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Future Therapeutic Strategies for
Freezing of Gait in Parkinson’s
Disease
Cathy K. Cui and Simon J. G. Lewis*

ForeFront Parkinson’s Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, The University
of Sydney, Camperdown, NSW, Australia

Freezing of gait (FOG) is a common and challenging clinical symptom in Parkinson’s
disease. In this review, we summarise the recent insights into freezing of gait and
highlight the strategies that should be considered to improve future treatment. There is
a need to develop individualised and on-demand therapies, through improved detection
and wearable technologies. Whilst there already exist a number of pharmacological (e.g.,
dopaminergic and beyond dopamine), non-pharmacological (physiotherapy and cueing,
cognitive training, and non-invasive brain stimulation) and surgical approaches to
freezing (i.e., dual-site deep brain stimulation, closed-loop programming), an integrated
collaborative approach to future research in this complex area will be necessary to
systematically investigate new therapeutic avenues. A review of the literature suggests
standardising how gait freezing is measured, enriching patient cohorts for preventative
studies, and harnessing the power of existing data, could help lead to more effective
treatments for freezing of gait and offer relief to many patients.

Keywords: gait disorders, dopamine agents, deep brain stimulation, non-invasive stimulation, physical therapy,
repurposing, problem solving, humans

INTRODUCTION

Freezing of gait (FOG) is a disabling symptom that affects more than half of all advanced
Parkinson’s disease (PD) patients (Giladi et al., 2001b; Forsaa et al., 2015; Zhang et al., 2021).
It profoundly reduces quality of life (Perez-Lloret et al., 2014; Walton et al., 2015b), leading
to falls (Okuma et al., 2018; Lieberman et al., 2019) and a loss of independence. Patients who
develop gait freezing fare poorly: falls related to gait freezing occur during walking, rather than
standing, resulting in more severe injuries and increased hospitalisation (Lieberman et al., 2019).
Gait freezing is also associated with a higher burden of non-motor symptoms (Choi et al., 2019)
and femoral neck osteoporosis (Choi et al., 2021), independent of disease duration and stage of
disease, which has implications for the broader treatment of such patients. Our understanding
about the pathophysiology underpinning FOG is improving to appreciate its episodic features,
heterogeneous phenotypes (Schaafsma et al., 2003) and the variety of modulators that can both
trigger and relieve attacks (Ehgoetz Martens et al., 2018b). However, the symptom remains a
treatment challenge. Whilst several established approaches, such as physiotherapy and optimising
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dopaminergic therapy, have long formed the cornerstones of
management, FOG appears more difficult to treat compared to
other Parkinsonian symptoms. Specific triggers of FOG differ
between individuals, and successful treatment is likely to require
the identification and targeting of these features at the level of
the individual. However, intervention studies tend not to stratify
participants by phenotype (Ehgoetz Martens et al., 2018b).
Even more foundational, the first hurdle in identifying better
treatments is of accurately and objectively measuring FOG itself.
This review will highlight where future strategies need to be
directed in our pursuit of more effective therapies (Figure 1).

PATHOPHYSIOLOGY OF GAIT FREEZING

Unfortunately, FOG has a complex pathophysiology that is
only somewhat understood. Critical anatomical areas involved
in locomotion are the pontomedullary reticular formation
(PMRF), mesencephalic locomotor region (MLR) including the
pedunculopontine nucleus (PPN), basal ganglia and frontal
cortical regions (Nutt et al., 2011). These supraspinal structures
act on central pattern generators in spinal segments, which are
involved in basic rhythmical stepping (Guertin, 2009). Transient
disruption of this locomotor circuitry is thought to be responsible
for FOG: Nieuwboer and Giladi (2013) have summarised four
current models in the literature seeking to explain its episodic
nature. Firstly, the “threshold” model suggests FOG manifests
when multiple motor gait abnormalities accumulate to a critical
threshold of instability, leading to gait breakdown (Plotnik et al.,
2005). Secondly, the “interference” model proposes FOG arises
from cross-talk between parallel cognitive and limbic circuits
passing through the basal ganglia inducing temporary inhibition
of the PPN (Lewis and Barker, 2009). The third “cognitive”

FIGURE 1 | Key steps toward developing effective therapies for freezing of
gait.

