
fnhum-15-736415 November 18, 2021 Time: 12:26 # 1

ORIGINAL RESEARCH
published: 24 November 2021

doi: 10.3389/fnhum.2021.736415

Edited by:
Pedro Gomez-Vilda,

Polytechnic University of Madrid,
Spain

Reviewed by:
Marjan Saadati,

George Mason University,
United States

Jesús B. Alonso-Hernández,
University of Las Palmas de Gran

Canaria, Spain

*Correspondence:
Yanan Chen

chenyn@henu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cognitive Neuroscience,
a section of the journal

Frontiers in Human Neuroscience

Received: 05 July 2021
Accepted: 29 October 2021

Published: 24 November 2021

Citation:
Jiang X, Zhou C, Ao N, Gu W, Li J

and Chen Y (2021) Scarcity Mindset
Neuro Network Decoding With
Reward: A Tree-Based Model
and Functional Near-Infrared

Spectroscopy Study.
Front. Hum. Neurosci. 15:736415.
doi: 10.3389/fnhum.2021.736415

Scarcity Mindset Neuro Network
Decoding With Reward: A
Tree-Based Model and Functional
Near-Infrared Spectroscopy Study
Xiaowei Jiang1,3†, Chenghao Zhou1†, Na Ao1, Wenke Gu1, Jingyi Li1 and Yanan Chen1,2*

1 Institute of Psychology and Behavior, Henan University, Kaifeng, China, 2 Institute of Cognition, Brain and Health, Henan
University, Kaifeng, China, 3 Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States

Resource scarcity imposes challenging demands on the human cognitive system.
Insufficient resources cause the scarcity mindset to affect cognitive performance,
while reward enhances cognitive function. Here, we examined how reward and
scarcity simultaneously contribute to cognitive performance. Experimental manipulation
to induce a polar scarcity mindset and reward conditions within participants under
functional near-infrared spectroscopy (fNIRS) recording was implemented to explore
the mechanism underlying the scarcity mindset and reward in terms of behavior
and neurocognition. Participants showed decreased functional connectivity from the
dorsolateral prefrontal cortex (DLPFC) to the ventrolateral prefrontal cortex (VLPFC)
with a scarcity mindset, a region often implicated in cognitive control. Moreover, under
reward conditions, the brain activation of the maximum total Hb bold signal was mainly
located in the left hemisphere [channels 1, 3, and 4, left ventrolateral prefrontal cortex
(L-VLPFC) and channel 6, left dorsolateral prefrontal cortex (L-DLPFC)], and there was
also significant brain activation of the right dorsolateral prefrontal cortex (R-DLPFC) in the
right hemisphere (channel 17). Furthermore, these data indicate the underlying neural
changes of the scarcity mentality and demonstrate that brain activities may underlie
reward processing. Additionally, the base-tree machine learning model was trained to
detect the mechanism of reward function in the prefrontal cortex (PFC). According to
SHapley Additive exPlanations (SHAP), channel 8 contributed the most important effect,
as well as demonstrating a high-level interrelationship with other channels.

Keywords: scarcity, reward, fNIRS, functional connectivity, prefrontal cortex

INTRODUCTION

In the reality of social life, there are various forms of scarcity. These include the scarcity of capital
sources, such as unemployment; lack of social contact and human ties, leading to social loneliness;
or a dieter facing hunger and calorie loss. Additionally, scarcity can affect a group that has to make
decisions with limited resources in a limited time to face challenges. Growing scarcity has been
highlighted during the COVID-19 pandemic.

Cognitive performance is damaged during a scarcity mindset (Shah et al., 2012; Mani et al., 2013;
Vohs, 2013; Nash et al., 2020). For instance, Mani et al. (2013) proposed that poverty decreased
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cognitive task performance, working memory, and logical
thinking. On the other hand, recent work suggests that
potential reward-driven motivation enhances executive control
mechanisms that help prioritize goal-relevant information,
leading to improved performance across perceptual and cognitive
tasks (Pessoa, 2013; Botvinick and Braver, 2015). For instance,
rewards boosted performance during working memory (Savine
et al., 2010) and response conflict (Krebs et al., 2011) tasks.

