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Recent attempts to establish the quantum boundaries of life is pursued. A pre-
existing view of quantum biology is supplemented by the formulation of modern
advances in theoretical chemical physics and quantum chemistry. The extension to
open system dynamics entails a self-referential amplification supporting the signature
of life as well as consciousness via long-range correlative information, ODLCI. The
associated negentropic coherence permeates hierarchical and functional organization
at multiple levels. In this communication we will derive and review one of the most
important mathematical tools, i.e., the combined use of the Fourier- and the Laplace
transform. It is shown that an underlying operator algebra facilitates the formulation
of the conjugate relationship between energy-time and momentum-space. Implications
from augmented general dilation analytic operator families provide novel information-
based representations and yield, inter alia, a thermo-qubit syntax for communication,
which are required to support the quantum Darwinian view of life.

Keywords: quantum chemistry, open systems, self-references, long-range correlative information,
panexperiential materialism, Fourier-Laplace transform

INTRODUCTION

The present work is part of a transdisciplinary approach of the mind-brain problem. The principal
equations endorse a new mind-brain doctrine, panexperiential materialism contrasting beliefs in
emergent consciousness. Although the former might remind on panexperientialism, going all
the way back in time (James, 1879, 1890), there is a consequential difference. Panexperiential
materialism has a material foundation exhibiting a conjugate relationship between the material
brain, evolving the energy-momentum degrees of freedom of its atomic and molecular constituents,
while consistently formulate the conscious mind as a conjugate evolution in space-time under
steady state conditions. These aspects have been advanced and compared in some detailed scoping
in Poznanski and Brändas (2020). Modern sponsors of panexperientialism, for instance (Georgiev,
2020), advocates an attractive quantum information theoretic approach. Even if one attempts to
model quantum transport in proteins via generalized Davydov solitons (Georgiev and Glazebrook,
2020), there are always salient issues, such as the actual relevancy of the adiabatic approximation
and the conceived remnant of residual quantum superpositions in the enveloping hot and wet
environment of the brain.

There exists a lot of confusion regarding the situation in cognitive sciences. Cognitive
psychologists have different ideas regarding consciousness and cognition (Solms, 2018). One reason
for this confusion rests on the notion of the hard problem of consciousness (Chalmers, 1996).
Chalmers presents a case against the materialist dogma, reformulating the crucial distinction
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between the branch of physical phenomena and the experiential
domain as previously expressed by Thomas Nagel, viz. what is it
like for a bat to be a bat (Nagel, 1974). Although this provides
an ambiguous picture of the mind-body enigma it has attained
a special standing in the study of consciousness as the latter
entails the pinnacle of Darwinian evolution. As pointed out by
philosophers, physicists, chemists and biologists alike, there is a
fundamental gap between the mental and the material domain
(Bitbol, 2008). A traditional way to deal with this conundrum
brings forward dual-aspect thinking. For instance the non-
Boolean logical framework of modern quantum theory suggests
Wolfgang Pauli’s idea of a mind-matter complementarity of
one holistic reality (Primas, 2003). The possible reduction
of the mind to materialistic physical explanations has been
reviewed by Atmanspacher, indicating alternatives to physicalism
(Atmanspacher, 2014).

Mind-science phenomena, investigated by new technological
advances, has promoted neuroscience as a new scientific
subdiscipline devoted to the study of the nervous system. In
particular the correlations between phenomenal experiences and
neural activity (Crick and Koch, 1990) have increasingly been in
focus under the banner of neural correlates of consciousness, NCC.
Nevertheless the search for mind-brain bridging laws, supported
by NCC-oriented approaches, has been criticized by Manzotti
and Moderato (2010), since, as they claim, there seems to be no
proof that any neural activity is sufficient for consciousness.

Even if interesting proposals have been made to incorporate
quantum mechanics (e.g., Hameroff and Penrose, 2014) or the
suggested links between consciousness and information (Bohm,
1980), there are some severe challenges to consider, e.g., the
explanatory gap and the subject—object dilemma (Bitbol, 2020).
For the quantum scientist the main obstacle is the quantum
decoherence problem that becomes unavoidable as the thermal
noise at 310 K threatens to wash out subtle quantum effects
indispensable in the organization of energy and overcoming
entropy production in the brain. Decoherence controversies have
been intense during the years, starting with the implication that
cognitive processes should be classical rather than of quantum
origin (Tegmark, 1999).

Irrespective of the subtlety of the various allegations to
reject the real problem of decoherence, quantum chemical
understanding views the temporal process of leaking phase
coherence as a quantum-thermal correlative development.
In addition to the interaction between the system and
its environment, the activity entails self-organization
(Chatzidimitriou-Dreismann and Brändas, 1991), under the
steady state situation, dS = 0 (Nicolis and Prigogine, 1977),
where S is the entropy of an open system such as the brain.
Elaborating on a thermodynamical quantum picture, with the
system immune against decoherence, one is able to derive the
transition density matrix

ρtr =

n−1∑
k=1

|ψk
〉 〈

ψk+1| = |ψ〉 J 〈ψ|

in terms of the phase-locked quantum states {ψk} ; k = 1, 2, n,
where ρtr is a steady state solution of the Liouville equation

fixed at appropriate temperatures and time scales (Brändas, 2019,
2021). The quantum nature of the formulation proves that the
logical possibilities of philosophical zombies should be ruled out
by the no-cloning theorem (Wotters and Zurek, 1982). Note that
the associated matrix representation in the basis |ψ〉 results in the
nilpotent matrix J, defined as

J =


0 1
0 0

· · ·
0 0
0 0

...
. . .

...

0 0
0 0

· · ·
0 1
0 0


with the consequences that the resolvent of the degenerate
Hamiltonian that builds the Liouvillian, exhibits a higher order
pole of dimension n with the result that the related propagator
generates a polynomial-delayed evolution exhibiting Poissonian
characteristics (Brändas, 2019).

