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Post-stroke complications are the second most frequent cause of death and the third

leading cause of disability worldwide. The motor function of post-stroke patients is

often assessed by measuring the postural sway in the patients during quiet standing,

based on sway measures, such as sway area and velocity, which are obtained from

temporal variations of the center of pressure. However, such approaches to establish a

relationship between the sway measures and patients’ demographic factors have hardly

been successful (e.g., days after onset). This study instead evaluates the postural sway

features of post-stroke patients using the clusteringmethod of machine learning. First, we

collected the stroke patients’ multi-variable motion-capture standing-posture data and

processed them into t s long data slots. Then, we clustered the t-s data slots intoK cluster

groups using the dynamic-time-warping partition-around-medoid (DTW-PAM) method.

The DTW measures the similarity between two temporal sequences that may vary in

speed, whereas PAM identifies the centroids for the DTW clustering method. Finally, we

used a post-hoc test and found that the sway amplitudes of markers in the shoulder, hip,

knee, and center-of-mass are more important than their sway frequencies. We separately

plotted the marker amplitudes and frequencies in the medial-lateral direction during

a 5-s data slot and found that the post-stroke patients’ postural sway frequency lay

within the bandwidth of 0.5–1.5 Hz. Additionally, with an increase in the onset days, the

cluster index of cerebral hemorrhage patients gradually transits in a four-cluster solution.

However, the cerebral infarction patients did not exhibit such pronounced transitions over

time. Moreover, we found that the postural-sway amplitude increased in clusters 1, 3, and

4. However, the amplitude of cluster 2 did not follow this pattern, owing to age effects

related to the postural sway changes with age. A rehabilitation doctor can utilize these

findings as guidelines to direct the post-stroke patient training.
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1. INTRODUCTION

A stroke is mainly caused by a lack of oxygen when the
brain’s blood flow is interrupted by a blockage (i.e., cerebral
infarction, CI) or an artery rupture (i.e., cerebral hemorrhage,
CH). Stroke patients tend to inherit an irregular postural sway
during quiet standing (Chern et al., 2010), which increases the
risk of falling. In this regard, evaluation of their quiet standing
postural sway is essential.

Researchers have evaluated the quiet standing postural sway
of post-stroke patients for many years. However, the postural
sway features (e.g., sway amplitude) of the patients can be
different because of different patient demographic factors (e.g.,
days after onset, age, and the influence of the level of damage
in lesion regions) (Bansil et al., 2012; Cho et al., 2014; Halmi
et al., 2020). Unfortunately, the relationship between postural
sway features and patient demographic factors has not been
well-studied. Some researchers focused only on sway amplitude.
For example, Mizrahi et al. (1989) measured and analyzed the
bilateral forces of the supporting limbs of stroke patients and
found that they had significantly higher sway activity compared
with normal controls. In the anterior-posterior and medial-
lateral (ML) directions, (Wang et al., 2017) found that stroke
patients had a more pronounced center-of-pressure (COP) sway
than healthy people. Paillex and So (2005) demonstrated that
temporal patterns of the difference between the COP and center-
of-gravity could be characterized differently for healthy subjects
and patients. Some researchers revealed greater sway activity in
hemiplegic subjects compared with normal controls (Mizrahi
et al., 1989).

Furthermore, machine-learning methods (e.g., multivariate
time-series clustering) can find postural sway features using
complete time-series data. For Parkinson’s disease, Das et al.
(2011) explored the motor symptoms of patients using a motion-
capture system and a support vector machine. However, only
a few studies have thus far analyzed the differences in post-
stroke patients’ quiet standing postural sway. Furthermore, there
is no consensus with regards to the best method or feature
set for analyzing motion-capture data to understand and assess
post-stroke postural sway.

Hence, this study evaluates postural-sway features of post-
stroke patients using amotion-capture systemwith amultivariate
time-series machine-learning clustering technique.

The remainder of this paper is organized as follows. Section
2 reports the method of clustering and parameter distribution
calculation. Section 3 presents the results. Section 4 discusses the
implications of the results. Finally, we present the conclusions
in section 5.

2. METHODS

In this section, we describe our researchmethod (Figure 1). First,
the kinematic posture data of patients aremeasured, as detailed in
section 2.1. Then, we extract features, as presented in section 2.2.
Next, the clustering method is described in section 2.3. Finally,
we calculate the parameter distribution, as detailed in section 2.4.