Notably, the impacts of scarcity and reward on cognition
have been mainly studied independent of one another.
Therefore, our current understanding of how reward and
scarcity simultaneously contribute to cognitive performance is
incomplete. To address this gap, the present study investigated
how scarcity and reward interact with one another during a
modified monetary incentive delay (MID) task. Understanding
these interactions is essential because many real-life situations
involve both poverty and reward dimensions. Recent estimates
show that approximately 20% of the world’s population
is in poverty. Governments and organizations channel
substantial money and resources into programs for the
poor. Consequently, probing cognitive mechanisms involves
the joint processing of scarcity and reward signals, and
understanding interactions between reward and scarcity during
cognition might be of potential benefit in anti-poverty projects
sponsored by governments.

Scarcity
Scarcity has a variety of negative consequences. For example,
poor economic prospects have been associated with higher levels
of stress, anxiety, depression, and suicide.

Recent studies focus on the cognitive consequences of the
scarcity mindset caused by insufficient resources. For example,
scarcity will impede human cognitive capacity (Mani et al.,
2013) and generate a nearsighted strategy in decision-making
by ignoring possible future issues (Shah et al., 2012). Mental
resources are consumed by poverty-related concerns, leaving less
for other tasks, which reduces fluid intelligence and the ability
to exercise cognitive control (Mani et al., 2013). Individuals
pay attention to emergency needs due to insufficient resources
and trade off these needs (Shah et al., 2015). These cognition
and behavior consequences are severe and result in poor
decision-making and behavior (e.g., poor time planning and
financial planning), thus intensely aggravating the condition of
insufficient resources.

In summary, this situation can be explained by the cognitive
constraint hypothesis (Howes et al., 2004). Individuals with high
poverty levels feel insecure about the environment, anxious about
money and the future, resentful about losing money, dissatisfied
with money, and more emotional attachment to money. These
negative emotional responses encourage individuals to pursue
money more actively or to be more careful not to lose money.
Recently, some research has revealed that exposure to a reward or
reward demand activates a general reward system that prompts
people to seek anything rewarding (Van den Bergh et al., 2008;
Wadhwa et al., 2008). Thus, such a mechanism contributes to the
self-regulatory failure of individuals in poverty, as their continued
financial deprivation makes them more sensitive to reward cues.

Reward
Reward facilitates perceptual processing and improved cognitive
performance across a diverse set of tasks (Pessoa, 2010, 2013;
Aarts et al., 2011; Botvinick and Braver, 2015; Padmala et al.,
2017). For instance, in MID paradigms (Knutson et al., 2000;
Knutson and Cooper, 2005), a prior cue indicating a monetary
reward condition for an upcoming trial typically signals a reward
expectation: an additional monetary reward is possible for the
individuals if they perform fast and accurately, whereas no
reward is offered in the no-incentive condition. Similarly, a
potential reward has been shown to reduce switching costs in
task-switching paradigms (Savine et al., 2010), decrease stop-
signal reaction times during response inhibition tasks (Boehler
et al., 2012), and increase postconflict control in flanker tasks
(Braem et al., 2012). Reward expectations improve the allocation
of attention to target stimuli and decrease attention to distractors,
leading to improved behavioral performance (Chelazzi et al.,
2013; Krebs and Woldorff, 2017).

Evidence from behavioral, event-related potentials, and
neuroimaging measures suggests that the MID (Knutson et al.,
2000) task is a widely used paradigm for examining reward
processing (MTAC et al., 2018). An fMRI study (Ballard et al.,
2011) found that the dorsolateral prefrontal cortex (DLPFC) is
the only entrance to this reward information network, converting
reward information to reward motivation. The expected reward
availability leads to activation of the ventral tegmental area
(VTA) only through its effect on the DLPFC. Thus, reward
anticipation directly increases activation in the DLPFC, whereas
it only indirectly affects the VTA and the nucleus accumbens
(NACC) by enhancing weak or inactive pathways inherent in
the DLPFC (Ballard et al., 2011). Overall, the DLPFC integrates
reward representations and transmits them to the mesolimbic
and dopamine systems to initiate motivational behavior.

Current Study
Despite the far-reaching psychological effects mentioned above,
the impact of the scarcity mindset and reward expectation on
basic neurocognitive mechanisms remains unclear. Here, we
attempt to directly examine the relationship between the scarcity
mindset and reward expectation with functional near-infrared
spectroscopy (fNIRS).