In response to the general problems conveyed above, the
research agenda, the concepts and shared values of quantum
chemistry (Löwdin, 1992, 1998; Brändas, 2017), suggest an
alternative to the original physicalist contention, extending
objective interactions and molecular correlations to providing a
syntax for subjective semantics for higher order communication
without endorsing a dualistic view. The derivation of ρtr,
constrained by the dimension n to the appropriate temperature
and time scales will not be detailed here. Suffice it to say
that the steady state provides a hiatus for negentropic gain
balancing entropy production, and producing a free energy
reorganization from heat to useful work, equal in magnitude
to the results of irreversible processes and proportional to
dT. In addition its Bloch thermalized classical canonical form,
represented by the Jordan block J in the basis |ψk

〉
, prompts

interesting analytic structures on the so-called unphysical sheet
of the complex energy plane. This imparts a generalizations of the
Fourier relations between the propagator and its resolvent. The
derivation of the corresponding Fourier-Laplace transformations
accounting for the higher order poles and associated polynomial
amendments will be the main undertaking of this contribution,
for more details regarding the original derivations and the
meromorphic continuation (see Brändas, 1997, 2019).

THE FOURIER-LAPLACE TRANSFORM

The Fourier transform is traditionally a unitary operation that
takes data from one domain, i.e., a time-based pattern, to another
region, e.g., the spectral ingredient. It is one of the most utilized
techniques of all times. It does not only decompose a signal into
its constituent frequencies, it finds technical applications in most
all of modern advances in technology, such as cell phones, audio-,
image-, and video files, digital recording, music composition,
etc. The transform and its inverse provide a fundamental
tool for solving ordinary- and partial differential equations,
including mapping conjugate relationships in general operator
algebras of modern quantum theory and their quantum chemical
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extensions, also involving the Laplace transform. Significant
developments in spectral analysis in quantum dynamical systems,
with spectral information usually recovered from a short time
segment, was initiated by Neuhauser (1990). Further, prolate
spheroidal wave functions, PSWFs, are exact eigenfunctions of
the Finite Fourier Transformation, providing optimal filters by
convoluting band limited functions with PSWFs (Levitina and
Brändas, 2008, 2009), which can also be exercised in higher
dimensions (Larsson et al., 2004). Other well-known applications
exhibit the conjugate relation between space-momentum, for
instance analyzing and comparing d-wave symmetry of a
cuprate condensate wavefunction in k-space and real space
(Dunne et al., 2017).

The theory of the Fourier Transform provides an enormous
field (see e.g., Reed and Simon, 1978), or the fundamental,
historical and practical treatments reviewed by Lützen (1982).
Our intention is not to supply another review of the subject,
rather we will start at a very simple level to prepare an overall
idea that includes generalizations to complex mappings between
Cauchy representations of meromorphic functions, conjugate
pairs of operators, and finally involving the representation of a
certain family of non-normal operators. Let us take the usual
model of the transform between the correlation function g(t) and
its transform f (ω) (assuming standard existence conditions for
the integrals).

g (t) =
1

2π

∫
+∞

−∞

f (ω)e−iωtdω

f (ω) =

∫
+∞

−∞

g (t) eiωtdt

where for simplicity one might associate t with time and ω with
frequency (h̄ = 1). In its discrete form on a finite interval one
finds the connection with the standard Fourier series in harmonic
analysis. Note also that the Laplace transform can be obtained by
replacing integration intervals and variables accordingly (β > 0).

g (β) =

∫
∞

0
f (ω)e−βωdω

We will later combine variables and intervals into a suitable
Fourier-Laplace transform in order to derive and analyze general
relations between propagators and resolvents. Note that a direct
inversion of the function f (ω) ≡ 1 ensues from the δ-function
representation.

δ (u)
1

2π

∫
+∞

−∞

e−iutdt

to be discussed in more detail below. Its formal operation appears
through∫
+∞

−∞

g (t) eiωtdt =
1

2π

∫
+∞

−∞

f (u)du
∫
+∞

−∞

e−i(u−ω)tdt = f (ω)

Let us first consider a simple extension of the frequency ω (or
energy) to the field of complex numbers z and consider the
integral.

g (t) =
1

2π

∫
C

f (z)e−iztdz

where the contour C for instance can be chosen (−∞,+∞) to
recover the Fourier relations above. Choosing C to run from
0 to +∞, with it = β one recovers the Laplace transform. In
order to see how these two transforms will combine we will
first study the case, cf. the work of Carleman (1944) discussed
and emphasized in Lützen (1982), where below 2(±t) is the
Heaviside step function being zero for negative- and one for
positive arguments.

∓i2(± t) =
1

2π

∫
C±

e−izt

z
dz (1)

1
z
=

∫
+∞

−∞

∓i2(±t)eiztdt

where the contour C+, is depicted in Figure 1, and C−
correspondingly running counter clockwise below the real axis
and closed in the upper halfplane. We will prove Eq. (1),
assuming appropriate convergence conditions, and univocally by
the limit R→ ∞.

The second relation of Eq. (1), follows at once for, e.g., C+,
with z = ω+ iε, ε > 0,∫

+∞

−∞

−i2(t)eiztdt = −i
[

1
iz

eiωte−εt
]∞

0
=

1
z

yielding a result independent of ε > 0, which can easily be
combined to

1
z
=

∫
+∞

−∞

∓i2(±t)eiztdt;
{

upper sign H⇒ imz > 0
lower sign H⇒ imz < 0

Next, we prove the remaining relation of Eq. (1), by considering
the integral with the contour as displayed in Figure 1, with t, δ >
0, using the residue theorem (Ahlfors, 1979),

i
2π

∫
C++CR

e−i(z+iδ)t

z + iδ
dz = −2iπ

i
2π
= 1

FIGURE 1 | The contour C+ displayed as the finite interval [−R, +R] at a
finite distance ε above the real axis. By closing the half circle CR, with radius
R, in the lower half of the complex plane, the integral can be simply evaluated
as the sum of residues of the poles of the actual function inside C+ + CR.
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One realizes that closing the contour in the lower complex
halfplane leads to

lim
|z| → ∞

t > 0

e−i(z+iδ)t

z + iδ
= 0

finding, with C = C+ + CR and letting R→∞, that

lim
R→

∫ R

−R

e−i(E+iδ)t

E+ iδ
dE = lim

R→

∮
C

e−i(z+iδ)t

z + iδ
dz = −2πi

In ascertaining the last relation we have utilized the following
estimates, for arbitrary small θ0 > 0∫