FIGURE 1 | Workflow of the methods used in this study.

2.1. Motion-Capture Measurement
2.1.1. Study Population
Fujita Health University recruited the study subjects for our
research. According to the agreement approved by the University
Ethics Committee, all subjects provided informed written
consent (HM18-467). We hired 10 male subjects. Five were CH,
and five were CI; their statistical information is shown in Table 1.
We added new data to previous research results (Li et al., 2021),
including ages, days after onset, and hemiplegia. In our previous
work (Li et al., 2021), we assumed that CH and CI presented
differences in standing posture and leveraged a support vector
machine for classification. However, in this paper, we evaluate the
postural sway of post-stroke patients in a quiet standing position
via clustering.

2.1.2. Patient Data Collection
A 3-dimensional (3D) motion analysis system, KinemaTracer©
(KISSEI COMTEC, Matsumoto, Japan), was used to precisely
measure the quiet standing posture of post-stroke patients. The
system hardware leveraged one recording/analyzing laptop and
four charge-coupled-device cameras arranged around a standing
platform on a level floor without a handrail. As shown in
Figure 2, we attached the markers (30-mm diameter) to the
acromion on both sides of the subject: the hip joint (positioned on
the line connecting the superior anterior iliac spine and greater
trochanter at 1/3 of the distance from greater trochanter), the
knee joint (the AP midpoint of the lateral epicondyle of the
femur), the ankle joint (exterior), and the toes (fifth metatarsal
head). The measurement sampling frequency was 60 Hz for
30 s. A more detailed description of our methodology and
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TABLE 1 | Subject information.

Name index Disease Age Days after onset Hemiplegia side

CH1 Cerebral hemorrhage 54 1108/1150 Right

CH2 Cerebral hemorrhage 48 122/129/136/143 Left

CH3 Cerebral hemorrhage 59 51/58/65/79/93 Left

CH4 Cerebral hemorrhage 63 520/527/534 Either

CH5 Cerebral hemorrhage 54 315/340/358 Right

CI1 Cerebral infarction 52 74/88/109/176 Right

CI2 Cerebral infarction 75 132/147 Left

CI3 Cerebral infarction 80 69/80 Right

CI4 Cerebral infarction 63 91/108 Left

CI5 Cerebral infarction 69 992/1007/1020/1051 Right

FIGURE 2 | Location and names of markers attached to the patients. Ten pink

markers were attached to the body symmetrically.

mathematical formulas for data collection can be found in
Matsuda et al. (2016) and Li et al. (2021).

2.2. Data Processing and Feature
Extraction
2.2.1. Kinematic Collected Variables
In this study, we utilized 33 kinematic variables extracted
from the 3D motion analysis system for post-stroke patients’
postural-sway evaluation. The kinematic variables contain 3D
displacements (X-axis, Y-axis, Z-axis) of the center of mass

FIGURE 3 | Methodology framework of the feature extraction described in

section 2.2.

(COM) and 3D displacements of 10 markers during the 30-s
period. Hence, we collected 33 kinematic variables.

2.2.2. Feature Extraction
We extracted features for use when clustering post-stroke patient
data with high performance. The methodology of this process is
described in Figure 3.

First, the variables were offset by setting the location of the
ankle markers as midpoints as the patient stands on the front part
of the level floor.

Next, we eliminated the anthropometric differences between
subjects using the distance between shoulder and ankle markers
using Equation (1):

p
′

i =
pi

l1 + l2 + l3
, i = 1, 2, ..., n, (1)

where pi is the i-th X/Y/Z-axis position of the kinematic variable;

p
′

i is the i-th X/Y/Z scaled marker position; l1 is the average
distance between the shoulder and hip markers; l2 is the average
distance between the hip and knee markers; and l3 is the average
distance between the knee and ankle markers. n is the number of
kinematic variables, and the value of n was set to 33.

Next, we used a double-pass, second-order Butter-worth low-
pass filter with a cutoff frequency of 12 Hz to filter the p

′
data.

Frontiers in Human Neuroscience | www.frontiersin.org 3 December 2021 | Volume 15 | Article 731677

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Li et al. Evaluate Post-stroke Patients Postural Sway

FIGURE 4 | Division of 30 s of data into six 5-s data slots. A 30 s set of experimental data with 33 kinematic variables was divided into six of 5-s data slots, where

each data slot has 33 kinematic variables.