model is conceptualised as a conflict-resolution deficit, related to
executive dysfunction, where freezers are unable to compensate
in complex situations for deficits in automaticity by switching
to increased cognitive control, resulting in gait breakdown
(D’Ostilio and Garraux, 2012). Lastly, the “decoupling” model
refers to a discrepancy between perceived intention to move, and
failure of a pre-planned motor program that then propagates
motor arrest (Jacobs et al., 2009). Each model is likely to
contribute to FOG, with various degrees of interplay in an
individual patient, and resulting in its heterogeneity (Nieuwboer
and Giladi, 2013). Situational factors such as anxiety and dual-
tasking (Hackney and Earhart, 2010; Ehgoetz Martens et al.,
2018b) may trigger FOG through a combination of models. In
the background, the likelihood of a FOG episode occurring will
increase with progression of disease, as cognitive and motor
reserve is eroded and the response to levodopa becomes more
variable (Giladi et al., 2001b; Nonnekes et al., 2020). Despite
the complexity of these mechanisms, models such as these
provide a theoretical framework for current and future treatment
strategies such as reducing neural overload or improving motor
gait parameters.

HOW WOULD WE CONFIRM AN
EFFECTIVE TREATMENT?

One of the first considerations when thinking about the
development of an effective therapy for FOG, is just how to
go about measuring the symptom itself. The current consensus
statement defines FOG as the “brief, episodic absence or marked
reduction of forward progression of the feet despite the intention
to walk” (Nutt et al., 2011). This definition followed on from
an earlier proposal that FOG represents “an episodic inability
(lasting seconds) to generate effective stepping” (Giladi and
Nieuwboer, 2008). However, these definitions whilst helpful in
the clinic do not reflect the complexity of FOG (Nutt et al.,
2011) and do little to establish objective criteria that can be
generalised for objective trial work. For example, a variety of FOG
phenotypes (Schaafsma et al., 2003) have been described, along
with typical phenomena including start hesitation and target
freezing (Giladi et al., 1992). There are three phenotypes based
on leg movement: (i) shuffling with small steps, (ii) trembling in
place, and (iii) complete akinesia (Schaafsma et al., 2003), with
complete akinesia occurring much less frequently than the others
(Schaafsma et al., 2003). Whilst most FOG is “off” FOG, which is
relieved by dopaminergic medication, less common types include
“pseudo-on” FOG which is seen during a seemingly “on” state but
improves with additional dopamine, and true “on” FOG, which
appears induced by dopaminergic stimulation (Espay et al., 2012).
We would like to highlight that there is very little evidence to
explain the pathophysiology underpinning these sub-types and
we would like to avoid being too speculative. Thus, we have
focused on the pragmatic basis for treating the broader issue. It
is unclear as to whether these different manifestations of FOG
share the same underlying mechanisms (Ehgoetz Martens et al.,
2018b; Mancini et al., 2019), and therefore, it is difficult to know
if they are comparable for scoring purposes in an intervention
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study. Furthermore, most patients exhibit mixed patterns of FOG
(Giladi et al., 1992) and it is not clear if the most appropriate
measure would be to compare the impact of any novel treatment
on the total amount of time spent freezing or if each component
of FOG (e.g., periods of start hesitation, festination) should be
compared separately.

Confirming any effective treatment would also require an
accurate and objective measurement of FOG (Mancini et al.,
2019; Table 1). This is surprisingly difficult as FOG is most
commonly experienced unpredictably at home where gait is more
automatic or natural. In the clinic, gait becomes more goal
directed and it can become difficult to trigger episodes (Mancini
et al., 2019). Two questionnaires for the assessment of FOG
have previously been developed, namely the Freezing of Gait
Questionnaire (FOG-Q; Giladi et al., 2000) and the New Freezing
of Gait Questionnaire (NFOG-Q; Nieuwboer et al., 2009). Whilst
these were both validated in sizeable cohorts against subjective

carer and clinician ratings, there was no gold standard measure
or definition of FOG at the time the instruments were
constructed (Nieuwboer et al., 2009). Indeed, subsequent work
has demonstrated that self-perceived ratings of FOG severity
using the FOG-Q and NFOG-Q do not correlate well with
the actual number or duration of objective freezing episodes
when scored from video recordings of Timed Up and Go
(TUG) walking tasks (Shine et al., 2012). Furthermore, it is only
recently that the authors of the NFOG-Q examined its test-
retest reliability, as well as its ability to detect minimal change.
This work found that the NFOG-Q is not sufficiently reliable or
responsive to detect small effect sizes (Hulzinga et al., 2020).

