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Intracranial recordings in epilepsy patients are increasingly utilized to gain insight into
the electrophysiological mechanisms of human cognition. There are currently several
practical limitations to conducting research with these patients, including patient and
researcher availability and the cognitive abilities of patients, which limit the amount of
task-related data that can be collected. Prior studies have synchronized clinical audio,
video, and neural recordings to understand naturalistic behaviors, but these recordings
are centered on the patient to understand their seizure semiology and thus do not
capture and synchronize audiovisual stimuli experienced by patients. Here, we describe
a platform for cognitive monitoring of neurosurgical patients during their hospitalization
that benefits both patients and researchers. We provide the full specifications for this
system and describe some example use cases in perception, memory, and sleep
research. We provide results obtained from a patient passively watching TV as proof-
of-principle for the naturalistic study of cognition. Our system opens up new avenues to
collect more data per patient using real-world behaviors, affording new possibilities to
conduct longitudinal studies of the electrophysiological basis of human cognition under
naturalistic conditions.

Keywords: iEEG (intracranial EEG), movies and other media, epilepsy monitoring and recording, naturalistic,
behavior and cognition, video games, intracerebral EEG recordings

INTRODUCTION

There are currently 65 million active cases of epilepsy worldwide and approximately thirty percent
of these patients are resistant to current medications (Kwan et al., 2011; Feigin et al., 2019). In
these medication-resistant cases of epilepsy, patients may undergo invasive intracranial monitoring
using indwelling electrodes to localize the source of their seizures. Depending on the purview of
the clinical team and the individual case, patients may be implanted with multiple electrodes that
record from hundreds of locations simultaneously. These patients often stay in the hospital for at
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least a week, presenting rare opportunities to directly
measure local field potential (LFP) and/or single neuron
activity in the behaving human brain over days or weeks
with high spatiotemporal resolution (Jacobs and Kahana,
2010;Parvizi and Kastner, 2018).

Given the insights which can be gained from direct
electrophysiological recordings, it follows that maximizing the
amount of data collected in this setting will prove beneficial
to furthering our understanding of the human brain. However,
there are several practical challenges when collecting human
intracranial recordings. First, testing in this patient population
often requires finding a “goldilocks” testing window in which
the research team and patient are both available to conduct
research. The invasive nature of electrode implantation often
results in both physical and cognitive challenges that can affect
a patient’s ability to focus on performing experimental tasks.
For example, pain medications may cause drowsiness, and the
physical connections of electrodes make patient mobility a
challenge. Thus, to allow for optimal testing conditions and
prevent interruptions during testing, the patient must feel
physically and cognitively well enough to perform cognitive tasks.
Researchers must prioritize the needs of the patient and clinical
team, so the research team frequently remains physically present
until a testing window becomes available. These windows may
occur during nights or weekends and place a burden on the
research team to work beyond traditional work hours.

Second, researchers must employ tasks that accommodate a
variety of cognitive abilities and impairments in epilepsy patients
(Motamedi and Meador, 2003; Holmes, 2015). Practically, the
researcher may ask an uncomfortable patient to perform a
cognitive task with focus and effort instead of watching TV or
browsing the internet. Humans prefer tasks that are appropriately
challenging for their skillset (Csíkszentmihályi, 1990). Thus, if
an experiment is too easy or too demanding, the patient may
not agree to perform the task at all or may only perform it
once, reducing the amount of data collected per patient. This
can be even more problematic when multiple research groups
are working with the same patient. As the patient performs
different tasks, they naturally gravitate toward those tasks which
are most engaging and are appropriately challenging. Researchers
with less suitable tasks may therefore be unlikely to obtain
more than one session of data per patient, limiting statistical
power and generalizability of research findings. All together, the
practical limitations of finding the “goldilocks” testing window
and employing an appropriate task reduce the amount of usable
data that can be gained from each patient.

Despite these challenges, cognitive neuroscientific inquiry has
increasingly leveraged human intracranial recordings (Brazier,
1968; Jacobs et al., 2010; Parvizi and Kastner, 2018). Born
out of the traditions of cognitive psychology and stimulus-
response views of cognition, most of this work has measured
behavior using “classical” tasks with experimenter-generated
stimuli. While such well-specified and controlled designs benefit
researchers, these designs often have seemingly arbitrary task
demands from the patients’ point of view. Thus, while classical
tasks provide tight experimental control, they may do so at
the expense of ecological validity. The arbitrary and repetitive

nature of such tasks may limit a patient’s enthusiasm to repeat
experiments, reducing the amount of data collected per patient.
Given the value of human intracranial recordings to cognitive
neuroscientific progress, research protocols which collect the
maximum amount of useful behavioral, and neural data will
expedite our understanding of cognition.

It is increasingly recognized that neuroscientific models
should be developed and tested in more real-world contexts
(Yoder and Belmonte, 2010; Podvalny et al., 2017; Matusz et al.,
2019; Hamilton and Huth, 2020; Nastase et al., 2020). For
example, recent work has focused on understanding cognition
using naturalistic stimuli during memory encoding (Baldassano
et al., 2017; Chen et al., 2017; Davis et al., 2020; Heusser et al.,
2020; Michelmann et al., 2020; Antony et al., 2021) or spatial
navigation (Stangl et al., 2021). While naturalistic experimental
designs present additional challenges in understanding the data
compared to classical paradigms, naturalistic tasks such as video
games can provide novel benefits and insights into a diverse range
of cognitive mechanisms (Boot, 2015; Palaus et al., 2017). For
example, video games have been shown to enhance motivation
compared to traditional neuropsychological tasks (Lohse et al.,
2013; Ferreira-Brito et al., 2019; Reid, 2012). Furthermore, the
real world does not operate in a uni- or bi-modal fashion as the
brain must perceive and respond to multisensory information
(Stein and Stanford, 2008; Sella et al., 2014; Van Atteveldt
et al., 2014). More real-world experimental designs may therefore
not only motivate patients to perform more tasks during their
hospitalization but also may enhance behavioral performance
and lead to unique cortical activity compared to “classic”
experiments (David et al., 2004; Sella et al., 2014; Matusz et al.,
2019; Bijanzadeh et al., 2020).