Investigating how the scarcity mindset and reward
simultaneously contribute to behavioral performance and
neurocognitive activation in a laboratory setting is a challenging
endeavor – paradigms include, for example, limiting shots in an
experimental shooting game (Shah et al., 2012), consumption
(Roux et al., 2012), hunger due to food restriction (Aarøe and
Petersen, 2013; Xu et al., 2015), exposure to faux articles about
the economic recession (Griskevicius et al., 2013), and current
income level (Mani et al., 2013). However, these manipulations
are not always dependent on the current state of scarcity.
They may be confused with past life experiences by individuals
or rely on task-required skills. Currently, the mechanism
underlying cognitive change due to scarcity is not clear. One
possible explanation is that the state of resource scarcity causes
individuals to use more of their attention resources, resulting in
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more urgent resource demands and leading to a stronger focus
on the task at hand. Such attention often leads to neglect of other
potentially important information (Tomm and Zhao, 2018).

This study examines the interactive effect of scarcity and
reward on neurocognitive processes and can help shed light
on the mechanisms involved in these broader psychological
consequences. Based on studies of cognitive function defects in
poverty (Shah et al., 2012; Mani et al., 2013; Vohs, 2013), we
tentatively predicted that people with a scarcity mindset might
show poorer performance than those with an abundance mindset.
Furthermore, we hypothesized that the processing of a reward
cue would lead to increased responses in the left prefrontal cortex
(PFC) (Cho et al., 2016), as well as an interrelationship within
the PFC. Therefore, to explore the interactive contribution of
channels and features of importance, this study trained some
tree-based machine learning models to explain them. As previous
research did not distinctly manipulate the scarcity mindset in a
laboratory setting, and the existing literature on the interaction
of scarcity and reward is relatively sparse, no specific prediction
was formed in this regard.

MATERIALS AND METHODS

Participants
Forty freshman-and-sophomore-year subjects with no history
of neurological or psychiatric disease took part in our study
(males = 23, female = 17, mean age = 20 ± 1.2 SD). They
were undergraduates studying at Henan University and signing
the informed consent. Because of the recording system’s error,
we lose one subject’s fNIRS data, and his behavior data was
intact, so we included it in the analysis. Eight subjects did
not finish the experiment since discomfort, or stopping by
researchers as the bad quality of fNIRS channels occurring
during the experiment; five subjects were excluded for their poor
performance (behavioral accuracy of any condition <0.5), and
the other two subject fNIRS data were removed because their
fNIRS records had too much noise (their behavior data was intact
and preserved). Finally, this study remains 25 valid fNIRS data
and 27 valid behavioral data. After the experiment, all subjects
got remuneration.

Procedure
The experiment examined scarcity and reward conditions and
the neural processes associated with them. This study modified
the MID experimental task paradigm by manipulating the
scarcity mindset and reward conditions, and PTB3 and MATLAB
R2020a were used to analyze the results. The experiment
consisted of two modules, corresponding to two different
amounts of start-up capital (0 yuan or 1000 yuan) representing
launch conditions of scarcity and two reward conditions. The
pseudorandom method was used to balance start-up funding
conditions. If the number of participants was odd, the first
start-up capital fund was 0 yuan, and the second start-up
capital was 1000 yuan. If the number of participants was even,
the first start-up capital fund was 1000 yuan, and the second
start-up capital fund was 0 yuan. Participants were scanned by

fNIRS while completing the task. Each module contained 80
trials, of which 40 were randomly presented for each of the 2
reward conditions.

The participants were shown the amount of money they
currently had (0 or 1000 yuan) before each module as a trigger
for a scarcity mindset and then randomly presented each trial. In
each trial, participants were first told that they had been charged
$2 as the round cost and were then presented with a reward
condition (either U0 or U10) as the incentive condition. Then,
the participants were presented with a fixation point that ranged
between 1 and 2 s randomly to prevent them from guessing
about subsequent tasks. The subjects were next shown a white
rectangular square as the task image for T seconds. Participants
were required to press the space within T seconds. Otherwise,
the timeout was judged to have failed. T was initially 200 ms; if
the current total accuracy was less than 66%, T was multiplied
by 110% until T was greater than 320 ms. If the current total
accuracy was more significant than 66%, T was multiplied by 90%
until T was less than 80 ms. The subjects were then presented with
2-s feedback that informed them of their current round of gains,
as well as their current total amount of money. Next, the subject
was provided with a variable waiting time Tequilibrium to balance
the entire test time, where Tequilibrium was shown below. If no key
was pressed at the specified time, Treaction time was T. At the end
of the 10-s break, one trial ended, and the next began. The flow
chart is shown in Figure 1A.