In an effort to generate more objective measures, some
researchers have developed standardised FOG assessments, such
as the FOG Score (Ziegler et al., 2010), freezing indices based
on accelerometer data (Moore et al., 2008; Mancini et al., 2012),
and Stepping in Place on a pressure mat (Nantel et al., 2011).

TABLE 1 | Assessment methods in use for FOG measurement, and their advantages and disadvantages.

Assessment method Advantages Disadvantages

Self-reported FOG
FOG-Q (Giladi et al., 2000)
NFOG-Q (Nieuwboer et al., 2009)

� Records FOG over different environments
including at home

� Assesses impact on quality of life
� Ease and speed of administration

� Relying on patient or carer recognition of FOG,
though the NFOG-Q comes with
accompanying video demonstrating FOG,
making it easier to improve its recognition

� May not detect small effect sizes (Hulzinga et al.,
2020)

� Scores do not correlate with frequency or
duration of observed freezing (Shine et al.,
2012)

Gait parameters
Timed up and Go (Podsiadlo and
Richardson, 1991)
Walking biometrics (cadence, step
length, step variability)

� Measures functional mobility
� Simple to perform

� Not specific to FOG
� Step biometrics require specialised equipment

(gait pressure-mat)

FOG-provoking tasks
Stepping in place (Nantel et al., 2011)
Walking course (Ziegler et al., 2010)
Virtual reality walking course (Shine
et al., 2013a)

� Set walking course or task standardises FOG
triggers across subjects

� FOG provoking tasks (e.g., dual tasking, turning,
doorway walking, approaching target) can be
incorporated to more reliably elicit FOG in
laboratory settings

� Virtual reality walking allows manipulation of the
walking environment (e.g., increase threat and
anxiety) to assess their impacts on FOG (Ehgoetz
Martens et al., 2015)

� Could be less sensitive to FOG as gait becomes
more goal directed and less automatic

� Subjects requiring gait aids or those likely to fall
may not be safe to complete the tasks

Visual scoring of FOG
Video (Morris et al., 2012)
Live rater

� Facilitates quantification of FOG (e.g., FOG
duration, number of episodes, % time frozen)

� Video data is easily shared between multiple raters
� Ability to adjust play-back speed and replay video

to identify short FOG

� Less sensitive to FOG as gait becomes more
goal directed

� Time-intensive processing by human raters
� Variability between clinicians’ ratings across

centres, more so in the live setting
� Algorithms for automatic video processing not

yet at high accuracy

Instrument-based freezing indices
Accelerometer [Freezing Ratio (Mancini
et al., 2017)]
Pressure mat
Electromyography
Smart phone
Combination

� Allows for faster processing speed if using
automated algorithm

� Requires specialised and often bulky equipment,
again limiting assessment in the home

� Body-worn sensors may interfere with normal
gait

Home-based wearable devices � Captures more automatic gait in the everyday
environment

� Allows for long-term monitoring
� Could deliver a therapeutic intervention (e.g., cue)

� Artefact and interference
� Devices need to operate at a patient or carer

level of expertise, which may limit complex or
bulky set-ups
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The FOG score is a clinical rating tool that scores freezing
episodes as a subject completes four tasks aimed to elicit freezing
(gait initiation, turning clockwise, turning counter-clockwise,
and passing through a doorway), with and without two types
of dual task (Ziegler et al., 2010). This method can objectively
measure FOG severity, is sensitive to On and Off-medication
states, and correlates well with patient self-evaluation of FOG.
However, the duration of FOG episodes is not considered and the
FOG Score assumes that akinetic freezing is of greater severity
than the festination phenotype (Ziegler et al., 2010).

Instruments such as accelerometers (Moore et al., 2008;
Mancini et al., 2012, 2017), force plates under the feet
(Nantel et al., 2011), and lower limb surface electromyography
(Nieuwboer et al., 2004) have all been used in the gait laboratory
setting to quantify freezing along with a range of algorithms to
produce an automated FOG detection mechanism. Previously,
researchers have shown that body-worn inertial sensors can
record a Freezing Ratio during a 2-min turning in place protocol
that correlated well with clinical ratings of FOG (Mancini et al.,
2017). However, these instrumented algorithms have not been
widely validated for FOG assessment outside of their specific
research purpose.

