described as a self-organization
training method (Gray, 2020).

Given the positive relation between complexity and resilient
motor performance, and the beneficial effects of differential
learning on complexity, a positive effect of differential learning
on resilient performance was to be expected. It was, however,
unanticipated that the effects of classical learning were stronger
than the differential learning effects. A possible explanation
for this finding is that we used a relatively simple motor
task. Differential learning typically allows an individual to gain
information about the entire task solution space. Tasks that
require, or benefit from, the exploration of a multitude of
(creative) solutions may therefore be most appropriate for a
differential learning program (e.g., Santos et al., 2018). This
resonates with the beneficial effects of differential learning as
demonstrated in more ecological and complex tasks, such as
playing soccer (Schöllhorn et al., 2006, 2012; Santos et al., 2018;
Gaspar et al., 2019) speed skating (Savelsbergh et al., 2010), and
playing baseball (Gray, 2020). Hence, classical training may have
its benefits when there are fewer degrees of freedom in finding
appropriate solutions. This idea was supported by our finding
that the beneficial effects of classical training were particularly
apparent in Experiment 1 that focused on maintaining the same
movement pattern, compared to Experiment 2 that required
finding new movement patterns every minute.

Limitations and Future Directions
The task that we used was suitable for determining complexity
based on the noise patterns in the between-box movement
intervals. Indeed, much research has demonstrated that cyclical
movements without external perturbations lend themselves
well for the analysis of temporal structures of variation (e.g.,
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Goldberger et al., 2002; Wijnants et al., 2009, 2012; Den Hartigh
et al., 2015). However, as noted above, it is questionable
whether such a task also lends itself well to reveal the possible
benefits of differential learning, at least when taking resilient
motor performance as an outcome variable. Future research
may therefore try to extend the design of the current study to
more complex cyclical movement patterns (e.g., rowing, see Den
Hartigh et al., 2015, 2018). Extensions to other contexts involving
more degrees of freedom are also interesting, provided that they
allow the measurement of complexity and the inducement (or
determination) of perturbations while performing.

Another avenue for future research is to test different
self-organization training methods to improve complexity and
resilience (Gray, 2020). An interesting candidate in this light is
the constraints-led approach (Davids et al., 2008; Renshaw et al.,
2010). In accordance with differential learning, the development
of metastable states is a primary aim of this approach. However,
instead of adding mere noise like in differential learning, specific
task constraints are manipulated to explore the metastable region
of the task space. As an illustration, a differential learning
approach in boxing would consist of adding noise to the way
in which an individual would punch another person, or a
bag. A constraint-led approach for boxing was investigated by
Hristovski et al. (2006). They manipulated for instance the
distance between a boxer and another person or a punching bag.
While a very close or far distance primarily affords a specific
type of action (e.g., an uppercut or jab), a particular in-between
distance would allow boxers to flexibly switch between actions.
Training at this “edge of instability” could thereby aid in the
development of adaptability of the movement system.

CONCLUSION

In the current study, we aimed to connect some interesting
dots on the complexity of human motor performance. Because
complexity provides a system with both robustness and
adaptability (Delignières and Marmelat, 2013; Almurad et al.,
2018), a plausible hypothesis is that a complex system
demonstrates resilience. We indeed found that individuals
who revealed more prominent patterns of pink noise in their
movement patterns, demonstrated better resilient performance,
whether they had to adapt to brief (Experiment 1) or
prolonged perturbations (Experiment 2). Furthermore, the level
of complexity improved through differential learning, which is

assumed to foster the development of metastable states that may
improve the adaptation to perturbations. However, in our specific
task classical training had more beneficial effects on resilient
motor performance than differential training. To conclude,
although complexity may, in general, be key for a system to adapt
to stressors or perturbations while performing, an important
question remains how the system can be optimally trained to
respond to perturbations in different types of movement tasks.
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