Thus, the noise arising from changes in the orientation of the
subject’s body and other factors during measurement (Abdulhay
et al., 2018) were removed.

Finally, to increase the data set size for each cluster, we divided
every 30-s data sample into several data slots t seconds in length.
For example, the division of a 30-s data sample into six 5-s
data slots is shown in Figure 4. To determine the best value
of t, we tested a range (t = 3, 5, 6, and 10) by evaluating the
clustering results.

2.3. Clustering
To find the postural-sway patterns of the post-stroke patients
and to identify the relationships between the patient body
displacement and their different characteristics (e.g., age, days
after onset, and hemiplegia side), we used the multivariate time-
series (MTS) clustering method. In a related field, numerous
MTS methods have been explored (Montero and Vilar, 2014;
Brandmaier, 2015; Genolini et al., 2015; Sardá-Espinosa, 2019).

As onemethod ofMTS clustering, partitioning clustering with
dynamic time warping (DTW) clustering is used to evaluate the
similarity of different data slots (Malik and Lai, 2017; Rybarczyk
et al., 2018). In Figure 5, the DTW compares the similarity
between two temporal sequences (Data A and B), whichmay vary

in speed. The DTW is used for temporal sequences, such as video,
audio, and graphics data. Moreover, compared with other MTS
clustering methods (e.g., a permutation distribution cluster),
DTW provides faster calculations (Montero and Vilar, 2014;
Sardá-Espinosa, 2019). Therefore, we used the DTW method to
evaluate the similarity of data slots from different patients. To
illustrate the similarity exhibited by data slots of 5 s in length
in the case of postural sway, we present Figures 5B–D which
show the similarity in 5-s slot data taken from individuals as
well as from different patients. Moreover, we can evaluate the
sway amplitude and frequency measured from the data slot
as its similarity feature via DTW. Furthermore, this method
calculates the distance between all points in the data; hence, the
smaller the gap, the closer the match. The DTW could work
well on the 33 kinematic variables because the postural sway of
human is periodic (Giveans et al., 2011). All periods of sway data
are similar. Thus, we assumed they can be detected by DTW.
Moreover, to avoid the cut off of such periods, based on the
period, we divide the 30 s of data into t-s data slots. Another
researcher also used DTW to detect hip sway (Cuntoor et al.,
2003).

After assessing the similarity between different slots, DTW
clustering divides data slots into K clusters, and each cluster
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FIGURE 5 | (A) Dynamic time warping (DTW). DTW compares the similarity between two temporal sequences (Data A in blue and B in red) that can vary in speed. (B)

Dynamic time warping (DTW) with real postural sway data from the same individual. The blue and orange lines are the COM X data of different data slots from CH2.

(C) Dynamic time warping (DTW) with real postural sway data from different patients in the same cluster. The blue line is the COM X data of a data slot from CH2.

Orange line is the COM X data of a data slot from CH3. (D) Dynamic time warping (DTW) with real postural sway data from different patients in different clusters. The

blue line is the COM X data of a data slot from CH2. The orange line is the COM X data of a data slot from CH5. Because the similarity of these two data slots is low,

no similarity lines could be drawn.

FIGURE 6 | Mean center vs. medoid center. The mean center is indicated by the red dot in the left panel and differs the medoid center (indicated by the red dot in the

right panel), which is the most central object in the clusters with the smallest sum of distances from other data.
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FIGURE 7 | Results of DBA, which gradually determines the average

sequence (black line) of two sequences (red line from CH2 and blue line from

CH3).

has a centroid. Here, the cluster implies a group wherein
the data slots are more similar than those in other groups.
Moreover, the centroid is the cluster center. We attempted two
different centroid calculation methods. One is the partition-
around-medoid (PAM) method, and another is DTW barycenter
averaging (DBA) (Sardá-Espinosa, 2019).

The PAM is a method to find K-medoids point of clustering
(Mannor et al., 2011). First, PAM selects K representative
medoids (the most central clusters) to construct an initial cluster.
Then, it continuously changes the medoids to find a better cluster
representative with more significant reductions in distortion
function. In each iteration, the set of best medoids for each cluster
forms a new respective medoid. As shown in a 2-dimensional
example of Figure 6, the medoid center in the red dot in the right
figure is the most central object in the clusters with the smallest
sum of distances from other data, which differs from the mean
center in the red dot in the left figure.