Visually scoring FOG from video by independent raters is
still currently recognised as the gold-standard for assessing FOG
severity in PD (Morris et al., 2012; Shine et al., 2012; Walton
et al., 2018). This approach can be used to calculate the percentage
of time spent frozen during a TUG task and has demonstrated
excellent inter-rater correlations (Morris et al., 2012; Walton
et al., 2018). However, this approach is time consuming to score
and does not reflect what might be occurring outside of the
clinic. In future, automated video scoring (Hu et al., 2020) could
make this approach more viable at scale for comparing between
assessment centres in the setting of a clinical trial. Obviously,
there is a need for reliable, portable home based sensors or
wearable technologies (Silva de Lima et al., 2017) that could
identify even brief episodes of FOG during everyday activities and
this is becoming a more focused area of FOG research (Marcante
et al., 2020; Mancini et al., 2021).

WHAT SHOULD WE FOCUS ON
TREATING?

Not surprisingly, most current research trials are focused on
symptomatic therapies for patients with established FOG (see
below), rather than exploring approaches to delay or prevent
the onset of freezing. However, some data does exist about these
“at risk” groups (Gao et al., 2020) and identifying those patients
who will go on to develop FOG is of great interest given that
they may benefit from specific intervention approaches, such as
physiotherapy (Cosentino et al., 2020) or cognitive behavioural
therapy (Moonen et al., 2021).

There are only a limited number of longitudinal studies
that have followed patients without freezing to explore those
characteristics that are associated with the future emergence of
FOG, and whilst highlighting some of the potential risk factors
for developing FOG, more integrated studies looking across

further potential variables are probably required to understand
the pathophysiological mechanisms by which they might be
operating (Giladi et al., 2001a; Forsaa et al., 2015; Zhang et al.,
2016; Ehgoetz Martens et al., 2018a; Kim et al., 2018; Kim R.
et al., 2019; Gallea et al., 2021). These studies have identified that
whilst patients with FOG have higher depression scores earlier
in their disease course (Giladi et al., 2001a), the presence of
anxiety may be more predictive of FOG onset within the next
12 months (Ehgoetz Martens et al., 2018a). More generally, a
higher burden of neuropsychiatric symptoms predicted earlier
onset of freezing of gait in a 2-year prospective study of 329
drug-naïve patients with PD, after adjusting for age of onset,
disease duration, Unified PD Rating Scale (UPDRS) motor score,
and dopamine transporter (DAT) activity (Jeong et al., 2021).
Other clinical factors such as non-tremor predominance, early
gait disturbance, cognitive impairment, left-sided disease onset
and higher daily levodopa have also been associated with the
development of FOG (Giladi et al., 2001a; Forsaa et al., 2015;
Zhang et al., 2016; Kim et al., 2018; Lichter et al., 2021).

Other novel approaches for identifying those patients
at risk of developing FOG are also being described. One
recent study found that compared to a non-freezer group,
patients who developed freezing within 5 years demonstrated
increased baseline anti-saccade latencies (>300 ms), whilst
having equivalent motor and cognitive deficits (Gallea et al.,
2021). Indeed, this parameter alone was also strongly predictive
for the presence of FOG and correctly classified 88% of non-
freezers and 76% of eventual freezers (Gallea et al., 2021),
which is broadly consistent with earlier work showing anti-
saccade errors in PD patients with FOG (Walton et al.,
2015a). Increased anti-saccade latencies were also correlated
with decreased connectivity in the mesencephalic locomotor
region-supplementary motor area (MRL-SMA) network, one
of the networks involved in gait control, and a compensatory
increase in other networks years before onset of freezing, which
might provide a potential neurobiological explanation for these
associations (Walton et al., 2015a).

It is also possible that biomarkers might prove useful in
identifying those non-freezers at greatest risk of transitioning
to FOG. Severe reduction in DAT activity in the caudate and
putamen is associated with significantly higher incidence of
FOG (Kim et al., 2018). Previous neuroimaging studies have
identified the potential contribution of cholinergic deficits to
FOG (Mancini et al., 2019), and amongst CSF biomarkers, low
β-amyloid 1–42 has been associated with the future development
of FOG in early stage PD patients (Kim R. et al., 2019). Obviously,
it is not known whether this finding represents the role of
concomitant Alzheimer-type pathology and it is well known
that FOG is associated with cognitive decline (Irwin et al.,
2012). Furthermore, combining β-amyloid 1–42 levels in a model
integrating caudate DaTscan uptake and the postural instability
gait difficulty (PIGD) motor phenotype score performed even
better in identifying future freezers (Kim R. et al., 2019).

Thus, mechanisms already exist for enriching patients at
risk of developing FOG who might be suitable for intervention
studies. Such enriched cohorts would not only be a target group
for early treatments, but may also reduce costs of recruitment
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and follow-up if accelerated FOG development is accounted for
in a trial design.