CR

e−i(z+iδ)t

z + iδ
dz = eδt

∫
−π+θ0

−θ0

e−iRtcos ϑeRtsin ϑ

1+ iδR−1e−iϑ
idϑ

+

∫
−θ0

0
+

∫
−π

−π+θ0

applying the standard change of variables and omitting the details
in the next two terms {

z = Reiθ

dz = izdθ

}
When R→∞, the first term vanishes since sin θ is negative in
[−π < θ < 0]. One obtains for ϑ ≤ θ0, i.e., sin θ ≈ θ that the
second term vanishes∣∣∣∣∣

∫
−θ0

0

∣∣∣∣∣ (< 1− δR−1) ∫ eRtθdθ <

[
1
Rt

eRtθ
]−θ0

0

=
1
Rt

(
e−Rtθ0 − 1

)
R→∞
−→ 0

and similarly for the third term. In summary for t > 0, and
writing z = E+ iε, explicitly defining the contour

C+ = lim
R→∞

(−R+ iδ,+R+ iδ)

one can express the result as

−i(2t) =
1

2π

∫
C+

e−izt

z
dz

Performing a similar analysis for C− and z = E− iδ the proof of
Eq. (1) is hence completed.

Taking the time derivative one formally gets the Fourier
relations between the unit- and the delta function, which under
appropriate circumstances represents distributions, working
on functions being properly bounded on respective complex
halfplanes.

δ (t) =
1

2π

∫
C

e−iztdz (2)

1 =
∫
+∞

∞

δ (t) eiztdt

FIGURE 2 | The left part of the figure shows an archetypical spectrum of an
operator, H, with the point spectrum σP (H) along the negative real axis,
denoted by “+,” and a simple continuous spectrum σAC (H) along the positive
real axis. For later use we have also indicated complex resonance eigenvalues
in the lower complex plane as they appear in realistic physical cases. To the
right we have inserted the spectrum of the corresponding Liouville equation
(see Obcemea and Brändas, 1983). Here all the bound states pile together at
the origin, while the associated resonances fall down on the negative
imaginary axis.

In Eq. (2) the contour C means C+ for t > 0 and C− for t < 0.
Replacing z→ (z −H) gives trivially the formal relations (3)
below, if H is a real constant. The question is what happens
when H becomes an operator with a spectral representation as
indicated in Figure 2 This begs a clarification, since so-called
complex resonance eigenvalues have been added to the spectral
classification (Balslev and Combes, 1971). This will be addressed
later, but first we will treat the case of a self-adjoint operator H
with a real spectrum.

From the simple cases discussed above, the extension to
represent operators and their associated Fourier relations follow
unambiguously. Consider first the retarded-advanced propagator
G±P (t) and its resolvent GR (z)

G±P (t) = ∓i2(±t)e−iHt
; GR (z) = (z −H)−1 (3)

where the operator H is a self-adjoint operator, for simplicity,
assuming a simple spectrum, σ, consisting of a point spectrum
σP(H) and an absolutely continuous part σAC (H) (see
Figure 2). In the following the operator will represent the
Hamiltonian describing a chemical system, such as an atom
or a molecule, including Coulomb interactions, the latter
without the complications such as the appearance of a singularly
continuous spectrum. It is mentioned here because the Coulomb
Hamiltonian satisfies the conditions of dilation analyticity
(Balslev and Combes, 1971, see also Simon, 1973), comprising
the various general situations encountered in quantum chemistry
and chemical physics. The rationale of this observation will be
clear further below.

With the operator H exhibiting the spectral expansion, for
an extension to the Liouville picture (see Obcemea and Brändas,
1983),

H =
∫

σ

Edµ(E)

with the spectral measure µ(E) simply defined from resolution of
the identity I, i.e.,

I =
∫

σ

dµ (ω) =
∑
σP

| ψk〉 〈ψk| +

∫
σAC

| ψ(ω)〉dω 〈ψ(ω)|
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in terms of the eigenvalues of the Hamiltonian, i.e., {ψk, ψ(ω)}

with 〈ψk| ψl〉 = δkl, 〈ψk| ψ(ω)〉 = 0, and 〈ψ(ω)| ψ(ω
′

) 〉 =
δ(ω− ω

′

) spanning the actual Hilbert space. The spectral
measure is here accompanied by a spectral function displaying
steps at the discrete points in σP (H) and exhibiting a locally
integrable function in the continuum, σAC (H).

Before navigating the complex plane, one needs to know what
happens at the boundary where the limits from each halfplane
meet. Introducing the explicit operator representations one gets

G±P (t) = ∓i2 (±t)
∫

σ

e−iωtdµ (ω) ; GR (z) =
∫

σ

dµ (ω)

z − ω
(4)

finding directly the transforms

G±P (t) =
1

2π

∫
C

GR (z)e−izt dz (5)

GR = (z)
∫
+∞

−∞

G±P (t) eiztdt;
{

t > 0⇐⇒ imz > 0
t < 0⇐⇒ imz < 0

Anticipating complex resonance eigenvalues (Balslev and
Combes, 1971, see Figure 2), one realizes that the spectral
contour must also be extended to the complex z-plane, while
observing that analyticity requirements of the Greens function,
GR (z), being regular in the upper complex half plane, sets up
mathematical requirements for analytic continuations into the
lower half plane and vice versa for the other half. We will return
to these conditions and its consequences below.