To address the above challenges, we describe here a
platform for continuous cognitive monitoring of epilepsy patients
undergoing intracranial monitoring during their hospitalization
(Figures 1, 2). This platform aims to maximize the amount of
useful behavioral and neural data per patient and further our
understanding of the working mechanisms of cognition during
naturalistic behaviors. This system can provide novel insights
by adding content and external validity to the current “classic”
neuroscientific literature.

MATERIALS AND EQUIPMENT

· PlayStation 4 with controller.
· Raspberry Pi.
· HDMI to DVI converter.
· DVI to HDMI converter.
· HDMI splitter.
· Hauppauge Standalone Video Recorder.
· Micro USB cable (8 foot minimum).
· Monitor or TV with HDMI port.
· USB A or mini USB A cable (depends on

StimTracker model).
· Cedrus StimTracker Duo or Quad.
· 3 HDMI to HDMI Cables.
· Mobile AV Cart.
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· Power Extension Cord.
· Large Hard Drive (at least 1 TB).
· Python and Bash Scripts (supplemental).

METHODS

Our testing platform synchronizes continuous neural
recordings with audiovisual stimuli and button-press responses
(Supplementary Movie 1), allowing researchers to perform
analyses between different recording modalities. This system
allows researchers to synchronize continuous neural recordings
with any activity on the PlayStation 4 console. All system
components are placed on a mobile cart that is rolled into
the patient’s room and placed near the foot of the bed so that
the monitor can swing out over the patient’s feet. Each button
press is logged, overlays a unique auditory tone within the
audiovisual recording, and sends a customizable, jitter free event
marker, which are delayed in the neural recordings by precisely
2 ms. This setup allows for precise offline syncing between the
neural recordings, audiovisual stimuli, and motor responses.
Through the PlayStation 4 console, researchers have a spectrum

of possibilities for tasks – from using currently available video
games and movies to fully designing a well-controlled experiment
through a game creation system such as “Dreams,” a video game
that allows users and/or researchers to create their own games
(Skrebels, 2020). Custom experiments built in Unity can also be
imported onto the PlayStation 4 console.

In our implementation, a stand-alone video recorder
continuously records audiovisual media from the gaming
console to an external hard drive. The PS4 controller sends
button press events to the Cedrus StimTracker via a Raspberry
Pi, allowing for offline synchronization of behavioral and neural
data (Supplementary Figure 1). The Raspberry Pi runs two
python scripts simultaneously. A Python 2 script detects and
logs controller activity via a micro USB cable and sends an event
code to a Cedrus StimTracker via a USB cable. Each button
corresponds to a unique, prime-numbered TTL pulse width
embedded in the neural recordings. A Python 3 script saves a
unique tone into the audiovisual recording for each button press
and patients do not hear these tones. These scripts are available
at the following Github page: github.com/oeashmaig/CCM. Two
python versions and scripts are required in the presented setup
due to cross-compatibility issues with specific python modules.

FIGURE 1 | Schematic depicting the connections between each component. The PS4 system outputs audiovisual stimuli to a video recorder through an HDMI
splitter. The video recorder saves the audiovisual media to an external hard drive and then outputs the signal to a monitor. The Raspberry Pi detects and logs PS4
controller button responses and sends a unique tone for each button which is embedded in the audiovisual recording. The Raspberry Pi simultaneously sends event
markers to the Cedrus StimTracker, which generates a unique TTL event recorded alongside the neural data.
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FIGURE 2 | Labeled photograph of the cognitive monitoring system in use in
the hospital setting.

For our particular configuration, an HDMI splitter from the
PS4 system to the audiovisual recorder resolves compatibility
issues between the two devices and splits the video signal to a
second external hard drive and monitor, enabling family and
friends to watch alongside the patient. A second hard drive of
the original audiovisual signal becomes useful here to remove the
button tones during offline processing.

Step-by-Step Procedures
Basic instructions are given here. Full line-by-line details on
installation are also provided on the github page.1

Setting Up the Raspberry Pi
1. Download the python and bash scripts from Github.
2. Install the required python 2 and 3 modules: qt5-default,

libasound2-dev, pyxid, simpleaudio, pygame.
3. Download and install the D2xx driver from FTDI chip.2

4. Edit the /etc/rc.local file to run the bash script after startup.

Initial Setup of the Testing Platform
1. Connect the PS4 controller to the PS4 system via Bluetooth

before booting the Raspberry Pi.

1http://github.com/oeashmaig/CCM
2https://ftdichip.com/drivers/d2xx-drivers/

2. On the PS4 system, navigate to “System Settings”
and disable HDCP.

3. Plug in the HDMI-to-DVI-to HDMI converter
to the PS4 system.

4. Connect the HDMI output from the PS4 to an HDMI
splitter to the Hauppauge Video Recorder, which is
connected to a storage device.

5. Configure the Hauppauge device and connect it to a high
capacity external hard drive (format as Windows NTFS
with Master Boot Record, ≥ 2TB recommended).

6. Connect an audio cable from the Raspberry Pi to the
Hauppauge Video Recorder.

7. Connect HDMI cable from Hauppauge Video
Recorder to TV/monitor.

8. Connect the controller to the Raspberry Pi via a long
micro USB cable.

9. Connect the Raspberry Pi to the Cedrus StimTracker
via a USB A cable.

Utilizing the System With Neural Recordings for
Patient Testing

1. Begin neural recordings using NeuraLynx research
electrophysiology system.

2. Ensure all system components are plugged in and all
devices have power.

3. Turn on the PS4.
4. Ensure the Hauppauge shows a green LED and then start

recording (indicated by a solid red LED).
5. Instruct the patient on how to use the system, including

streaming services, various games tasks, and other
downloadable multimedia.