Tequilibrium = 4−Tfixation point−Treaction time (1)

Behavioral Experimental Data
Acquisition and Analysis
This study recorded the reaction time and accuracy and
calculated each participant’s average reaction time and accuracy
under the four conditions at the end of the experiment, used
for subsequent calculation. Based on all participants’ data,
the main effects and the interaction effects of the two main
effects were examined in SPSS25 using repeated measures
analysis of variance.

Functional Near-Infrared Spectroscopy
Data Acquisition and Analysis
The absorptivity of oxy-Hb, deoxy-Hb, and total-Hb was
measured using a continuous-wave system (NIRX Scout 32× 32,
United States) and an 8 × 7 probe set covering the PFC with
a total of 20 channels consisting of 8 light transmitters and 7
detectors. The fNIRS system in this study uses two different
wavelengths (785 and 830 nm), and the frequency is adjusted
according to wavelength and channel to avoid crosstalk. The
distance of each probe is 30 mm, and the sampling rate of the
device is 7.8125 Hz. The probe is mounted on the swimming
cap according to the International 10–20 system and covers the
PFC. This study focused on the PFC region to explore brain
function. Figures 2A,D shows the fNIRS channel setup based on
the 10–20 system (EEG).

This study set four ROI referred pilot study (Yuan et al., 2020),
including the right ventrolateral prefrontal cortex (R-VLPFC)
(17–20), right dorsolateral prefrontal cortex (R-DLPFC) (13–16),
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FIGURE 1 | (A) The flow graph. (B) The behavior results. (C) The ROC curves of all tree-based models.

left dorsolateral prefrontal cortex (L-DLPFC) (5–7 and 11), and
left ventrolateral prefrontal cortex (L-VLPFC) (1–4), shown in
Table 1. The data were statistically analyzed using MATLAB
R2020a software. Firstly, the raw optical signals were converted
into oxy-Hb, deoxy-Hb, and total-Hb signals by the Beer–
Lambert equation using Homer2 software, and the motion
artifacts were removed. A bandpass filter filtered the frequency
of 0.01 and 0.15 Hz to remove heart rate or other low-frequency
interference and high-frequency noise. After that, functional
connectivity was calculated by correlation coefficient (r)

r (X, Y) =
Cov (X, Y)

√
Var [X] Var [Y]

(2)

where, Cov (X, Y) is the covariance of channel X and channel
Y , Var [X] is the variance of channel X, Var [Y] is the variance
of channel X. After calculating each of the participants’ average
superposition data in different conditions of 40 trials, repeated
ANOVA (rANOVA) was used to compare the max activation
and functional connectivity. Due to multiple comparisons, false
discovery rate (Benjamini and Yekutieli, 2005) was used to
correct the p-values.

Tree-Based Model
Common integrated tree-based models have two categories: one
is the bagging model, such as random forest, which compares
the results of each tree to obtain the final result by voting,
and the result is subordinate to the minority and the majority
(Barnett et al., 1989; Breiman, 2001). Each tree uses random
sampling samples (bootstrap sampling) in the entire sample
set and predictive variables (Breiman, 2001; Grömping, 2009).
Such a processing method effectively forces the tree to produce
instability and produces differences between trees to obtain better
total fitting results (Barnett et al., 1989). Another type is the
boosting model, which is a robust classifier composed of weak
classifiers based on different weights, and weak classifiers are
mutually dependent. Boosting models are commonly used in
AdaBoost (Freund and Schapire, 1995), XGBoost (Chen and
Guestrin, 2016), LightGBM (Ceperic and Baric, 2004), and
CatBoost (Prokhorenkova et al., 2019).

In order to fit the dataset better, this study used these
five different tree-based models (Random Forest, CatBoost,
AdaBoost, XGBoost, and LightBoost) to compare, using all
valid trials as samples and using each channel as a feature for
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FIGURE 2 | (A) It shows that the position of the sources, detections, and channels (Yuan et al., 2020). (B) The abridged general view of the functional connectivity
between channel 16 in R-DLPFC and channel 2 in L-VLPFC. (C) The functional connectivities between reward conditions and sufficient resources. (D) The activated
channels were shown as red point.

prediction. In the classification model training, “reward” (or “1”)
and “no reward” (or “0”) were set as predictive variables in this
study. Each label has N samples