In order to turn the abstract operator representations above
into a more concrete functional relation we introduce a suitable
normalized reference function, ϕ, in the Hilbert space introduced
above, which might be represented as

ϕ = Iϕ =
∑

k

ckψk +

∫
σAC

c (ω) ψ (ω) dω (6)

ck = 〈ψk | ϕ〉 6= 0; c (ω) = 〈ψ(ω)| ϕ〉 6= 0

From 〈ϕ | ϕ〉 1 follows

1 =
∑

k

|ck|
2
+

∫
σAC

|c(ω)|2dω =

∫
σ

dρ(ω)

where we have introduced the Stieltjes integral via the spectral
function ρ with jumps |ck|

2at the points ωk of σP and represented
by the continuous function |c(ω)|2 at σ AC.

The operator relations above can now be represented as

g±(t) = 〈ϕ |G±P (t) | ϕ〉 = ∓i2 (±t)
∫
+∞

−∞

e−iωtdρ (ω)

f (z) = 〈ϕ |GR (z)| ϕ〉 =
∫
+∞

−∞

dρ (ω)

z − ω

In order to study the spectral function in more detail, we will
consider the integral below at a point E in σAC

f (E+ iε) =
∑

k

|ck|
2

E+ iε− Ek

+

∫
+∞

−∞

|c (ω)|2(E− ω)dω

(E− ω)2
+ ε2

− i
∫
+∞

−∞

|c (ω)|2εdω

(E− ω)2
+ ε2

(7)

Taking the limit ε→ 0+ 0 one obtains

lim
ε→0+0

∫
+∞

−∞

dρ (ω)

E+ iε− ω
= P

∫
+∞

−∞

|c (ω)|2dω

E− ω
− iπ|c (E)|2

(8)
where P denotes the Cauchy principal value of the integral, i.e.,
from the second and third terms of Eq. (7). The expression, Eq.
(8), signifies a so-called Kramers-Kronig relation employed to
relate the real and imaginary parts of a complex function, such
as a physical response function or an electric susceptibility, etc.
Note that the interesting information comes from the evaluation
of the function |c (ω)|2 as it is defined in σAC, while the jumps are
determined by |ck|

2 above.
A simple proof of the relation involving the imaginary part of

(8) follows from the simple fact that

ε

x2 + ε2
ε→+0
−→πδ(0)

which can be derived as follows. Consider a general function f (x),
which decays appropriately in the complex plane (see Figure 1),
and stays finite on the real axis. If C is a contour running from
−R to +R and closed in the upper half plane with an analogous
result obtained if the contour runs in the lower half plane,
one finds∫
+∞

−∞

εf (x)dx
x2 + ε2 = lim

R→

∫
C

εf (z)dz
(z + iε)(z − iε)

= πf (iε) ε→+0
−→ πf (0)

The result involves the following limiting procedure of the
integral over CR∫

εf (z)dz
z2 + ε2 =

{
z = Reiθ

dz = zdθ

}
=

∫ π

0

εf (Reiθ)dθ(
Reiθ + ε2

Reiθ

)−→R→∞0

The other limit ε→ 0− 0 follows, as said, trivially. Replacing
x→ (E− ω), Eq. (8) follows. Symbolically one can now write the
general operator equations

GR (E± i0) = P
∫

σ

dµ (ω) (E− ω)−1
∓ iπδµ(E)

or
GR (E± i0) = P (E−H)−1

∓ iπδ(E−H)

corresponding to the retarded-advanced propagator defined in
Eq. (5)

G±P (t) = ∓i2(±t)
∫

σ

dµ (ω)e−iωt

These operator representations are related through the Fourier
transforms Eq. (4). The step from functions to operators have
been reduced to a technicality in terms of an appropriately
defined spectral function. Since we have separated the retarded
and advanced parts one is able to transverse the complex plane
under straightforward assumptions of asymptotically decaying
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functions in the appropriate complex halfplanes. Finally we note
that the so-called causal Greens function can be written G =
+iG+P (t)− iG−P (t) = e−iHt . Summarizing we have derived the
following Fourier transforms between the propagator GP (t) and
the resolvent GR (z)

G±P (t) =
1

2π

∫
C

GR (z) e−iztdz (9)

GR (z) =
∫
+∞

−∞

G±P (t)eiztdt

where the retarded-advanced form of (9) guarantees that
the analyticity requirements, i.e., referring to the appropriate
complex halfplane matching the proper time direction. As we
will make use of the complex plane, with functional properties
relating to each halfplane separately, we will refer to the Fourier-
Laplace transform in what follows.

Let us summarize the formulas above and rewrite the
Schrödinger equation in a slightly more general form, i.e., first as
a time dependent equation, which in its retarded-advanced form
contains an inhomogeneous memory term ψ (0)(

i ∂
∂t −H

)
ψ± (t) = ±δ (t) ψ (0)

ψ± (t) = ±iG± (t) ψ (0)

and the time independent Fourier related equation

(z −H) ψ± (z) = ±iψ (0)

ψ± (z) = ±iG (z) ψ (0)

Note that in principle there could be different limits as ψ± (t)
t→ 0. A general operator form reads(

i
∂

∂t
−H

)
G± (t) = δ(t)

and

(z −H) G (z) = I

which for E ∈ σAC (H) becomes subjected to the principal
value form, Eq. (8).

In the past several efforts to extend quantum theory, i.e.,
the Schrödinger equation, to the non-self-adjoint case have
been made. A mathematically rigorous, and suitable extension
was given by the Balslev-Combes theorem for dilation analytic
operators (Balslev and Combes, 1971, see also Simon, 1973; Reed
and Simon (1978). The theory fortunately includes the long range
Coulomb potential of molecular physics and quantum chemistry.
Advanced applications and texts attest to this circumstance
(Nicolaides, 2010; Moiseyev, 2011).