6. Confirm button presses are being detected as event markers
in the NeuraLynx system.

Example Encoding Model Analysis of
Recordings
To demonstrate the utility of our approach to uncover insights
from the neural data, we provide example results from one patient
watching and listening to Outlander Season 1, Episode 1, while
intracranial recordings were acquired from bilateral contacts in
the temporal lobe (Figure 3A and Supplementary Figure 2). For
this analysis, we used a simple acoustic envelope model, though in
practice researchers could fit models to phonological information
(Mesgarani et al., 2014), semantic information (Huth et al.,
2016; Broderick et al., 2018), visual information (Nishimoto
and Gallant, 2011), and more. The participant was a 48 year
old male with 63 electrodes implanted across the following
regions: left anterior temporal lobe to hippocampus (LAH, 14
contacts), left anterior temporal lobe to insula (LAI, 4 contacts),
left posterior temporal lobe to hippocampus (LPH, 7 contacts),
left temporal pole (LTP, 8 contacts), right anterior temporal lobe
to hippocampus (RAH, 12 contacts), right posterior temporal
lobe to hippocampus (RPH, 8 contacts), and right temporal
pole (RTP, 10 contacts). Electrodes were localized using iELVis
(Groppe et al., 2016).
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FIGURE 3 | Example results from natural listening dataset. (A) One participant watched Season 1, Episode 1 of Outlander while their brain activity was recorded.
The audio and acoustic envelope of this movie stimulus are shown at the top, along with aligned high gamma neural activity from each electrode colored by
electrode device. (B) Results from an encoding model using the acoustic envelope as a stimulus feature indicate that some electrodes are modeled significantly
higher than chance (null model, gray). (C) Encoding model weights for electrodes that were modeled significantly higher than chance (p < 0.05, bootstrap
permutation test). R values above indicate the correlation between the predicted high gamma response and actual high gamma on held out data. The locations of
RPH6-8 are also shown in panel (D). (D) Anatomical location of three example electrodes from (C,D). These three electrodes in device RPH were localized near the
superior temporal sulcus (STS), a higher order speech area. (E) All significantly modeled electrodes shown on a 3D mesh of the participant’s cerebral cortex, shown
in frontal view (top) and ventral view (bottom). Electrodes are colored according to model performance (r).
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Neural Data Processing
Data were acquired at 2 kHz using the NeuraLynx ATLAS
system. The data were converted to fif format for use in MNE
python. During preprocessing, we first inspected the data for
large motion artifacts or other epileptiform activity. The data
were then notch filtered at 60 Hz and harmonics at 120 and
180 Hz. Next, a common average reference was performed
across all electrodes. Finally, we computed the high gamma
analytic amplitude of each electrode using a Hilbert transform
of the 70–150 Hz bandpass filtered signal (Mesgarani et al.,
2014; Hamilton et al., 2018). After averaging across the high
gamma frequency range using 8 logarithmically spaced center
frequency bands, we downsampled the high gamma time series
to 100 Hz. These data were then z-scored within each electrode
prior to model fitting.

Stimulus Preprocessing and Model Fitting
We computed the acoustic envelope of the audio signal from
the recorded TV show stimulus using a Hilbert transform
followed by a low-pass filter (third-order Butterworth filter;
cutoff frequency, 25 Hz). We then fit a linear encoding model
to predict the high gamma signals at each electrode separately
as a function of the envelope at different time delays (0–
0.6 s). Such linear encoding models are commonly used to
uncover acoustic/phonetic tuning in ECoG, EEG, and multi-unit
recordings using natural continuous stimuli (Theunissen et al.,
2001; Di Liberto et al., 2015; Crosse et al., 2016; Broderick et al.,
2018; Hamilton et al., 2018; Desai et al., 2021). This takes the form
of the following equation:

ŷ(t) =
∑
f

∑
τ

w(f , τ)S(f , t − τ)

where, ŷ (t) is the predicted high gamma time series at t, w is the
receptive field weight matrix for a given feature f at time delay
τ, and S

(
f , t − τ

)
is the delayed stimulus matrix. We chose to

use one single feature (the acoustic envelope) at 60 time delays
to predict the recorded sEEG data. Time delays from 0 to 0.6 s
were used at 100 Hz resolution, representing neural responses
that were evoked from acoustic activity up to 0.6 s in the past.
We fit the weight matrix w using cross-validated ridge regression,
with a random 80% subset of the data used to train the model,
and then held out 20% as a test set. Model performance was
measured as the correlation between the predicted ŷ (t) on held
out data and the actual LFP data. To determine whether this
correlation was significantly higher than would be expected by
chance, we used a bootstrap permutation analysis in which we
randomly shuffled chunks of the response dataset for training 100
times (to break the relationship between stimulus and response)
and computed a distribution of null models. For each of the 100
shuffles, we computed the correlation between the predicted LFP
from the null model and the actual LFP. We then calculated how
often the correlation of the null model exceeded the correlation
of the true model to compute a p-value (with a floor value of
p = 0.01).

RESULTS

To date, we have deployed the cognitive monitoring system
in 4 patients. Each patient has used the system for several
hours to play a variety of movies, TV shows, and games during
simultaneous neural recordings. All patients watched the first
episode of Sherlock along with patient-specific movies and games
based on their preferences. These data will enable investigation
of neural correlates of volitional behavior for patient-specific
choices. In addition, future analyses using these data will focus
on generating spatiotemporal receptive fields using the movie
data and spectrotemporal receptive fields using the audio data.
We first provide results obtained from such an analysis in a
single patient before describing the anticipated advantages of the
testing platform.