PHARMACOLOGICAL APPROACHES

It is well known that FOG occurs more frequently in the Off-
state (Schaafsma et al., 2003) and thus, the first line treatment
for Off-freezing is manipulating dopaminergic therapies to
reduce Off time (Fietzek et al., 2013; Nonnekes et al., 2015).
Studies evaluating that adjunct use of the monoamine oxidase B
(MAO-B) inhibitors selegiline (Iijima et al., 2017) and rasagiline
(Rascol et al., 2005; Cibulcik et al., 2016; Rahimi et al., 2016)
have reported reductions in FOG, presumably through this
mechanism. There is no available data yet to confirm whether
the newest agent in this class, namely safinamide, may also be
helpful in this regard. Freezing of gait was not an endpoint in
the major randomised controlled trial of safinamide for wearing
Off symptoms (Borgohain et al., 2014), but interestingly FOG-Q
scores did not improve in a smaller recent uncontrolled study of
50 patients (Garcia et al., 2021).

The phenomenon of On-freezing is less common and much
more difficult to manage as its relationship to dopamine levels
is not fully understood (Espay et al., 2012; Cossu et al.,
2015; Morales-Briceno et al., 2020). A recent proposal has
suggested that levodopa may trigger FOG, hypothesising that
maladaptive plasticity might in fact be induced by levodopa,
which disproportionally increases the mismatch between motor
and non-motor (cognitive and limbic) loops (Nonnekes et al.,
2020). Obviously, the need by most patients for levodopa may
limit meaningful investigation of this phenomenon but one
approach might be through a large prospective delayed start
design to see whether the earlier use of levodopa may drive the
development of FOG. However, it should be highlighted that
maladaptive plasticity may only occur with severe levels of striatal
dopamine depletion and much of the literature supporting the
paradox was recorded in the pre-levodopa era. Interestingly, a
recent case series of five PD patients treated with 24-h levodopa
carbidopa intestinal gel (LCIG) infusion, has reported a reduction
in levodopa-unresponsive freezing and falls, when compared to
conventional 16-h LCIG (Chang et al., 2015). The mechanisms
underpinning such a finding are unclear, although improvements
in sleep were proposed by the authors.

Though degeneration of dopaminergic neurons is the
pathological hallmark of PD, non-dopaminergic neurons are also
lost in the disease (Kalia et al., 2013). Cholinergic deficits related
to cholinergic neuronal loss in the pedunculopontine nucleus
(PPN) and nucleus basalis of Meynert (Karachi et al., 2010;
Yarnall et al., 2011) have been reported as contributing to gait
(Rochester et al., 2012) and attentional disturbance (Bohnen
et al., 2006). Furthermore, antimuscarinic use has been found
to be more frequent in the FOG group compared to non-
FOG, in a cross-sectional study of 672 PD patients (Perez-Lloret
et al., 2014). More recently, a phase 2 placebo-controlled trial
of 130 PD patients found that the acetylcholinesterase inhibitor
rivastigmine, improved step time variability, falls per month, gait
speed whilst dual-tasking and freezing during the last month of

a 32-week trial (Henderson et al., 2016). However, FOG was not
a primary endpoint of this trial and a larger phase 3 trial aiming
to recruit 600 patients is currently underway (ClinicalTrials.gov,
2021a).

Drugs that enhance noradrenergic transmission have also
been investigated for FOG, given its possible association with
noradrenergic neuron loss in the locus coeruleus (Rommelfanger
and Weinshenker, 2007; Ono et al., 2016). However, current
trials have been disappointing including two small, randomised
studies of Atomoxetine, a selective noradrenaline reuptake
inhibitor, which failed to improve dopamine-resistant FOG
(Jankovic, 2009; Revuelta et al., 2015). Limited open-label
data for droxidopa (L-threo-3,4-dihydroxyphenylserine),
a noradrenaline precursor licensed for use for orthostatic
hypotension, has suggested that it may be useful in combination
with entacapone for treating dopamine-resistant FOG (Fukada
et al., 2013). However, it is difficult to know how much of this
response related specifically to stimulation of the noradrenergic
pathways. Similarly, methylphenidate is a drug that increases
both synaptic noradrenaline, as well as dopamine levels. Previous
trials of methylphenidate have reported mixed results where
FOG-Q scores were improved in patients with advanced
disease who had undergone STN-DBS (Devos et al., 2007;
Moreau et al., 2012), but no improvements were observed in
patients with moderate gait impairment without DBS (Espay
et al., 2011). These differences could in part reflect differential
pathologies in heterogeneous patient groups or selective
medication effects. Future studies assessing noradrenergic
stimulation could be complimented by specific imaging
techniques that could relate any changes in neurotransmitter
signal to clinical efficacy or lack thereof, such as 11C-MeNER
PET, a highly selective noradrenaline transporter radioligand,
and/or neuromelanin imaging, to assess the integrity of the locus
coeruleus (Sommerauer et al., 2018).