N = 2NsubjectiveNrepeated time (3)

where Nsubjective is 25 and Nrepeated time is 40.
This study hypothesizes that classification models can predict

the difference between different reward conditions. Therefore,
this study used all the data of two parts under two different
scarcity mindset conditions simultaneously. The dataset is
randomly shuffled and divided into two parts. The first part
is the training dataset (70%, 2800 samples) to train the
machine learning algorithm. The other part is the test dataset
(30%, 1200 samples), which acts as an independent test set to
validate the final model. This study used 10-fold cross-validation
(10-fold CV) to establish the training dataset classification model.
More precisely, selecting 90% training dataset randomly to train
the model while the other 10% training dataset was used to
verify it. All models use Gini Index as the entropy coefficient
of the model. Gini Index could measure the variance. Higher
Gini Index means the higher mis-classification. Accordingly,

the random grid method was used to decease this variance
as the searching method for the optimal parameters. The
best performing model was selected as the interpreter model
for subsequent analysis according to the training results. The
training process is shown in Figure 3. The Gini coefficient was
used to calculate the importance of the optimal model’s input
features to obtain each feature’s importance. Finally, the results’
reliability was verified using the SHapley Additive exPlanation
(SHAP) model (Lundberg and Lee, 2017). These feature selection
technologies could present the contribution of channels and their
relationships, thus optimizing the model by selecting the more
important features.

RESULTS

Behavior Results
Repeated ANOVA of accuracy showed that there were no
significant differences in scarcity mindset [F(1,26) = 1.349,
p = 0.256, η2

p = 0.049], reward conditions [F(1,26) = 2.232,
p = 0.147, η2

p = 0.079], and interaction effect [F(1,26) = 1.537,
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TABLE 1 | Each channel located in ROI and rANOVA results.

ROI Channel Standard location Sample analysis: condition (mean) F(1,24) η2
p

x y z

L-VLPFC 1 0.4867 −0.4283 0.7614 R(1.94) > NR(1.47) 10.1171*** 0.3166

L-VLPFC 2 0.3307 −0.3837 0.8622 R(1.67) > NR(1.43) 1.2582 0.0860

L-VLPFC 3 0.5360 −0.5621 0.6299 R(1.98) > NR(1.45) 9.6893*** 0.3081

L-VLPFC 4 0.3670 −0.7381 0.5660 R(2.66) > NR(1.98) 11.1673*** 0.3364

L-DLPFC 5 0.2799 −0.4936 0.8234 R(1.22) > NR(1.10) 2.8396 0.1379

L-DLPFC 6 0.2997 −0.7020 0.6460 R(1.90) > NR(1.47) 7.3596* 0.2583

L-DLPFC 7 0.2001 −0.6178 0.7605 R(1.19) > NR(1.01) 2.3739 0.1233

/ 8 0.1171 −0.4085 0.9052 R(1.81) > NR(1.73) 0.2093 0.0480

/ 9 0.0338 −0.5225 0.8520 R(1.77) > NR(1.46) 5.5874 0.2154

/ 10 −0.0769 −0.4226 0.9031 R(2.17) > NR(1.83) 5.1768 0.2047

L-DLPFC 11 0.1680 −0.7997 0.5764 R(2.35) > NR(1.94) 4.3002 0.1809

/ 12 0.0275 −0.7247 0.6886 R(1.36) > NR(0.96) 11.6184*** 0.3446

R-DLPFC 13 −0.1005 −0.8202 0.5632 R(2.10) > NR(1.72) 3.2144 0.1494

R-DLPFC 14 −0.1366 −0.6321 0.7628 R(1.23) > NR(1.03) 2.6329 0.1315

R-DLPFC 15 0.2383 −0.5223 0.8188 R(1.37) > NR(1.15) 5.5833 0.2153

R-DLPFC 16 −0.2462 −0.7303 0.6372 R(1.75) > NR(1.45) 3.9624 0.1713

R-VLPFC 17 −0.2977 −0.4217 0.8565 R(2.15) > NR(1.68) 8.5510** 0.2847

R-VLPFC 18 −0.4766 −0.4575 0.7507 R(1.64) > NR(1.44) 1.9698 0.1101

R-VLPFC 19 −0.3138 −0.7739 0.5501 R(2.05) > NR(1.62) 5.5455 0.2143

R-VLPFC 20 −0.5150 −0.5995 0.6127 R(1.82) > NR(1.58) 1.1691 0.0829

ROIs labeled with “/” were not classified into any brain regions in this study. In simple effect analysis, R was 10 yuan reward, and NR was none reward. ***p < 0.001;
**p < 0.01; *p < 0.05.