In essence, for details see e.g., Reed and Simon (1978),
the generalization has its root in an extension of the unitary
scaling operator, U (η), to comprise complex dilation parameters
η = |η|eiθ, 0 ≤ θ < θ0 for some θ0, depending on the actual
potential. This operator brings about a rotation −2θ of the
real line corresponding to σAC (H), i.e., the positive real axis
in Figure 2. The result is depicted in Figure 3. Note that the

discontinuity in GR(z), as z crosses the positive real axis, from
above or below, as indicated by the continuous cut along the
positive real axis, has been transferred to a line rotated −2θ

around origo. The dots in the striped area represents complex
resonance eigenvalues of the complex scaled Hamiltonian
H (η) = U (η) HU (η)−1, displaying one uncovered resonance
indicated by the small circle. In this situation the transformed
spectral expansion is represented by the bound states, as before,
plus the sum of the exposed resonances states and finally the
contributions from the integration over the rotated cut. For
more details and numerical results, employing Weyl’s theory for
singular second-order differential equations, originally adapted
to quantum chemistry and reviewed by Hehenberger et al. (1974),
we refer to Engdahl et al. (1986; 1988). The new situation calls
for a reorganization of the integration contour displayed below
in Figures 4A,C to be altered as indicated in Figures 4B,D. Since
f (z) is assumed to decay as |z| → ∞, one can let the path γ

extend to infinity and cover the whole complex plane except
where the function exhibits singular behavior. The contour can
also approach the real line arbitrarily close without touching σ.
In Figure 4 one also observes that the paths joining the bound
state eigenvalues and the ones encircling the complex resonances
to and from the rotated cut will not contribute to the path integral
[we have briefly employed the path −γ to get the correct sign in
Eq. (10)]

f (z) = 〈ϕ |GR (z)| ϕ〉 =
∫

σ

dρ (ω)

z − ω

(10)
1

2πi

∮
−γ

f (z)dz =
∫

σ

dρ (ω)

Note that the resonance eigenvalue may be complex, i.e.,
zi = Ei − iεi with the physical interpretation of the imaginary
part εi = h̄/2τ usually being inversely related to the lifetime
τ of the state.

In order to establish the generalized picture anticipated
in Figures 2, 3, we return to the function f (z) defined and
represented in Eqs. (7, 8). Using Cauchy’s integral formula, with
γ defined in Figures 4A,B below, f (z) and its derivatives, can be
represented as, (with z inside γ)

f (z) =
1

2πi

∮
γ

f (ζ)
ζ− z

dζ; f n (z) =
n!

2πi

∮
γ

f (ζ)
(ζ− z)n+1 dζ

Using the residue theorem and the Cauchy principal value
formula for z approaching σAC, one obtains the contributions
to f (z) corresponding to the contours Figures 4C,D. Note that
Eq. (10) can easily by continued to the cases B) and D). It
is moreover interesting that the case D) displays additional
resonance eigenvalues “pulled from the continuum” with the
result that the generalized spectral density gets deflated at the
interval correspondingly below the resonances, while it becomes
that of a free particle asymptotically, for details including
the behavior of typical pole strings (see Engdahl et al., 1986,
1988). Another interesting feature is the appearance of multiple
eigenvalues (Natiello et al., 1987, see also Figure 2.11 in Brändas,
2012).
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FIGURE 3 | A portrayal of the simple case of the Hamiltonian, H, exhibiting
bound states, black dots on the negative real energy axis, with continuous
spectrum, σAC (H), rotated −2θ around the origin, displaying a sector,
indicated with stripes and arrows, where the resolvent GR(z), Eq. (4) has a
meromorphic continuation.

In fact the relations derived above adapt, as pointed out,
with minor changes to the situation where the contours C have
been adjusted accordingly (Brändas, 1997). However, as already
mentioned, there is the difficulty of multiple eigenvalues and their
block structure that applies to general non-normal operators,
i.e., those that do not commute with their own adjoints. This

seriously complicates the matrix problem, since it introduces
degeneracies associated with irreducible matrix blocks, which in
its classical canonical form is represented by the unit matrix
times the degenerate eigenvalue superimposed on n-dimensional
matrix blocks, J, with zeroes along the main diagonal and
with the super-diagonal composed of ones. As we will see
below, this appears to be a blessing in disguise, creating novel
possibilities to map complex enough systems in biology at far
from equilibrium situations.

In principle we have obtained a general Fourier-Laplace
relation between the propagator G±P (t) and the resolvent
GR (z) as given by Eq. (9). The degenerate situation is simply
incorporated in the standard self-adjoint picture, since the
degeneracy of an eigenvalue is trivially characterized by diagonal
operators, i.e., with the degenerate eigenvalue multiplied by the
unit operator I, represented as a unit matrix in the space spanned
by the degenerate eigenfunctions of H. Hence for H = EI one
obtains directly the formal relationship

1
2πi

∮
e−izt

zI −H
dz = Res (H) = e−iHt

= e−iEtI (11)

where we have, without restricting the problem, chosen the
contour of the line integral to be the unit circle in the complex
plane with the origin at E and running counter clockwise. Since
we are dealing with dilation analytic operators, E could here be
complex with a negative imaginary part.

FIGURE 4 | The contour γ defining the Cauchy representation of f(z) in the case (A) referring to the situation displayed in Eqs. (7, 8) and in the case (B) after analytic
continuation. The excluded regions, (C,D) are adapted after the spectral domains in each case.
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It is straightforward to translate the result to matrix algebra
and carry out the steps with results analogous to Eqs. (7–9).
Actually, the procedure can in principle be applied to H(η),
provided resonance poles, uncovered by complex scaling, are
simple poles. This begs the question what happens in the
general case, where multiple degeneracies appear in the resolvent
accompanied by irreducible Jordan blocks of corresponding
dimensions? It is customary to characterize the order of the
Jordan blocks of a particular degeneracy by its dimensions, i.e.,
their Segrè characteristics.