Drugs already established in improving anxiety and
depression (Takahashi et al., 2019) may also have beneficial
effects on FOG. Both selective serotonin reuptake inhibitor
(SSRI) and serotonin noradrenaline reuptake inhibitor (SNRI)
treatment improved the FOG-Q after 10 weeks in a small group
of Japanese PD patients with depression (Takahashi et al., 2019).
Short-term administration of paroxetine (an SSRI) interestingly
improved baseline walking speed in a small group of PD patients
who were not premorbidly depressed, but did not augment the
motor response to levodopa (Chung et al., 2005). Whilst anxiety
and depression have been associated with FOG, it is not clear
whether any symptomatic benefits of these agents may extend
beyond their effects on mood. Similarly, cannabidiol (CBD) is
also known to modulate brain areas involved with mood (Fusar-
Poli et al., 2010; de Faria et al., 2020) and some work has reported
reduced falls, pain, depression, and tremor in PD (Balash et al.,
2017). The endocannabinoid system is linked to motor control
and dopaminergic signalling, with the highest densities of
cannabinoid type 1 (CB1) receptors located in the globus pallidus
and substantia nigra (Babayeva et al., 2016). A double-blind
phase II randomised controlled trial is ongoing to assess the
efficacy of cannabidiol (CBD) on motor symptoms (UPDRS part
III score) in 75 PD patients (ClinicalTrials.gov, 2021b). Whether
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these novel non-dopaminergic targets will benefit FOG will
need further study.

SURGICAL APPROACHES

Deep brain stimulation (DBS) provides access to deep brain
structures and the ability to directly modulate networks
implicated in the pathogenesis of FOG (Fasano et al., 2012).
Conventional bilateral DBS of the subthalamic nucleus (STN-
DBS) is generally considered to reduce Off-state FOG (Fasano
et al., 2012; Vercruysse et al., 2014; Schlenstedt et al., 2017;
Barbe et al., 2020) in addition to its robust effects on other
motor symptoms (Fasano et al., 2012). STN-DBS appears to be
effective for at least 3–5 years post implantation (Schlenstedt
et al., 2017), but after this time it has been recognised that
there is often worsening of gait and balance (Moro et al., 2010;
Schlenstedt et al., 2017). A small proportion of patients who
typically have longer disease duration (Barbe et al., 2020), less
pre-operative dopamine responsiveness (Schlenstedt et al., 2017)
and greater putamen grey matter atrophy (Karachi et al., 2019)
have also been identified as experiencing increased FOG and
falls shortly after STN-DBS and careful pre-operative screening
is recommended (Karachi et al., 2019). Lowering the STN-
DBS frequency to 60–80 Hz from the more conventional
>100 Hz has been another approach that has been pursued
with mixed success (Moreau et al., 2008). Meta-analysis data
suggests low frequency stimulation induces greater reduction in
observed FOG and FOG-Q scores compared to high frequency
stimulation (Su et al., 2018), possibly relating to differential
effects of stimulation frequency on pathological alpha and beta-
band oscillations (Blumenfeld et al., 2015). These benefits are,
however, commonly lost over a few weeks (Ricchi et al., 2012;
Zibetti et al., 2016). Gait improvements with low frequency
STN-DBS stimulation may also come at the cost of reduced
tremor control in the off-medication state (Phibbs et al.,
2014; Conway et al., 2021) though arguably this limitation is
less of a concern in most patients who will continue to be
titrated on levodopa.