Encoding Model Results
We fit models that predicted the acoustic envelope of a TV
show using high gamma signals recorded in one patient. This
model performed significantly above chance in a number of
electrodes across the left and right temporal lobe (Figure 3).
The envelope weights for each of the significant electrodes are
shown in Figure 3C. Most of these weights follow a characteristic
time course indicating a broad, increased high gamma response
following envelope onsets at a latency of approximately 100 ms.
While these regions are not in canonical early auditory areas, they
do appear to be adjacent to higher-order speech cortex including
areas of the superior temporal sulcus (STS, see Figures 3D,E).
Other electrodes in regions such as the anterior insula or deeper
temporal lobe structures (e.g., posterior hippocampus) were not
well-modeled by acoustic envelope features, as expected. Overall,
these results provide just one example of many analyses that
could be performed on a naturalistic dataset. We now describe
the anticipated advantages of our system.

Advantages
Researcher Benefits
The primary benefit to researchers is the ability to collect
more neural and behavioral data per patient while providing a
common set of tasks that all patients can perform regardless of
cognitive ability. Our system provides a means for patients to
entertain themselves while providing useful neural recordings
with millisecond-precision, synchronized stimuli at their leisure.
For example, we have found our system to be particularly useful
in patients undergoing sleep deprivation to induce seizures.
These patients are often looking for something to do to stay awake
late at night and thus readily engage in low-effort cognitive tasks
such as playing video games or watching movies. This platform
thus reduces the need for the research team to be physically
present in the hospital, mitigating issues with patient and research
team availability.

Our system also affords the opportunity for researchers to
capture activities of daily living, such as listening to music,
watching streaming audio or video services, or playing video
games. This allows researchers to investigate a diverse array of
cognitive functions within a naturalistic context. Even in periods
of fatigue, most patients have been quite willing to watch Netflix
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“for science.” We anticipate that this increase in multimodal data
will allow researchers to build more robust within-patient models
of cognitive processes.

Patient Benefits
Many patients spend most of their time in a hospital bed for at
least a week and become quite bored. Our platform provides the
patient with an alternative to the hospital-provided television,
their primary form of entertainment. At the same time, we
leverage each patient’s unique interests to investigate a wide
range of cognitive processes. The patient has the choice to either
watch their favorite shows or play a pre-selected library of games.
Naturally, these two options are less cognitively demanding for
the patient compared to “classic” tasks and minimizes subjective
feelings associated with volunteering time for a typical task.
Furthermore, our typical patient population has a variable and
limited number of controlled experiments they can perform in
a single day without significantly losing motivation and energy.
Thus, patients can provide additional useful data on their own
schedule based on their own preferences and choices. Finally, the
testing platform reduces possible experimental bias and/or stress
experienced by patients due to being observed by a researcher
(Yoder and Belmonte, 2010).

Video game controllers are designed to be a more intuitive
interface for patients compared to using arbitrary keyboard
mappings or a button box, minimizing the need for patient
training. All patients thus far have either had some familiarity
with using the PS4 or required no more than 5 min of instruction.
We also provide a “cheat sheet” for patients to understand
what they could do on our system, how to do it, and a simple
explanation of why it would improve our understanding of
the human brain.

Additional Potential Use Cases
We anticipate that our system can benefit several other
research endeavors. First, video games induce seizures in
a small subset of epileptic patients. In cases of reflex
and musicogenic epilepsy, some patients experience seizures
due to photic or auditory stimulation (Ferrie et al., 1994;
Millett et al., 1999; Stern, 2015). However, the underlying
mechanisms of seizure propagation in these patient populations
remains unclear. Furthermore, in non-photosensitive epilepsy
patients, the current literature is unclear whether video
games induce seizures due to non-photic factors such as
changes in arousal or simply due to chance (Ferrie et al.,
1994; Millett et al., 1999). Through continuous cognitive
and electrophysiological monitoring preceding seizures, both
clinicians and researchers may better understand the underlying
pathophysiology and manifestation of seizures on both an
individual and population level.

Second, there has been a growing interest in understanding the
role of sleep in systems memory consolidation, especially the role
of sharp wave ripples (Jiang et al., 2019). These studies have been
primarily studied in rodents given the rare and limited ability to
investigate these processes directly in human recordings. Thus,
the use of our testing platform presents the opportunity to
significantly increase the amount of recorded human neural data

during sleep. Finally, our system employs a PS4 system to collect
neuroscientific data which could also be distributed to the general
public to collect a large sample of normative behavioral data.

Flexibility of Research Recording Setup
While we have presented a specific use case here for a NeuraLynx
system with a Cedrus StimTracker, our setup is also transferrable
to other research recording systems. For example, with Tucker
Davis Technologies (TDT) RZ2 hardware including analog and
digital inputs, the Cedrus StimTracker can be bypassed altogether,
and audio button press signals may be recorded directly from
the Raspberry Pi to an analog input that is synchronized with
neural data. A similar process may be performed for split output
audio signals such that one output goes to a speaker that the
patient hears, and the other is passed as an analog input to the
research system. We have tested this system successfully with
TDT and NeuraLynx systems, but it should in principle work for
any research system that is able to take in audio as an analog input
or generate TTL pulses from the data as is shown here.

Limitations and Potential Pitfalls
There are downsides to implementing our system, although we
consider these minor compared to its advantages. First, more
equipment and setup time is needed, though our typical setup
time for the system is under 15 min. Second, the additional
electronic components in the patient’s room could introduce
60Hz noise to the neural recordings. Notably, we have not
found this in our recordings to date and this issue could be
further mitigated with an uninterruptible power supply. Given
the significant increases in recorded behavioral and neural data,
more storage is required on both data acquisition systems.
Typically, neural recordings require approximately 2 TB of
storage per patient and the audiovisual recordings require 100 GB
of storage per day.