Consider the operator J, with its n-dimensional matrix
representation J, as defined above. As a result the corresponding
operator J is nilpotent, i.e.,

Jn−1
6= 0, Jn

= 0

with the order, n, yielding the Segrè characteristic associated with
J, or the corresponding matrix J. Adding a nilpotent part to H,
i.e.,

H(η) = EI + αJ

where α is a complex number given by the nature of the physical
problem, the aforementioned formal procedure Eq. (11) would,
after expansion of the exponential and the inverse around z = E
give

e−iH(η)t
=

1
2πi

∮
e−izt

zI −H(η)
dz = e−iEt(I − iαJt)

= e−iEte−iαJt (12)

where for simplicity we have taken the Segrè characteristic
to be n = 2. Note that one should have obtained the same
result by mnemonically determine the residue, Res(γ, H), by
formally inserting H(η) even if it is a non-normal operator
containing a nilpotent part J. This is clearly consistent with
the original definition and separate evaluation of the resolvent
and the propagator, which both trivially exhibits finite operator
expansions due to the nilpotent property of J.

It is interesting to construe Eq. (12) in more detail to
realize the consequences of the present operator formulation.
For instance introducing two orthonormal degenerate solutions
χ1, χ2, corresponding to the degenerate subspace related to the
eigenvalue E of H, one obtains (n = 2)

I = |χ1〉 〈χ1 | + |χ2〉 〈χ2 | ; J = | χ1〉 〈χ2 |

Returning to the meromorphic function f (z) defined in Eqs. (7,
9), where the resolvent has the degenerate structure indicated
above, one finds that

f (z) = 〈ϕ |GR (z)| ϕ〉 = (z − E)−1

+α 〈ϕ
∣∣χ1〉 (z − E)−2

〈χ2
∣∣ ϕ〉

exhibits a higher order pole. Employing again the Fourier-Laplace
transformation

g± (t) =
1

2π

∫
C±

f (z) e−iztdz

one obtains

g± (t) = ∓i2 (±t) e−iEt
{1− iαt 〈ϕ |χ1〉 〈χ2 | ϕ〉} , (14)

commensurate with Eq. (12).
One general way to identify hidden degeneracies would be to

employ the argument principle. In the case above one finds

1
2πi

∮
γ

f ′(z)
f (z)

dz = −2

a winding number of −2, matching the Segrè characteristic,
n = 2, of the degenerate eigenvalue E. Hence, one infers that
the inverse Fourier transform g(t) contains an extra term that
suggests a more fundamental origin, i.e., an operator contribution
from −iαJt in agreement with Eq. (12). Although a lot has been
achieved in terms of hyperfunctions and the field of algebraic
geometry since 1981, it is interesting to learn of the skepticism
offered by pioneers like Courant-Hilbert that in the realm of ideal
functions not all operations of classical calculus can be carried
out (Lützen, 1982). It is also quite thought-provoking to observe
that the present formulation displays a close connection between
the theory of distributions, according to Carleman (1944), and
generalized spectral theory (Balslev and Combes, 1971).

In what follows we will review some of the mathematical
problems that arise when formalized operator algebra is
detailed with a more rigorous mathematical grounding. The
aim, among other things, is to find a provisional license for
building consistent models, extending the formulation to include
biological systems and their Darwinian evolution. An interesting
analogy, which will not be detailed here, is the mapping of
Gödel’s celebrated link between model- and proof theory (Gödel,
1931), providing a logical table that translates a self-referential
proposition into a Jordan block of linear algebra (Brändas,
2015). The correspondence is carried further as it reverberates
with a simple operator algebra treatment, commensurate with
Einstein’s equivalence principle. This surprising correlation
reflects an intrinsic self-referential characteristic of a living
system authorizing degenerate maps, i.e., Jordan blocks of a
specific order, n, depending on time-temperature constraints, as
self-organizing units of life forms and evolving organisms and
their communication. This gives an alternative interpretation
of Gödel’s celebrated result that formal axiomatic systems are
inherently limited. Finally we will present some basic applications
that exhibits the relationship between general operator relations,
Eq. (9), formally interpreted as Fourier-Laplace duals, suggesting
isomorphic connections between material systems and their
abstract spatial and temporal evolutions.

LOCALIZATION OF COMPLEX
RESONANCES AND HIGHER ORDER
POLES

In the previous section, we have derived general operator
relations and their functional relations incorporating general
analytic structures, i.e., essentially of analytic functions in
the upper complex halfplane with a non-negative imaginary
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part to be meromorphically continued to the lower halfplane
(Nevanlinna, 1953). In this section we will demonstrate how to
localize and verify the associate pole strings and their properties.
We have already referred to Balslev-Combes’ theorem for dilation
analytic operators (Balslev and Combes, 1971; Reed and Simon,
1978), in order to obtain a rigorous extension of quantum
dynamics to incorporate a non-self-adjoint formulation, with
dilated operators, complex eigenvalues, and other consequences,
such as operator domains and ranges, dense and closed subsets,
dilated conjugate relations, etc. The need for these extensions
is quite obvious since otherwise there might appear some
unexpected results that may sound contradictive. One concerns
the Feshbach-Fano partitioning in scattering theory, second the
consequences of the domain restrictions of the scaling operator
and the contractive semigroup properties of the generator of
time evolution, and third the manifestation of Jordan blocks and
their significance.