p = 0.226, η2
p = 0.056]. rANOVA of reaction time

showed no significant differences in perceived scarcity
[F(1,26) = 0.215, p = 0.647, η2

p = 0.008], reward conditions
[F(1,26) = 1.722, p = 0.201, η2

p = 0.062], and interaction
effect [F(1,26) = 0.032, p = 0.859, η2

p = 0.001]. The simple
effect analysis results showed no significant difference under
abundant resources [F(1,26) = 0.091, p = 0.765, η2

p = 0.003].
While a weakly significant effect was found under the condition
of insufficient resources, the accuracy of the 10 yuan reward
(M = 0.68, SD = 0.06) was higher [F(1,26) = 3.826, p = 0.061,
η2

p = 0.128] than that of 0 yuan reward (M = 0.63, SD = 0.07)
weakly. The accuracy and reaction time results are shown
in Figure 1B.

Functional Near-Infrared Spectroscopy
Results
The descriptive statistical results of functional connectivity were
shown in Figure 2C after taking absolute values. The results
showed that some correlation coefficient was high in the task, but
the overall correlation was moderate.

The results of rANOVA after FDR showed that channel 2
and channel 16 had a significant difference in the scarcity effect
of functional connectivity, Abundance mindset (M = 0.699,
SD = 0.286) was significantly greater [F(1,24) = 20.278,
p < 0.000, η2

p = 0.458] than that of scarcity mindset
(M = 0.459, SD = 0.500), shown in Figure 2B.

Table 1 and Figure 2D described the ROI locations of each
channel and the statistical test results. The difference in the

maximum activation of total-Hb was mainly seen in the left
hemisphere (channels 1, 3, 4, and 6), with a slight difference in
the right hemisphere (channel 17) and in channel 12 between
R-DLPFC and L-DLPFC.

Tree-Based Model Results
As shown in Table 2, combining with the precision, recall rate,
F1 index of the test dataset, as well as the ROC curve and AUC
of each model (Figure 1C) , the Random Forest model had the
best performance. The model results were provided by the Scikit-
Learning software package based on Python 3.8.5 (Pedregosa
et al., 2011). The precision can reach about 63%, while F1, recall
rate, and accuracy are above 60% in the Random Forest model.
The result showed that the classification model established by the
Random Forest model was acceptable.

According to the test based on the Gini Index in Figure 4A and
SHAP in Figure 4B results, the contribution of channel 8 ranks
first in both. Channels 20, 15, 2 are included in top 4. Others are
unstable in Random Forest and SHAP models. Accordingly, we
selected top 4 features to simplify the model.

According to calculating the SHAP value interactive analysis,
it was conducted on the top 7 contribution ranking features. See
Figure 5 for the results.

DISCUSSION

This study was the first to investigate the degree of scarcity
mindset in the MID task, aiming to find the brain activation
mechanism of the scarcity mindset and verify the neural
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FIGURE 3 | (A) The features were channels, the samples were 4000 firstly, then split into two classes, training dataset (70%, 2800) and testing dataset (30%, 1200),
respectively. (B) The training dataset was split randomly into 10 sub-datasets as 10-fold cross-valid processing, 9 were bagged as training dataset, and 1 was
validation dataset. (C) The processing of training model. (D) The processing of testing model.

mechanism of reward in fNIRS. MID tasks adjusted the accuracy
to 66% based on the overall performance. However, this study
still found that reward can improve the accuracy of performance
with a scarcity mindset during autoadaptive processing. In the
left PFC, brain activation increased during the reward condition,
and the functional connectivity between the left and right PFC
diminished during the scarcity mindset.

Effects of the Scarcity Mindset
According to the present study’s results, the reward improved the
accuracy with the scarcity mindset and did not change it with
the abundance mindset. Moreover, the neural synchronization
between channels 2 (L-VLPFC) and 16 (R-DLPFC) was impeded
by a scarcity mindset. An attentional mechanism is a mechanism
of cognitive or behavioral disorders caused by scarcity mindset
conditions (Tomm and Zhao, 2018). When subjects felt scarcity,
their cognition and behavior were impeded by the attentional
system, and their neural synchronization in the PFC was
decreased. This can be explained by the excessive psychological
compensation mechanism (Bäckman and Dixon, 1992). When
the subjects’ scarcity mindset was activated, the concrete
embodiment formed an unsafe inner feeling and then chased

the reward to balance the insecurity. However, this kind of
compensation was excessive, in the end, because the attention
resource focused on the superficial (Tomm and Zhao, 2018) and
hindered the completion of the task.