This significant addition of behavioral and neural data
requires additional computational resources during offline
processing. Although more data may be obtained from video
games in some patients, most current video games are considered
to be less statistically powerful per unit time for a specific
hypothesis and may present challenges in removing or isolating
confounding stimulus features (Hamilton and Huth, 2020).
However, at the same time, we can also obtain more behavioral
responses per unit time, especially in motor-related tasks. In
addition, the variety of acoustic and linguistic information
present in hours of Netflix movies may surpass the variety that
can be presented in a short “classic” task. In either case, recent
computational advances in computer vision using deep learning
models (Mathis et al., 2018) and reinforcement learning models
(Nichol et al., 2018) can help circumvent these high-dimensional,
computationally costly issues (Hamilton and Huth, 2020; Yang
et al., 2021).

As previously discussed, patients may be intrinsically
motivated to use this testing platform. This may introduce a
potential issue for the research team when a patient prefers to use
this platform over more “classic” experiments, although we have
not yet observed this in our patient population. To mitigate this
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issue, we introduce our system to patients after we have collected
data with our “classical” tasks.

In cases where a research team is interested in investigating
various possible cognitive mechanisms through movies or TV,
but is not physically present to observe the patient, an important
question arises – how do you know if a patient is paying
attention or if they are watching with loud TV volume? While
we ask patients to pause during periods of conversation or
other moments of distraction, clinical video recordings of the
patient could be used to verify attention toward the screen. Using
such recordings requires the researcher to follow the appropriate
ethical guidelines and consent process. Eye tracking could also
be added in future upgrades to our platform in order to more
directly measure viewing behavior.

While the system is designed to give patients freedom of
choice, researchers must narrow the list of possible media to be
included on the system. If each patient watches a different movie
based on their own preference, how would researchers perform
group level analysis? We have addressed this issue by taking a
hybrid approach and ask patients to watch a small subset of
content on the system before watching whatever they choose.
This should allow researchers to study how volitional behaviors
and their associated neural dynamics augment task performance,
for instance during memory encoding (Voss et al., 2011; Gureckis
and Markant, 2012; Markant and Gureckis, 2014; Fried et al.,
2017; Estefan et al., 2021). Currently, we ask patients to first
watch Sherlock and play Pac-Man before doing other tasks on the
system, as these stimuli have been used in several previous fMRI
studies (Baldassano et al., 2017; Chen et al., 2017; Vodrahalli
et al., 2018). In cases where patients watch different shows, we
can study language at a population level by using transcripts
and computational models to find overlap in natural language
representations. For auditory and visual tasks, the spectrogram
of the audio or a wavelet decomposition of the visual information
could be used to predict neural responses (Desai et al., 2021).

DISCUSSION

We have provided the design, specifications, and code for
implementing a continuous cognitive monitoring platform.
We implemented this system for use with epilepsy patients
undergoing invasive monitoring for seizures but believe it could
be modified for standard EEG monitoring or other patient
populations. Furthermore, while this platform is designed for
use with a PlayStation 4 console and a Cedrus StimTracker, the
general methodological approach can be easily modified with
alternative hardware. Future work may load custom experiments
onto the PlayStation 4 console. As technology continues to
innovate, we believe the idea of continuous cognitive monitoring
is more important than the specific implementation of the system
as described here.

Proof of principle results from one patient demonstrated
significant auditory encoding of the acoustic envelope in high
gamma activity. The relatively low correlations of the model are
likely a result of the locations of the electrodes in this particular
patient – higher performance would be expected for electrodes

in the superior temporal gyrus and Heschl’s gyrus (Hamilton
et al., 2021; Khalighinejad et al., 2021). However, more lateral
electrodes (higher numbers on each device) generally showed
better envelope following, which is consistent with what we
would expect based on functional neuroanatomy.

One consideration when developing methods to maximize
data acquisition is the cognitive abilities of patients. Although
not every patient can perform cognitively demanding tasks,
nearly all patients can either play simple arcade-style video
games or watch a movie. Movies and TV shows present
opportunities to investigate event-segmentation, language, and
memory processes within an ecologically valid context, thus
adding content validity to our understandings of diverse
cognitive functions (Berezutskaya et al., 2020). We believe
that expanding our neuroscientific research protocols to more
complex, real-world contexts will provide novel insights into the
working mechanisms of cognition.

Another issue likely to arise with our system is how
researchers will make sense of increasing amounts of multi-
modal data. Clearly, more computational resources will be
required, and we anticipate that recent advances in statistical and
computational models will allow us to analyze these complex
data. For example, recent work using clinical audio and video
recordings of patients have been used to characterize naturalistic
behavior (Wang et al., 2016; Bijanzadeh et al., 2020). Our
system builds upon this work and provides a means to track
what the patient is doing more closely than can be derived
from clinical recordings alone. Moreover, the platform we
describe is useful in gently guiding patients into performing
particular cognitive operations, such as watching, listening, and
playing. Furthermore, innovations in computer vision using deep
learning models, such as DeepLab Cut (Mathis et al., 2018)
require minimal training and should be able to accurately track
task performance in individuals. Unsupervised learning models
and dimensionality reduction methods can help us develop
unbiased behavioral and neural insights into these multimodal
recordings without a priori hypotheses or pre-defined features
of interest (Wang et al., 2016; Cabañero-Gómez et al., 2018;
Hamilton and Huth, 2020). While many video games may be
considered to be less statistically powerful (Matusz et al., 2019),
video games have a greater natural effect size, meaning they
add external and content validity alongside the detection and
importance of an effect.