The DBA refines another method of finding the K-medoids
method. Here, medoids were defined as an average sequence of
sets of sequences. The cluster was divided based on the distance
between the average sequence and sets of sequences (Petitjean
et al., 2011). Real postural sway (marker) data is used to further
illustrate this process in Figure 7.

We present the set of 5-s data slots as an example. The input
data consisted of 186 sets of 33 × 300-dimensional vector data
representing the standardized X/Y/Z-axis positions of 10markers
and a COM from 31 sets of 30 s of experimental data. We had 31
of 30 s experimental data. Every 30 s of data was divided into six
slots of 5-s data. Hence, we had a total of 31 × 6 (186) sets of
(33 × 300)-dimensional vector data. Because the measurement
sampling frequency was 60 Hz for 30 s, for 5 s data, the number
of columns is 60 Hz × 5 s (300). The DTW clustering compared
each vector of one data slot and its corresponding vector of
another. We randomly initialized the centroid of the cluster, and
to avoid the effect of random errors in a centroid and to choose
the best clustering solution, we repeated the process 10 times for
the data set.

TABLE 2 | DTW-PAM result.

Data slot time t Cluster number K
Cluster validity

C-H index DB index D index

3 s

3 98.70 1.73 0.03

4 76.70 1.63 0.02

5 63.78 1.29 0.03

5 s

3 58.70 1.55 0.06

4 60.84 1.45 0.01

5 45.36 1.19 0.06

6 s

3 47.90 1.76 0.09

4 34.78 2.37 0.02

5 35.88 1.42 0.03

10 s

3 27.89 1.85 0.22

10 18.15 1.30 0.05

5 19.87 2.19 0.03

TABLE 3 | DTW-DBA result.

Data slot time t Cluster number K
Cluster validity

C-H index DB index D index

3 s

3 103.38 1.60 0.04

4 83.89 1.69 0.04

5 83.17 1.53 0.04

5 s

3 63.80 1.57 0.24

4 53.48 1.49 0.04

5 40.92 1.10 0.24

6 s

3 52.39 1.98 0.06

4 43.24 1.45 0.09

5 37.20 1.24 0.11

10 s

3 28.32 1.56 0.08

4 24.44 1.72 0.09

5 23.17 1.35 0.27

TABLE 4 | Characteristics of cluster under data time slot = 5 s, K = 4.

Cluster index Days after onset Age Disease-type percentage

Cluster 1 1,108 54 CH: 0.6, CI: 0.4

Cluster 2 520 63 CH: 0.75, CI: 0.25

Cluster 3 340 54 CH: 0.95, CI: 0.05

Cluster 4 109 59 CH: 0.43, CI: 0.57

Afterwards, themethod of determination of the bestK clusters
was introduced. First, to avoid the effect of random centroid
behaviors and to choose the best clustering solution, we repeated
the process 10 times for each data slot. Next, we evaluated the
cluster solution using three cluster indices, including the Davies-
Bouldin (DB) index (Davies and Bouldin, 1979), the Calinski-
Harabasz (C-H) index (Caliñski and Harabasz, 1974), and the
Dunn (D) index (Dunn, 1974), separately. These three indices
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evaluated the minimum value of the product of mean and the
SD of the intra-cluster gap.

The DB is shown in Equation (2), where K is the number of
clusters. In cluster i, δi is the mean gap between data units to
their cluster centers, ci. In cluster j, δj is the mean gap between all
data units to their cluster centers, cj. d(ci, cj) is the gap of cluster
centers, ci and cj. The best cluster solution has the minimum
DB value.

DB =
1

K

K
∑

i=1,i6=j

max

(

(

δi + δj
)

d
(

ci, cj
)

)

. (2)

The C-H index is defined Equation (3), where K is the number of
clusters and N is the volume of the data set. The BGSS indicates
the sum of squares of the partition between clusters, and WGSS
represents the sum of squares of the partition within a cluster.
The best cluster result has the biggest indicator value.

C −H =
(N − K)

(K − 1)
×

BGSS

WGSS
. (3)

In the cluster, the D index is defined as value calculated by
dividing the smallest distance (dmin) within the cluster to the
biggest distance (dmax), as shown in 4:

D =
dmin

dmax
. (4)

2.4. Parameter Distribution Calculation
After obtaining clustering solutions of the ts data slot and the K
cluster, we analyzed the sway features of each kinematic variable
of t-s data slots between clusters by applying a post-hoc test.