According to prospect theory (Kahneman and Tversky, 1979;
Wakker, 2010; Tversky and Kahneman, 2016), in this study,
if we assume that the initial amount of money given is the
reference point and the reward per round was based on the
relative potency of the reference point, we can find that a
stronger brain connection is activated in the PFC, which is
a relative potency change. This result was consistent with
the EEG findings (Xiang et al., 2009). In the insufficient-
insufficient condition, the correlation between the 10-yuan
reward and 0-yuan reward was higher than that in the
sufficient-resource condition. In combination with the previous
hypothesis, it was found that a high relative potency led to more
robust activation of brain connections in the PFC, which the
prospect theory could explain. Under different scarcity mindsets,
subjects made their own decisions using relative potency, with
reference points to compare the initial funding with each
round of rewards. The activation of reward expectations in
the L-VLPFC was found, and a connection difference between
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TABLE 2 | Precision, recall, and F1 in training and testing procession in
tree-based model.

Test precession Class Precision Recall F1 Support

RFC testing Reward 0.63 0.62 0.62 598

Accuracy = 0.63 No reward 0.63 0.64 0.63 602

Macro 0.63 0.63 0.63

Weighted 0.63 0.63 0.63

CatBoost testing Reward 0.62 0.60 0.61 598

Accuracy = 0.62 No reward 0.62 0.64 0.63 602

Macro 0.62 0.62 0.62

Weighted 0.62 0.62 0.62

AdaBoost testing Reward 0.57 0.55 0.56 598

Accuracy = 0.57 No reward 0.57 0.58 0.58 602

Macro 0.57 0.57 0.57

Weighted 0.57 0.57 0.57

XGBoost testing Reward 0.61 0.58 0.60 598

Accuracy = 0.61 No reward 0.60 0.63 0.62 602

Macro 0.61 0.61 0.61

Weighted 0.61 0.61 0.61

LightBoost testing Reward 0.63 0.61 0.62 598

Accuracy = 0.62 No reward 0.62 0.64 0.63 602

Macro 0.62 0.62 0.62

Weighted 0.62 0.62 0.62

the L-DLPFC and R-DLPFC was also found under different
scarcity mindsets. R-DLPFC did not activate the expectation
of reward. Therefore, we surmised that R-DLPFC was only
more sensitive to the sense of scarcity caused by high relative
potency, i.e., a scarcity mindset, and was not sensitive to
low relative potency, i.e., without a scarcity mindset. There
may be a reverse relationship between the R-DLPFC and
the correlation efficiency value. The L-VLPFC has different

responses to various associative effects and is sensitive to
reward processing.

Brain Activity to Reward
The DLPFC and PFC are very important cortices in the human
brain that participate in high-level cognitive activities, such
as planning, decision-making, and comparison. According to
previous fMRI results, the DLPFC was also involved in reward
processing (Ballard et al., 2011). This study showed that the
activation of LDLPFC (channel 6) in the reward condition was
significantly greater than that in the non-reward condition,
similar to previous studies’ results. fNIRS was also involved
in reward processing in the DLPFC. Multiple ventrolateral
prefrontal cortex (VLPFC) parts (L-VLPFC: channels 1, 3, and 4
and R-VLPFC: channel 17) were found to be activated by reward
conditions. Reward activation of the VLPFC can be explained
by polymorphisms of the serotonin receptor gene (Nomura
et al., 2007). Additionally, reward-sensitive individuals have been
found to have increased connectivity between the posterior
cingulate and anterior central gyrus of the VLPFC (Cho et al.,
2016). Simultaneously, an fMRI study found a significant positive
correlation between high sensation-seeking reward expectations
and higher L-VLPFC activation (Edmiston et al., 2020). In the
MID task, subjects tended to reward and expected to be rewarded
based on activated expectations, which activated the VLPFC. This
study directly showed that the expectation of reward did indeed
lead to significant activation of the VLPFC.