The system we describe can accommodate the spectrum
of possible experimental designs from more “classical” to
more naturalistic. “Classical” experiments are well-controlled
and offer valuable insights, but lack applicability to real-world
situations. In our view, the goal is not to get rid of “classical”
experimental paradigms, but instead to present a method to
collect additional and novel data, integrate both experimental
designs into our existing workflow, and to enrich real-world
neuroscientific research. While continuous cognitive monitoring
is more complex and may be more challenging to analyze,
we anticipate that it will offer content and external validity to
diverse scientific fields in cognitive neuroscience. By expanding
the analysis of neural recordings from well-controlled, simplistic
paradigms to more complex stimuli, we believe our system
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can provide data to validate and complement the current
neuroscientific literature.
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Supplementary Figure 1 | Synchronization process. Controller button presses
are logged on the Raspberry Pi. Each button sends a unique sine wave tone in the
video audio and a unique TTL pulse that is aligned with the neural signal. The
controller log, TTL pulses, and the embedded tones in the video audio allow for
offline synchronization between the PS4 system and the neural recordings.

Supplementary Figure 2 | Electrode localization from the patient analyzed with
the acoustic encoding model.

Supplementary Video 1 | Example synchronized behavioral and neural data
generated using our testing platform. Upper panel shows PacMan gameplay.
Simultaneously recorded neural data from an example hippocampal electrode and
button press events are shown in the middle and lower panels, respectively.

REFERENCES
Antony, J. W., Hartshorne, T. H., Pomeroy, K., Gureckis, T. M., Hasson, U.,

McDougle, S. D., et al. (2021). Behavioral, physiological, and neural signatures
of surprise during naturalistic sports viewing. Neuron 109, 377–390.

Baldassano, C., Chen, J., Zadbood, A., Pillow, J., Hasson, U., and Norman, K.
(2017). Discovering event structure in continuous narrative perception and
memory. Neuron 95, 709–721.e5. doi: 10.1016/j.neuron.2017.06.041

Berezutskaya, J., Freudenburg, Z. V., Ambrogioni, L., Güçlü, U., van Gerven,
M. A. J., and Ramsey, N. F. (2020). Cortical network responses map onto
data-driven features that capture visual semantics of movie fragments. Sci. Rep.
10:12077. doi: 10.1038/s41598-020-68853-y

Bijanzadeh, M., Khambhati, A. N., Desai, M., Wallace, D. L., Shafi, A., Dawes,
H. E., et al. (2020). Naturalistic affective behaviors decoded from spectro-
spatial features of multi-day human intracranial recordings. BioRxiv [Preprint]
doi: 10.1101/2020.11.26.400374

Boot, W. R. (2015). Video games as tools to achieve insight into cognitive processes.
Front. Psychol. 6:3.

Brazier, M. A. (1968). Electrical activity recorded simultaneously from the scalp
and deep structures of the human brain. J. Nervous Mental Dis. 147, 31–39.

Broderick, M. P., Anderson, A. J., Di Liberto, G. M., Crosse, M. J., and Lalor, E. C.
(2018). Electrophysiological Correlates of Semantic Dissimilarity Reflect the
Comprehension of Natural, Narrative Speech. Curr. Biol. 28, 803–809.e3. doi:
10.1016/j.cub.2018.01.080

Cabañero-Gómez, L., Hervas, R., Bravo, J., and Rodriguez-Benitez, L. (2018).
Computational EEG analysis techniques when playing video games: a
systematic review. Proceedings 2:483. doi: 10.3390/proceedings2190483

Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A., and Hasson,
U. (2017). Shared memories reveal shared structure in neural activity across
individuals. Nat. Neurosci. 20, 115–125. doi: 10.1038/nn.4450

Crosse, M. J., Di Liberto, G. M., Bednar, A., and Lalor, E. C. (2016). “The
multivariate temporal response function (MTRF) toolbox: a MATLAB toolbox
for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 10:604.

Csíkszentmihályi, M. (1990). Flow: The Psychology of Optimal Experience, Vol.
1990. Manhattan, NY: Harper & Row.

David, S. V., Vinje, W. E., and Gallant, J. L. (2004). Natural stimulus statistics alter
the receptive field structure of v1 neurons. J. Neurosci. 24, 6991–7006.

Davis, E. E., Chemnitz, E., Collins, T. K., Geerligs, L., and Campbell, K. L. (2020).
Looking the same, but remembering differently: preserved eye-movement
synchrony with age during movie-watching. PsyArXiv [Preprint] doi: 10.31234/
osf.io/xazdw

Desai, M., Holder, J., Villarreal, C., Clark, N., and Hamilton, L. S. (2021).
Generalizable EEG encoding models with naturalistic audiovisual stimuli.
BioRxiv [Preprint] doi: 10.1101/2021.01.15.426856 BioRxiv 2021.01.15.
426856,

Di Liberto, G. M., O’Sullivan, J. A., and Lalor, E. C. (2015). Low-frequency
cortical entrainment to speech reflects phoneme-level processing. Curr. Biol.
25, 2457–2465. doi: 10.1016/j.cub.2015.08.030

Estefan, D. P., Zucca, R., Arsiwalla, X., Principe, A., Zhang, H., Rocamora, R.,
et al. (2021). Volitional learning promotes theta phase coding in the human
hippocampus. Proc. Natl. Acad. Sci. U.S.A. 118:e2021238118.

Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., et al. (2019).
Global, regional, and national burden of neurological disorders, 1990–2016: a
systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol.
18, 459–480.

Ferreira-Brito, F., Fialho, M., Virgolino, A., Neves, I., Miranda, A. C., Sousa-Santos,
N., et al. (2019). Game-based interventions for neuropsychological assessment,
training and rehabilitation: which game-elements to use? A systematic review.
J. Biomed. Inform. 98:103287.

Ferrie, C. D., De Marco, P., Grünewald, R. A., Giannakodimos, S., and
Panayiotopoulos, C. P. (1994). Video game induced seizures. J. Neurol.
Neurosurg. Psychiatry 57, 925–931. doi: 10.1136/jnnp.57.8.925

Fried, I., Haggard, P., He, B. J., and Schurger, A. (2017). Volition and action in the
human brain: processes, pathologies, and reasons. J. Neurosci. 37, 10842–10847.