The celebrated Feshbach-Fano technique to find scattering
solutions of the Schrödinger equation, albeit very powerful, is
not exact as to the localization of the actual position of the
resonance. Selecting a dilatation analytic Hamiltonian, H, a
reference function ϕ, not an eigenfunction, nor orthogonal to the
spectrum, of H, with the projection operators O = |ϕ〉 〈ϕ | , P =
I − O, and the reduced resolvent T (z) = P(z − PHP)−1P, a
straightforward operator algebra yields rigorous tools to unify the
treatment of both bound and quasi-bound states; for more details
see Micha and Brändas (1971). To elaborate on the reasoning we
rewrite the Schrödinger equation in the Löwdin wave-operator
formalism (Löwdin, 1968)

(z −H) 9 (z) = (z − h(z))ϕ

with the trial wave function 9 (z) = (I + T (z) H)ϕ and the
bracketing function given by h (z) = 〈ϕ |H +HT (z) H| ϕ〉,
noticing that an eigensolution to the differential equation for
z = Eb ∈ σP is obtained from

z = h (z) = Eb

9 (Eb) = (I + T (Eb) H)ϕ

H9 = Eb9

The name “bracketing function” refers to the bracketing property
of h(z), i.e., inserting an upper bound to Eb in the function
yields a lower bound and vice versa. Note that 9(z) is subject
to intermediate normalization and therefore not normalized,

〈9(z)| ϕ〉 = 1; 〈9(z)| 9(z)〉 = 1+ 〈T(z)Hϕ|T(z)H ϕ〉

It is interesting to document what happens when z→
E∈ σAC (H), celebrating the principal value relation discussed in
Eq. (8), applied to the reduced resolvent T(z)

lim
z→E+i0

P(z − PHP)−1P = P(E− PHP)−1P − iπδ(E− PHP)

yielding

h (E+ i0) =
〈
ϕ
∣∣ H +HP(E− PHP)−1PH

∣∣ ϕ
〉

−iπ 〈ϕ | Hδ(E− PHP)H | ϕ〉

demonstrating that h(E) is now a complex function with a
negative imaginary part.

Summarizing we have h+ (E) = E− iε = E− i0/2, where 0
is the (Fermi Golden Rule) level width reciprocally related to the
life time τ. To find a complex resonance eigenvalue, fulfilling
h (εs) = εs = Es − i0s/2 one needs to solve the equations
(Micha and Brändas, 1971)

Es = Re h+
(

Es −
i0s
2

)
0s = −2 Im h+

(
Es −

i0s
2

) (13)

by analytic continuation. It is straightforward to extend
partitioning technique to a reference space of arbitrary high
dimensions of square integrable basis functions. The Feshbach-
Fano method aims at solving the resonance problem by
defining the effective operator Heff = OHO+ OHT (z) HO,
where O projects onto a given set of square integrable functions.
Despite its main capabilities there are two major drawbacks
as regards the definition of complex resonances on the so-
called unphysical Riemann sheet of the complex energy plane.
They are (i) the resonance should be independent of the
choices of O and P, (ii) the real and the imaginary parts
must be continued analytically to satisfy Eq. (13). The Balslev-
Combes theorem guarantees a more general spectral classification
including the existence of resonances corresponding to the
analytic continuations, Eq. (13).

Next, we will focus on the actual operators, their domains and
ranges. Note that the scaling operation

U (θ) = eiAθ
;A = 1/2

N∑
k=1

[
−→p k
−→x k +

−→x k
−→p k]

where −→x k,
−→p k are the N coordinates and momenta of the

particles constituting the system, and A the generator of the
transformation, is unitary if θ is a real parameter. However,
for θ −→ iθ, i.e., producing a complex scaling, U (iθ) will be
unbounded. Hence its domain and range need to be carefully
defined to accommodate the kinetic and potential ingredients of
the Hamiltonian-Liouvillian. Restricting the Hilbert space to an
appropriate dense subset (Nelson, 1959), the operations can be
carried out for the whole (dilatation analytic) family of operators
essentially employed in quantum molecular chemistry, which
after extension to the whole Hilbert space yields a transformed
Schrödinger equation, displaying its characteristic rotational
properties (see Figure 3). For more details regarding its use in
quantum chemical applications (see Brändas, 1997, 2012).

One might enquire whether such complex resonance
eigenvalues and eigenvectors really exists and furthermore how
to ensure their location and representation. First it is possible
to formulate exact mathematical conditions that, via a simple
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projection operator approach, by encircling a specific area of the
complex energy plane by a nonintersecting connected test curve,
will guarantee spectral contributions of the operator, here the
rotated Hamiltonian (Engdahl and Brändas, 1988). Furthermore
higher order poles of the resolvent are intrinsically revealed by
the structural properties of the bracketing function h(z). For
instance if the resonance condition

z0 = h(z0)

is accompanied by the relation

1− h
′

(z0) = 0

where the residue of (z − h (z))−1 at z = z0 equals
〈9(z0)| 9(z0)〉 = 1− h′(z0), one finds that a higher order
pole of order n = 2 (or higher) exists leading to a linear term in t
of ψ(t) (Brändas, 1976). Additional conditions might be derived
to verify the order of the resonance eigenvalue. Since the complex
scaled Hamiltonian no longer commutes with its adjoint, i.e., is
non-normal, its time evolution under certain conditions might
be contractive, for details see Kumicak and Brändas (1993).

Considering finally the relationship between the Schrödinger
equation and the quantum-classical Liouville equation
(Prigogine, 1980, 1996), distinct representations in terms
of irreducible Jordan blocks emanate. Adapting dilatation
techniques to the quantum Liouville equation (Obcemea and
Brändas, 1983), one finds a qualitatively different pole behavior
(Figure 2). In particular one is able to identify steady state
boundary conditions for the generation of entropy production
and associated negentropic gain. The boundary condition at
dS = 0, where S is the entropy of the open system, provides the
transition density matrix, ρtr, presented in the introduction,
with its nilpotent character, dimension n, tuned to the actual
temperature and the associated time scales of the process
(Brändas, 2019, 2021). These types of constraints are often
engaged in a trade-off between entropy production and loss,
and explored as an informatic theoretic approach (Bernstein
and Levine, 1972). The concept of surprisal has recently
been developed and utilized in neuroscience (Friston, 2010;
Solms, 2018), see also additional comments and observations
(Brändas and Poznanski, 2020).