Classification to Reward Function
According to the machine learning model’s classification results,
channel 8 (located in the frontal pole) contributed the most,
but the rANOVA results showed that channel 8 did not

FIGURE 4 | (A) It shows the average absolute SHAP value (impact) of each channel on model output magnitude. (B) The feature importance of each channel by
RFC model directly.
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FIGURE 5 | (A) The interaction relationship within top-7 important channels of reward condition. (B) The interaction relationship within top-7 important channels of
no reward condition. Colors represent eigenvalues, red is high, blue is low.

indicate a significant difference in reward conditions. This
result was reasonable because rANOVA was not good at
higher-order interactions and assumed that the channels were
independent rather than acting together. However, the tree-
based classification model was different, considering 20 channel

interactions and integrating all interactions to predict the
classification tags. Therefore, the results of this study were in
line with expectations. At the same time, in the interaction
test of the SHAP model, channels 8, 15, 20, 2, 5, 4, and 3 all
showed different degrees of interaction, which also confirmed
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that reward processing was carried out jointly by various brain
regions, rather than independently, and that there was a high-
order interaction.

This study found that prospect theory and its reference points
have involved few studies in neuroscience. Based on the current
study, it is possible to determine individual reference time points,
but most previous studies were limited to behavioral experiments.
In this study, the relative reference points affect the relative
potency of the scarcity mindset in a block because of the block
design. Therefore, this study inferred that the relative reference
point affected the whole task rather than a single point in time,
although this is only a hypothesis at present and will be tested
in future studies.

Limitations
In reviewing this study, there was only marginal significance
in the behavioral experiment because we did not have enough
subjects in our study. The effect size (η2

p < 0.2) of behavior
determined that our study was not a large effect size experiment,
and it is reasonable that no simple effect was found. However,
the results still reveal that the PFC can be affected by a
combination of scarcity and reward when setting relative
reference points. Furthermore, a study using MID to study
reward processing combined with fMRI and EEG found that
there was no difference in fMRI-recorded images between reward
and loss conditions measured directly (Pfabigan et al., 2014).
This study, therefore, ventured to speculate that it might be
possible to explore neural and blood oxygen changes in the PFC
caused by reward conditions by setting relative potency as the
reference point.

It’s a burgeoning field that employs machine learning
approaches to decode individual differences in behavioral
phenotypes from brain imaging data. The application of machine
learning methods to predictive modeling in neuroimaging
is relatively modest due to this field is still immature. In
most neuroimaging-based studies focusing on the prediction
problem, the overall accuracy was highlight as the ultimate
model performance measure. Over the past few years, many
researchers have proposed their accuracy are higher than other
studies, this opinion is inappropriate by simply compared the
percentage. Without well-matched study design and variables
(i.e., sample size, age, sex, parameters, data modality, ROI,
features of interest, feature selection methods, classifier type,
and CV scheme), there is no comparison among these different
studies (Rashid and Calhoun, 2020). More importantly, for this
study, it is not our goal to optimize the algorithm to achieve a
very high accuracy rate. We hope to find an algorithm that is
sensitive to brain blood oxygen activation signal by comparing
these algorithms and provide a visual model for decoding
individual differences.

In addition, machine learning techniques require a large
amount of training data to identify more generalized features
and improved performance, and neuroimaging studies in general
have very small sample size (usually less than 50 subjects) (Rashid
and Calhoun, 2020). The small sample size may introduce
poorer performance. And that, Yang et al. (2016) used SVM
classifier to compare unimodal versus multi modal accuracy

and showed that multimodal features achieved higher accuracy
(77.91%) than single modality accuracy (72.09%), also several
other studies found that integrating multimodal data improved
prediction accuracy (Qureshi et al., 2017; Yang et al., 2018; Jiang
et al., 2020). Therefore, lots of efforts on big data, multi-modal
fusion approaches and advanced machine learning techniques are
required in future studies.

CONCLUSION

In conclusion, our results provide novel experimental evidence
that behavioral performance and bold activity in the PFC
can explain scarcity and reward mechanisms. The neural
synchronization between the left and right PFC, a main cognitive
control region, decreased when individuals suffered from the
scarcity condition. The left PFC hemisphere, mostly the L-VLPFC
and L-DLPFC, was activated in reward conditions, and it can be
detected by the tree-based machine learning model, especially
the random forest model SHAP model, to indicate a high-level
interrelationship within the PFC. To the best of our knowledge,
this is the first study employing a tree-based machine learning
model analysis of the scarcity mindset and reward. This study
provides directions for high-level interrelationship analysis of
the scarcity mindset and reward or possibly other types of
brain functions.
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