Groppe, D. M., Bickel, S., Dykstra, A. R., Wang, X., Mégevand, P., Mercier, M. R.,
et al. (2016). IELVis: an open source MATLAB toolbox for localizing and
visualizing human intracranial electrode data. BioRxiv [Preprint] doi: 10.1101/
069179

Gureckis, T. M., and Markant, D. B. (2012). Self-directed learning: a cognitive and
computational perspective. Perspect. Psychol. Sci. 7, 464–481.

Frontiers in Human Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 726998

https://www.frontiersin.org/articles/10.3389/fnhum.2021.726998/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.726998/full#supplementary-material
https://doi.org/10.1016/j.neuron.2017.06.041
https://doi.org/10.1038/s41598-020-68853-y
https://doi.org/10.1101/2020.11.26.400374
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.3390/proceedings2190483
https://doi.org/10.1038/nn.4450
https://doi.org/10.31234/osf.io/xazdw
https://doi.org/10.31234/osf.io/xazdw
https://doi.org/10.1101/2021.01.15.426856
https://doi.org/10.1016/j.cub.2015.08.030
https://doi.org/10.1136/jnnp.57.8.925
https://doi.org/10.1101/069179
https://doi.org/10.1101/069179
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-726998 November 17, 2021 Time: 14:17 # 10

Ashmaig et al. Cognitive Monitoring During Hospitalization

Hamilton, L. S., Edwards, E., and Chang, E. F. (2018). A spatial map of onset and
sustained responses to speech in the human superior temporal gyrus. Curr. Biol.
28, 1860–1871.e4. doi: 10.1016/j.cub.2018.04.033

Hamilton, L. S., and Huth, A. G. (2020). The revolution will not be controlled:
natural stimuli in speech neuroscience. Lang. Cogn. Neurosci. 35, 573–582.

Hamilton, L. S., Oganian, Y., Hall, J., and Chang, E. F. (2021). Parallel and
distributed encoding of speech across human auditory cortex. Cell 184, 4626–
4639.e13. doi: 10.1016/j.cell.2021.07.019

Heusser, A. C., Fitzpatrick, P. C., and Manning, J. R. (2020). Geometric models
reveal behavioral and neural signatures of transforming naturalistic experiences
into episodic memories. BioRxiv [Preprint] doi: 10.1101/409987

Holmes, G. L. (2015). Cognitive impairment in epilepsy: the role of network
abnormalities. Epileptic Disord. 17, 101–116.

Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., and Gallant, J. L.
(2016). Natural speech reveals the semantic maps that tile human cerebral
cortex. Nature 532, 453–458. doi: 10.1038/nature17637

Jacobs, J., and Kahana, M. J. (2010). Direct brain recordings fuel advances in
cognitive electrophysiology. Trends Cogn. Sci. 14, 162–171.

Jacobs, J., Korolev, I. O., Caplan, J. B., Ekstrom, A. D., Litt, B., Baltuch, G., et al.
(2010). Right-lateralized brain oscillations in human spatial navigation. J. Cogn.
Neurosci. 22, 824–836. doi: 10.1162/jocn.2009.21240

Jiang, X., Gonzalez-Martinez, J., and Halgren, E. (2019). Coordination of human
hippocampal sharpwave ripples during NREM sleep with cortical theta bursts,
spindles, downstates, and upstates. J. Neurosci. 39, 8744–8761.

Khalighinejad, B., Patel, P., Herrero, J. L., Bickel, S., Mehta, A. D., and Mesgarani,
N. (2021). Functional Characterization of Human Heschl’s Gyrus in Response
to Natural Speech. NeuroImage 235:118003. doi: 10.1016/j.neuroimage.2021.
118003

Kwan, P., Schachter, S. C., and Brodie, M. J. (2011). Drug-resistant epilepsy. New
Engl. J. Med. 365, 919–926. doi: 10.1056/NEJMra1004418

Lohse, K., Shirzad, N., Verster, A., Hodges, N., and Van der Loos, H. F. M. (2013).
Video games and rehabilitation: using design principles to enhance engagement
in physical therapy. J. Neurol. Phys. Ther. 37, 166–175.

Markant, D. B., and Gureckis, T. M. (2014). Is it better to select or to receive?
Learning via active and passive hypothesis testing. J. Exp. Psychol. Gen. 143:94.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W.,
et al. (2018). DeepLabCut: markerless pose estimation of user-defined body
parts with deep learning. Nat. Neurosci. 21, 1281–1289.

Matusz, P. J., Dikker, S., Huth, A. G., and Perrodin, C. (2019). Are we Ready for
Real-World Neuroscience?. Cambridge, MA: MIT Press.

Mesgarani, N., Cheung, C., Johnson, K., and Chang, E. F. (2014). Phonetic feature
encoding in human superior temporal gyrus. Science 343, 1006–1010. doi: 10.
1126/science.1245994

Michelmann, S., Price, A. R., Aubrey, B., Doyle, W. K., Friedman, D., Dugan,
P. C., et al. (2020). Moment-by-moment tracking of naturalistic learning and its
underlying hippocampo-cortical interactions. BioRxiv [Preprint] doi: 10.1038/
s41467-021-25376-y

Millett, C. J., Fish, D. R., Thompson, P. J., and Johnson, A. (1999). Seizures during
video-game play and other common leisure pursuits in known epilepsy patients
without visual sensitivity. Epilepsia 40, 59–64.

Motamedi, G., and Meador, K. (2003). Epilepsy and cognition. Epilepsy Behav. 4,
25–38.