Here, based on previous research (Petri, 2002; Paillex and
So, 2005; Abdulhay et al., 2018), we calculated three kinds
of sway feature parameters for each kinematic variable of t-
s data slots: amplitude, standard deviation (SD), and sway
frequency. Amplitude is defined as the gap between maximum
and minimum values of one kinematic variable in one t-
s data slot. The SD is defined as the standard deviation of
one kinematic variable in one t-s data slot. Sway frequency
is defined as the frequency value corresponding to the first
most prominent peak in frequency domain map by the fast
Fourier transform.

Before implementing the post-hoc test, we first determined
the post-hoc test method by observing distribution and the
homogeneity level of parameters using Shapiro-Wilk (Mohd
Razali and Bee Wah, 2011) and Bartlett’s tests (Tobias and
Carlson, 1969). If the parameter data follow a normal distribution
and display homogeneity of variance, we can use Turkey-Kramer
post-hoc method. Otherwise, we use a pairwise Wilcoxon test
(Pohlert, 2014) with a Benjamini-Hochberg p-value adjustment
method. Therefore, we performed a post-hoc test to find which
cluster pairs were significant to each parameter.

We consider the case of the left shoulder marker when the
data slot is 5 s and K = 4 as an example. First, based on the
clustering result, we grouped the 186 data slots into four groups.

Then for each group, we extracted the 5-s left-shoulder markers’
x, y, and z values from each slot. Then, we calculated amplitude,
SD, and sway frequency for each kinematic variable in each data
slot. Finally, we implemented the post-hoc to find the significant
kinematic variables for discussion.

3. RESULTS

3.1. General Cluster Performance
In this work, we used two models, DTW-PAM and DTW-
DBA. Based on the cluster validity evaluation, we compared
the cluster results in which the data-slot time, t, was in the
range of 3, 5, 6, and 10 s; K was in the range of 3, 4, and
5; and the method was DTW-PAM or DTW-DBA, as shown
in Tables 2, 3. Then, we found that the DTW-PAM model
of the t = 5-s data slot with K = 4 was better than the
other results. Hence, we inferred from the clustered index that
there was a difference in the standing postures of post-stroke
patients. Then, only the detailed solution of DTW-PAM was
introduced.

Finally, based on the clustering result of the t = 5-s data
slot with K = 4 on the DTW-PAM model, we observed and
calculated the median value of days after onset, age, and disease-
type percentage from the first to the fourth clusters, as shown in
Table 4.

3.2. Parameter Distribution Analysis
To analyze the sway features of each kinematic variable of t-s
data slots between clusters, first, using the Shapiro-Wilk test, we
found that the parameters did not follow a normal distribution
and displayed homogeneity of variance. Therefore, we used the
pairwise Wilcoxon test (Pohlert, 2014) to perform the post-
hoc test to find clusters representing significant differences. In
Table 5, the post-hoc test subjects and results are listed. For each

axis of each body on the left or right side (indexed from 1 to 33),
we performed a post-hoc test to determine which cluster pairs
had significant differences. The result shows that the differences

between clusters are mainly explained by amplitude and SD. In
Table 5, the contribution of the shoulder, hip, knee, and COM

variables that are particularly significant are colored blue. As
a result, we present Figures 8, 9, whose x-axes represent the
ML amplitude after normalization and postural-sway frequency,
respectively. The kinematic variables of the three axes (x, y, z)
are likely to be strongly correlated with each other in Table 5.
Thus, only the values of the index in the X-axis (ML) are
shown. The left and right sides are similar; only the left side
is shown.

Meanwhile, from Table 4, we find that from clusters 1 to 4, the
days after onset value decreased. From Figure 8, we observed a
pattern from clusters 1, 3, and 4 in which the amplitude increased,
meaning that as days from post-stroke onset decreased, the
postural-sway amplitude increased.

Then, we created the days-after-onset cluster table to explore
the transition pattern of days after onset in CH and CI separately
in Table 6, where we used numbers 1–4 and colors from blue
to red to represent the clustered data from days after onset.
The numbers from 0 to 1,000 indicate the days after onset for
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TABLE 5 | Post-hoc test results for each axis of each body on the left or right side to determine significant kinematic variables.