Alternative stimulation strategies targeting non-STN
structures, such as the pedunculopontine (PPN) area
(Thevathasan et al., 2011) and the substantia nigra pars
reticulata (SNr; Weiss et al., 2013) have also been investigated
as potentially offering benefits to specifically improve FOG.
The PPN is thought to play an important role in automatic
gait through the release of pre-prepared movement (Garcia-Rill
et al., 2019), whilst the SNr influences the PPN through efferent
monosynaptic GABAergic transmission (Nandi et al., 2008).
Typically, stimulation of the SNr has been interleaved with
STN-DBS and studies with relatively small patient numbers have
reported some alleviation of resistant gait impairment in PD
(Weiss et al., 2013; Valldeoriola et al., 2019; Golfre Andreasi et al.,
2020). Exactly where and how to best stimulate the PPN remains
unclear with meta-analyses (Golestanirad et al., 2016; Wang
et al., 2017; Yu et al., 2020) and collaborative efforts between
expert centres revealing significant heterogeneity in the studies
conducted to date (Hamani et al., 2016; Garcia-Rill et al., 2019).

It is well recognised that the traditional “open loop” DBS
approach for PD requires external input to adjust stimulation
parameters with the stimulation being delivered continuously
without regard for fluctuating clinical or electrophysiological
states. In contrast, “closed loop” DBS is now being explored
with bidirectional devices that can both sense neural signals and
deliver stimulation in response to specific electrophysiological
changes, thus acting in real time. Such neural signals include
prolonged beta (13–30 Hz) bursts (Anidi et al., 2018), and
low beta (15–21 Hz) and theta (5–8 Hz) band oscillations
(Chen et al., 2019) in the STN associated with FOG episodes,
which have now been shown to attenuate with stimulation,
strengthening their place as biomarkers for gait freezing. Recent
work utilising this technological advance has shown that this
approach may be feasible, demonstrating that in a single patient,
closed-loop bilateral STN-DBS responding to STN beta band
power was superior to conventional open-loop DBS in reducing
the percentage of time spent freezing during a Stepping in
Place task (Petrucci et al., 2020). Furthermore, work using a
validated Virtual Reality gait paradigm in patients during STN-
DBS lead implantation has identified an increase in pathological
beta and theta rhythms just prior to freezing episodes that
could provide a specific trigger signal for adjusting closed-
loop systems on demand (Georgiades et al., 2019). Closed-
loop work incorporating PPN-DBS have also begun but appear
more problematic. One recent study implanted five medication-
refractory FOG PD patients with two closed-loop PPN leads in
addition to bilateral globus pallidus interna (GPi) leads (Molina
et al., 2021). However, due to surgical complications, two of
these patients needed explantation of the leads. Results from
the remaining subjects were heterogeneous and may have been
impacted by GPi co-stimulation.

These findings suggest that whilst DBS for FOG does offer
potential, more studies with homogenous patient populations
undergoing standardised procedures and assessments will be
required to progress the field. In addition, it is likely that
patients will need close monitoring over extended periods of
careful treatment titration to optimise their clinical benefits
(Bronte-Stewart et al., 2020).

NON-PHARMACOLOGICAL
APPROACHES

Physical Rehabilitation
Whilst a number of guidelines for physiotherapy in PD exist
(e.g., Keus et al., 2014), there is little specific guidance for
addressing FOG. Physical rehabilitation is acknowledged to be
crucial (Cosentino et al., 2020) and there are a number of
approaches that have been applied to FOG in the research setting.
These include action observation training (Pelosin et al., 2010,
2018; Agosta et al., 2017; Mezzarobba et al., 2020), treadmill
training (Hong and Earhart, 2008; Frazzitta et al., 2009; Lo et al.,
2010; Barbe et al., 2013; Picelli et al., 2016; Baizabal-Carvallo et al.,
2020; Bekkers et al., 2020; Seuthe et al., 2020), aquatic obstacle
training (Zhu et al., 2018), curved walking training (Cheng et al.,
2017), supervised slackline training (Santos et al., 2017), as well as
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home based exercises (Canning et al., 2015). In contrast, general
exercises and standard physiotherapy do not seem to be effective
for the treatment of FOG (Miller et al., 2020). Behavioural
strategies, such as cueing (Nieuwboer et al., 2007; Fietzek et al.,
2014; Ginis et al., 2018), have also been extensively applied, as
have dual-task situations (Geroin et al., 2018), which are designed
to increase the complexity and recognise the association of FOG
and selective cognitive deficits in attention (Naismith et al., 2010).
Various types of cues (auditory, visual, somatosensory) and
delivery systems (e.g., self-cueing, augmented reality) have been
shown to positively modulate FOG (Fischer et al., 2018; Braunlich
et al., 2019; Chang et al., 2019), though again the optimal way
to target FOG is yet to be determined (Nieuwboer et al., 2007;
Donovan et al., 2011; Spaulding et al., 2013; Young et al., 2016;
Fischer et al., 2018; Braunlich et al., 2019; Chang et al., 2019).
One meta-analysis comparing auditory to visual cues found that
auditory cues appeared more effective, improving speed-related
gait parameters in PD patients such as cadence and velocity as
well as increasing step length whilst visual cues only improved
step length (Spaulding et al., 2013). Auditory cues appear to
make use of almost instantaneous motor entrainment to an
external beat, activating the frontoparietal control and motor-
cerebellar networks to bypass internal rhythm deficits of the basal
ganglia (Braunlich et al., 2019). Somatosensory stimulation has
historically been limited by the sophistication of the delivery
technology, however, smaller wearable vibrotactile devices are
emerging with early positive benefits on FOG (Tan et al., 2021),
though their effects require validation. Long-term effects and the
out-of-laboratory benefits of cueing training are to be confirmed
(Chang et al., 2019). Methods to reduce cue habituation,
including on-demand cueing, require further development before
they can be deployed routinely (Ginis et al., 2018).