One of the most intricate consequences of the negentropic
entanglement is the transformation B that organizes the
thermally excited density matrix to its classical canonical form,
ω = eiπ/n,

B =
1
√

n


1 ω ω2

· ωn−1

1 ω3 ω6
· ω3(n−1)

· · · · ·

· · · · ·

1 ω2n−1 ω2(2n−1)
· ω(n−1)(2n−1)


Restated, it brings the density matrix, represented as a complex

symmetric matrix (Reid and Brändas, 1989), quantum-thermally
excited and constrained to the appropriate temperature with
the Segrè characteristic equal to n, to the nilpotent matrix J,
discussed in the introduction. This miracle depends on three
crucial observations: (1) the open system dynamics compels

a non-Hermitian extension (Balslev and Combes, 1971), (2)
quantum correlations and thermal fluctuations interfuse to create
a correlated dissipative structure with the capacity to self-
organize (Chatzidimitriou-Dreismann and Brändas, 1991), and
finally (3) the resulting complex symmetric form is brought
to canonical form by B, see the discussion in the previous
section (Reid and Brändas, 1989). The factoring properties of
the columns of B suggest a syntax, i.e., the thermo-qubit,
for communication between life forms, denoted Off-Diagonal
Long-Range Correlated Information, ODLCI in Poznanski
and Brändas (2020), as an extension of Yang’s Off-Diagonal
Long-Range Order ODLRO (Yang, 1962). The prime number
coding, reminding on Gödel numbering, represents a primary
thermo-qubit of fundamental physically objective interactions-
correlations, which, via entropy lowering, balancing entropy
production, extends to the genetic cellular machinery and, what
is more, to subjective semiotic communications with semantic
content, and ultimately to consciousness and human intelligence.

CONCLUSION

We have not mentioned Erwin Schrödinger’s early efforts in
1944, comparing life with its quantum molecular information
stored in an aperiodic crystal, see the Canto edition (Schrödinger,
1992). The historic development from Lamarck, via Darwin and
Schrödinger to Monod (1971), has recently been reviewed by
Maruani (2020, 2021), while attempting to find a biological
Lagrangian operator to define a suitable fitness functional
to reach a consistent evolution functional, performing
deconvolution using Fourier Transforms. Moving beyond
conventional quantum waves, the pitch waves built from low-
frequency quasi-musical waves, being transcriptions of nucleic
acid or protein patterns, are assigned a higher level informational
quality compared to the thermally related oscillations. The music
of the genes might perhaps in some way correlate with the
steady state negentropic coherence of the correlated dissipative
structures discussed above.

As pointed out, the derivation of these coherent structures
and their properties has not been at the center of attention here.
We refer to the personal reference list below for more details.
Instead our focus has been concentrated on the particularities
of the Fourier-Laplace transform. Notably, the transform relates
conjugate observables, such as energy-time, momentum-space,
phase and particle number, and temperature-entropy. The
adaptation to the underlying structure of linear algebra, in
concert with rigorous extensions to incorporate non-normal
operators and their generalized spectral properties, add structural
regularity and novel irreducible symmetries to the formulation.
The Fourier-Laplace resolvent-propagator relationship simplifies
to mnemotechnic algebraic reductions mirroring their conjoined
spectral representations commensurate with their original
conjugate connection as detailed earlier earlier in the section
“The Fourier-Laplace Transform.”

The presentation reveals a deeper protocol, viz. physical reality
and the role of the observer in axiomatic quantum theory. Löwdin
(1992, 1998) investigated the mathematical tools in natural
sciences particularly in connection with the properties of linear
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spaces. A key quantity is here the abstract metric of the linear
space and its binary product. For instance the brain’s capability
to isolate similarities and differences has been claimed to be
essentially equivalent to the brain performing a Gram-Schmidt
orthogonalization (Srivastava and Sampath, 2017). A general
quantum theoretical formulation must accordingly be built on a
solid axiomatic operator algebra in analogy with von Neumann’s
philosophy of dealing with an ensemble of physical systems. The
essay Löwdin (1992), dedicated to Sir Karl Popper on account
of his ninetieth birthday, concludes with an appraisal that the
whole of quantum chemistry might consistently be built from
four simple axioms subject to a positive definite binary product,
but with an intriguing twist. Even if physical interpretations
cannot have a direct physical reality belonging to a more or
less “contentless” mathematical structure, there is the Gödelian
branching point of abstract theories, the genetic dogma and the
riddle of life. Although not explicitly spelled out in the thesis,
the possibility of a non-positive definite scalar product and an
extension to include Einstein’s theory of relativity is ambient
and captivating.

An answer to unblock the confounding factors of the
mind’s digital fortress has been attempted in this contribution,
i.e., by incorporating the self-referential paradox through a
dilation analytic binary product in concert with the metric
properties maintained and preserved in the theory of special
and general relativity (Brändas, 2016). The inherent difficulty of
uncovering irreducible degeneracies, i.e., Jordan blocks, proves
to be a blessing in disguise affording higher order analytic
structures in the evolution of biological systems. The need for a
consistent evaluation of the conjugate operator representations
has been investigated and analyzed in some detail. It is quite
surprising to realize the consequences offered by the change
from a positive to a non-positive definite metric. Not only
becomes relativity, self-references and in general telicity, the

latter referring to processes owing their goal-directedness to the
influence of an evolved program (Mayr, 2004), conceivable, but
the formulation unfolds a syntax that organizes communication
simpliciter, i.e., communication restricted semiotically to exclude
semantics. The pragmatic use of semantic communication adds
model dependent axioms to the table in agreement with the
Gödelian bifurcation of any conceptual model. The description
entails an extension to open system dynamics providing a self-
referential amplification underpinning the signature of life as
well as the evolution of consciousness via long-range correlative
information, ODLCI. More recently this relation has been
presented as a mind-brain doctrine denoted Panexperiential
Materialism (Poznanski and Brändas, 2020).
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