Amplitude SD Frequency

Index Part L/R Axis Post-hoc test result Index Part L/R Axis Post-hoc test result Index Part L/R Axis Post-hoc test result

1 COM None X 1&2, 1&3, 1&4, 2&3, 2&4 1 COM None X 1&2, 1&3, 1&4, 2&3, 2&4 1 COM None X None

2 COM None Y 1&2, 1&3, 1&4, 2&3, 2&4 2 COM None Y 1&2, 1&3, 1&4, 2&3, 2&4 2 COM None Y None

3 COM None Z 1&2, 1&3, 1&4, 2&4, 3&4 3 COM None Z 1&2, 1&3, 1&4, 2&4, 3&4 3 COM None Z None

4 Shoulder Left X 1&2, 1&3, 1&4, 2&3, 2&4 4 Shoulder Left X 1&2, 1&3, 1&4, 2&3, 2&4 4 Shoulder Left X None

5 Shoulder Left Y 1&2, 1&3, 1&4, 2&3, 2&4 5 Shoulder Left Y 1&2, 1&3, 1&4, 2&3, 2&4 5 Shoulder Left Y 1&4

6 Shoulder Left Z 1&2, 1&3, 1&4, 2&3, 2&4 6 Shoulder Left Z 1&2, 1&3, 1&4, 2&3, 2&4 6 Shoulder Left Z None

7 Shoulder Right X 1&2, 1&3, 1&4, 2&3, 2&4 7 Shoulder Right X 1&2, 1&3, 1&4, 2&3, 2&4 7 Shoulder Right X None

8 Shoulder Right Y 1&2, 1&3, 1&4 8 Shoulder Right Y 1&2, 1&3, 1&4 8 Shoulder Right Y 3&4

9 Shoulder Right Z 1&2, 1&3, 1&4, 2&4 9 Shoulder Right Z 1&2, 1&3, 1&4, 2&4 9 Shoulder Right Z None

10 Hip Left X 1&2, 1&3, 1&4, 2&3, 2&4 10 Hip Left X 1&2, 1&3, 1&4, 2&3 10 Hip Left X None

11 Hip Left Y 1&2, 1&3, 1&4, 2&3, 2&4 11 Hip Left Y 1&2, 1&3, 1&4, 2&3, 2&4 11 Hip Left Y None

12 Hip Left Z 1&2, 1&3, 1&4, 2&4 12 Hip Left Z 1&2, 1&3, 1&4, 2&4 12 Hip Left Z None

13 Hip Right X 1&2, 1&3, 1&4, 2&3 13 Hip Right X 1&2, 1&3, 1&4, 2&3 13 Hip Right X None

14 Hip Right Y 1&2, 1&3, 1&4, 2&3, 2&4 14 Hip Right Y 1&2, 1&3, 1&4 14 Hip Right Y None

15 Hip Right Z 1&2, 1&3, 1&4 15 Hip Right Z 1&2, 1&3, 1&4 15 Hip Right Z None

16 Knee Left X 1&2, 1&3, 1&4, 2&3, 3&4 16 Knee Left X 1&2, 1&3, 1&4, 2&3, 3&4 16 Knee Left X None

17 Knee Left Y 1&2, 1&3, 1&4 17 Knee Left Y 1&2, 1&3, 1&4 17 Knee Left Y None

18 Knee Left Z 1&2, 1&3, 1&4, 2&4 18 Knee Left Z 1&2, 1&3, 1&4, 2&4 18 Knee Left Z 1&2, 2&4

19 Knee Right X 1&2, 1&3, 1&4, 2&3 19 Knee Right X 1&2, 1&3, 1&4 19 Knee Right X None

20 Knee Right Y 1&2, 1&3, 1&4 20 Knee Right Y 1&2, 1&3, 1&4 20 Knee Right Y None

21 Knee Right Z None 21 Knee Right Z None 21 Knee Right Z None

22 Ankle Left X 3&4 22 Ankle Left X None 22 Ankle Left X 1&4

23 Ankle Left Y 1&2, 2&3, 2&4 23 Ankle Left Y 1&2, 2&3, 2&4 23 Ankle Left Y None

24 Ankle Left Z 1&2, 2&3, 2&4 24 Ankle Left Z 1&2 24 Ankle Left Z None

25 Ankle Right X 1&3, 1&4, 2&3, 2&4 25 Ankle Right X 1&3, 2&3 25 Ankle Right X 1&2

26 Ankle Right Y 1&4, 2&4 26 Ankle Right Y None 26 Ankle Right Y None

27 Ankle Right Z 1&2, 1&3, 1&4, 2&4 27 Ankle Right Z 1&3, 1&4 27 Ankle Right Z None

28 Toe Left X 1&3, 1&4, 2&3, 2&4 28 Toe Left X 1&3, 1&4, 2&3 28 Toe Left X None

29 Toe Left Y None 29 Toe Left Y None 29 Toe Left Y None

30 Toe Left Z None 30 Toe Left Z None 30 Toe Left Z None

31 Toe Right X 1&2, 1&4, 2&3, 2&4 31 Toe Right X 1&2, 2&3, 2&4 31 Toe Right X None

32 Toe Right Y 1&2, 1&4, 2&4 32 Toe Right Y 1&2, 2&3, 2&4 32 Toe Right Y None

33 Toe Right Z None 33 Toe Right Z None 33 Toe Right Z None

Taking the first line of Amplitude as an example, “1&2” means the kinematic variable COM X was shown to be significant in clusters 1 and 2 by the post-hoc test. The contribution of the shoulder, hip, knee, and COM variables were

particularly significant (indicated by blue).