Nastase, S. A., Goldstein, A., and Hasson, U. (2020). Keep it real: rethinking
the primacy of experimental control in cognitive neuroscience. NeuroImage
222:117254. doi: 10.1016/j.neuroimage.2020.117254

Nichol, A., Achiam, J., and Schulman, J. (2018). On first-order meta-learning
algorithms. ArXiv [Preprint] arXiv:1803.02999v3,

Nishimoto, S., and Gallant, J. L. (2011). A three-dimensional spatiotemporal
receptive field model explains responses of area MT neurons to naturalistic
movies. J. Neurosci. 31, 14551–14564. doi: 10.1523/JNEUROSCI.6801-10.2011

Palaus, M., Marron, E. M., Viejo-Sobera, R., and Redolar-Ripoll, D. (2017). Neural
basis of video gaming: a systematic review. Front. Hum. Neurosci. 11:248.

Parvizi, J., and Kastner, S. (2018). Promises and limitations of human intracranial
electroencephalography. Nat. Neurosci. 21, 474–483. doi: 10.1038/s41593-018-
0108-2

Podvalny, E., Yeagle, E., Mégevand, P., Sarid, N., Harel, M., Chechik, G., et al.
(2017). Invariant temporal dynamics underlie perceptual stability in human
visual cortex. Curr. Biol. 27, 155–165. doi: 10.1016/j.cub.2016.11.024

Reid, G. (2012). Motivation in video games: a literature review. Comput. Games J.s
1, 70–81.

Sella, I., Reiner, M., and Pratt, H. (2014). Natural stimuli from three coherent
modalities enhance behavioral responses and electrophysiological cortical
activity in humans. Int. J. Psychophysiol. 93, 45–55.

Skrebels, J. (2020). Explaining Art’s Dream, the “Story Mode” Inside Dreams.
San Francisco, CA: IGN.

Stangl, M., Topalovic, U., Inman, C. S., Hiller, S., Villaroman, D., Aghajan,
Z. M., et al. (2021). Boundary-anchored neural mechanisms of location-
encoding for self and others. Nature 589, 420–425. doi: 10.1038/s41586-020-03
073-y

Stein, B. E., and Stanford, T. R. (2008). Multisensory integration: current issues
from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.

Stern, J. (2015). Musicogenic epilepsy. Handbook Clin. Neurol. 129, 469–477.
Theunissen, F. E., David, S. V., Singh, N. C., Hsu, A., Vinje, W. E., and Gallant,

J. L. (2001). Estimating spatio-temporal receptive fields of auditory and visual
neurons from their responses to natural stimuli. Network (Bristol, England) 12,
289–316.

Van Atteveldt, N., Murray, M. M., Thut, G., and Schroeder, C. E. (2014).
Multisensory integration: flexible use of general operations. Neuron 81, 1240–
1253.

Vodrahalli, K., Chen, P.-H., Liang, Y., Baldassano, C., Chen, J., Yong, E., et al.
(2018). Mapping between fMRI responses to movies and their natural language
annotations. NeuroImage 180, 223–231.

Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., and Cohen, N. J.
(2011). Hippocampal brain-network coordination during volitional exploratory
behavior enhances learning. Nat. Neurosci. 14, 115–120.

Wang, N. X. R., Olson, J. D., Ojemann, J. G., Rao, R. P. N., and Brunton,
B. W. (2016). Unsupervised decoding of long-term, naturalistic human neural
recordings with automated video and audio annotations. Front. Hum. Neurosci.
10:165. doi: 10.3389/fnhum.2016.00165

Yang, Q., Lin, Z., Zhang, W., Li, J., Chen, X., Zhang, J., et al. (2021). Monkey
plays pac-man with compositional strategies and hierarchical decision-making.
BioRxiv [Preprint] doi: 10.1101/2021.10.02.462713 BioRxiv 2021.10.02.46
2713,

Yoder, K. J., and Belmonte, M. K. (2010). Combining computer game-based
behavioural experiments with high-density EEG and infrared gaze tracking.
J. Vis. Exp. 46:2320.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Ashmaig, Hamilton, Modur, Buchanan, Preston and Watrous.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 726998

https://doi.org/10.1016/j.cub.2018.04.033
https://doi.org/10.1016/j.cell.2021.07.019
https://doi.org/10.1101/409987
https://doi.org/10.1038/nature17637
https://doi.org/10.1162/jocn.2009.21240
https://doi.org/10.1016/j.neuroimage.2021.118003
https://doi.org/10.1016/j.neuroimage.2021.118003
https://doi.org/10.1056/NEJMra1004418
https://doi.org/10.1126/science.1245994
https://doi.org/10.1126/science.1245994
https://doi.org/10.1038/s41467-021-25376-y
https://doi.org/10.1038/s41467-021-25376-y
https://doi.org/10.1016/j.neuroimage.2020.117254
https://doi.org/10.1523/JNEUROSCI.6801-10.2011
https://doi.org/10.1038/s41593-018-0108-2
https://doi.org/10.1038/s41593-018-0108-2
https://doi.org/10.1016/j.cub.2016.11.024
https://doi.org/10.1038/s41586-020-03073-y
https://doi.org/10.1038/s41586-020-03073-y
https://doi.org/10.3389/fnhum.2016.00165
https://doi.org/10.1101/2021.10.02.462713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles

	A Platform for Cognitive Monitoring of Neurosurgical Patients During Hospitalization
	Introduction
	Materials and Equipment
	Methods
	Step-by-Step Procedures
	Setting Up the Raspberry Pi
	Initial Setup of the Testing Platform
	Utilizing the System With Neural Recordings for Patient Testing

	Example Encoding Model Analysis of Recordings
	Neural Data Processing
	Stimulus Preprocessing and Model Fitting


	Results
	Encoding Model Results
	Advantages
	Researcher Benefits
	Patient Benefits
	Additional Potential Use Cases
	Flexibility of Research Recording Setup


	Limitations and Potential Pitfalls

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