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FIGURE 8 | Box plots for amplitude in ML. X-axes represent the amplitude after normalization in the ML direction.

each cluster group. We can see that as the days after onset
increased, CH patients transited from clusters 4 to 3, to 2, and
to 1, in order, whereas for CI patients, they did not show a
pronounced transition over time. Moreover, in Table 6, CH3,
CI1, CI2, and CI4 was the cluster which was clustered into
different clusters, because it is difficult to cluster them perfectly in
machine learning. Clusters in whichmany data slots are clustered
are considered to be the main clusters.

4. DISCUSSION

This study aimed to determine and understand the postural-
sway features of post-stroke patients in quiet standing postures.
Using DTW-PAM, differences were observed between patient
clusters. The markers’ amplitude, SD, and frequency indicated
that disease-days after onset and disease subtypes (CH or
CI) contributed more to postural-sway features than did
other features.

After analyzing Table 5, we determined that amplitude had a
similar significance performance as the SD, and it had greater
significance than did frequency in the clusters, meaning that
amplitude and SD were more valuable than the frequency in the
clusters. In particular, the differences were more pronounced in
the shoulder, hip, and knee. This finding may provide a focus
area for post-stroke patient therapy. From Figure 8, we found
that the upper parts of limbs (e.g., shoulder, hip, and COM) had
significantly larger amplitude values than did the lower parts of

limbs (e.g., knee, ankle, and toes). This finding is similar to a
previous study that showed that waist sway was more significant
than leg sway (Dickstein and Abulaffio, 2000). From Table 4 and
Figure 8, we found that as days from post-stroke onset decreased;
the postural-sway amplitude increased in clusters 1, 3, and 4.
However, the amplitude of cluster 2 did not follow this pattern,
which may be due to age effects that there was a relationship
between postural sway changing with age (Kim et al., 2010).

Frequency was not significantly different in the post-hoc test,
but we found that the frequency of postural sway fell in 0.5–
1.5 Hz for COM, and from cluster 3, CH subjects of lower
age and lower days after onset kept their sway frequencies
within 0.6–0.7 Hz. A previous researcher found that frequency
of body sway fell in the range of 0.1–0.2 Hz (Koltermann et al.,
2019), and because they also found that post-stroke increases
sway frequency (Mizrahi et al., 1989), our finding was found to
be reasonable.

Furthermore, in Table 6, we observed that CH-patient body
postural sway gradually changed as days after onset increased
(clusters 4 to 1). Meanwhile, CI-patient body postural sway did
not show the same onset-days correlation. Another researcher
found that CH patients made more significant recovery
gains, although they had more excellent functional (motor)
impairments (e.g., standing and walking) than CI patients. They
also found that CH patients having the most severe disability
improved more than those with CI of comparable severity (Kelly
et al., 2003; Katrak et al., 2009). From this knowledge, we
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FIGURE 9 | Box plots for frequency in ML. X-axes represent the postural-sway frequency in the ML direction.

assumed that a CH onset-days correlation might emerge from
their better recovery ability. This finding may give researchers
and practitioners new ideas about sway-pattern changes during
post-stroke patient rehabilitation. In addition, Table 6 shows that
the group formed of CH3, CI1, CI2, and CI4 were clustered into
different clusters. After observing their data plots and analyzing
the patient demographic factors, we found they all had fewer
days after onset (less than 180 days, subacute phases). During
the subacute phases, the stroke patient recovers more noticably
and is more unstable in muscle force than in the chronic phase
(Kiran, 2012; Chow and Stokic, 2014). Hence, these patients
exhibit different sway patterns, even over the same experiment
duration, and data from the subacute phase patients is considered
to be difficult to cluster. This hence might be reason why different
slots for one person were clustered into different clusters.

This study has certain limitations. The first is that the
number of subjects was only 10. With more subjects, more
calculations and analyses could be performed. The second is that
we only considered male patients. We plan to investigate more
subjects, including female patients, and analyze their postural-
sway characteristics in future research. The third is that we did
not perform clustering for the healthy age-matched and young
subjects. If we add such subjects, we could compared the postural
sway among healthy human and stroke patients to determine

which postural-sway characteristics are important, which will
add meaning to the study.

5. CONCLUSION

This study evaluated the postural-sway features of post-stroke
patients using a motion-capture system to collect standing
posture data. After collecting stroke patients’ multi-variable
motion-capture standing posture data, we processed them into
data slots of t seconds long. Subsequently, we determined
the optimal length of the data slots and number of clusters,
and clustered the t-s data slots into K cluster groups using
the DTW-PAM method. Finally, to find the critical kinematic
variables, we performed a post-hoc test. We found that the
shoulder, hip, knee, and COM played essential roles in clustering,
and the amplitude of the marker was more helpful than its
frequency. Furthermore, we created a days-from-onset clustering
table and a box plot of the shoulder, hip, knee, and COM
variable amplitudes and frequency separately in ML direction
using 5-s data slots. We found that as the days after onset
increased, CH patients transited from cluster four to clusters
3, 2, and 1 of a four-cluster solution, whereas for CI patients,
they did not show such pronounced transitions over time.
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TABLE 6 | Clustering by days after onset to explore the transition pattern of days after onset in CH and CI.

Name index Days after onset 0 100 200 300 400 500 600 700 800 900 1,000 1100

CH3 51 4 4 4 4 4 4

CH3 58 4 4 4 4 2 2

CH3 65 4 4 4 4 4 2

CH3 79 4 4 4 4 4 4

CH3 93 4 4 4 4 4 4

CH2 122 4 4 4 4 4 4

CH2 129 4 4 4 4 4 4

CH2 136 4 4 4 4 4 4

CH2 143 4 4 4 4 4 4

CH5 315 3 3 3 3 3 3

CH5 340 3 3 3 3 3 3

CH5 358 3 3 3 3 3 3

CH4 520 2 2 2 2 2

CH4 527 2 2 2 2 2

CH4 534 2 2 2 2 2

CH1 1108 1 1 1 1 1 1

CH1 1150 1 1 1 1 1 1

CI3 69 4 4 4 4 4 4

CI3 80 4 4 4 4 4 4

CI1 74 4 4 4 4 4 4

CI1 88 4 4 4 4 4 4

CI4 91 2 2 2 2 2 2

CI4 108 4 4 4 4 4 4

CI1 109 4 4 4 4 4 4

CI1 176 4 3 1 1 1 1

CI2 132 4 4 4 4 4 2

CI2 147 4 4 1 1 1 1

CI5 992 4 4 4 4 4 4

CI5 1007 4 4 4 4 4 4

CI5 1020 4 4 4 4 4 4

CI5 1051 4 4 4 4 4 4

Numbers 1–4 and colors from blue to red represent the clustered data from days after onset. The numbers from 0 to 1,000 indicate the days after onset for each cluster.

F
ro
n
tie
rs

in
H
u
m
a
n
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
1

D
e
c
e
m
b
e
r
2
0
2
1
|
V
o
lu
m
e
1
5
|A

rtic
le
7
3
1
6
7
7

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Li et al. Evaluate Post-stroke Patients Postural Sway

The above finding would provide researchers new ideas about
sway-pattern changes for post-stroke patient rehabilitation.
In the following research, we plan to increase the number
of subjects.
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