A recent meta-analysis of 19 studies involving 913 patients
showed that interventions tended to have similar duration of each
session (45–60 min) and number of sessions per week. Prolonged
home based interventions (median 4 months) showed more
promise of efficacy, whilst in terms of intervention categories,
action observation and treadmill training had the most significant
effect sizes (Cosentino et al., 2020). Common to these studies is
the difficulty of creating a suitable control condition given the
issues in blinding or finding a matched activity (e.g., cueing).
In addition, only a limited number of studies have sought to
correlate improvements in intervention with neurobiological
changes through approaches such as fMRI (Silva-Batista et al.,
2020). This can provide useful insights, such as a recent
study that found increased activation in the mesencephalic
locomotor region (MLR) post training in the intervention group
of individual strength training with instability, but not in the
control group of traditional strength training alone (Silva-Batista
et al., 2020). The authors of this study also reported that these
changes in MLR activation correlated with improvements in the
NFOG-Q. It is likely that high-complexity exercises involving a
combination of visual, cognitive, balance, and strength training
have greater potential to modulate the network underlying FOG
(Cosentino et al., 2020). Further larger trials investigating the
long-term effects of therapy, the differences between On and Off-
state training, and the comparison of multiple active intervention

arms are desperately needed. Given that group training achieves
similar positive effects to individual training (Pelosin et al., 2018),
it is possible that such approaches could allow such programs to
be delivered at scale.

Neuropsychiatric Approaches
Cognitive and affective deficits certainly modulate FOG
(Heremans et al., 2013; Shine et al., 2013c,d; Ehgoetz Martens
et al., 2014; Walton et al., 2014; Muralidharan et al., 2016; Witt
et al., 2019) and it should be appreciated that approaches like
cognitive training, cognitive behavioural therapy and meditation
all have the potential to improve FOG and a wider range of
symptoms with no risk of harm. A small number of studies
have been completed in this space and offer insights into future
approaches. One recent randomised double-blinded study of 38
PD patients with FOG evaluated cognitive training specifically
targeting those neuropsychological processes most strongly
associated with the symptom, including inhibitory control,
attentional set-shifting, working memory, processing speed
and visuospatial skills (Walton et al., 2018). This intervention
was provided over 12 weeks and resulted in a statistically
significant reduction in actual FOG severity in patients during
their On-state (Walton et al., 2018). A smaller randomised
cross-over trial of 15 patients comparing cognitive training,
cognitive behavioural therapy (CBT) and proprioceptive training
replicated the positive effect of cognitive training on observed
FOG severity but not NFOG-Q scores (Chow et al., 2021). Of
interest, the anxiety-targeting CBT intervention exacerbated
FOG whilst showing a trend toward improving the Parkinson
Anxiety Scale (PAS; Chow et al., 2021). Proprioception training
appeared to have the greatest effect, though it should be noted
that the effects of each intervention were lost at 2 weeks after the
4-week training program (Chow et al., 2021).

Less standardised interventions are yet to be investigated
for FOG. However, it has been reported that meditation may
protect against grey matter atrophy (Last et al., 2017) and
is already well accepted by PD patients with high perceived
efficacy for alleviating affective and motor symptoms (Fitzpatrick
et al., 2010; Donley et al., 2019). Though there are no trials
examining the impact of mindfulness meditation on FOG, it
does improve attention (Malinowski et al., 2017) and emotional
regulation (Tang et al., 2015), which have both been recognised
as important modulators of freezing. A recent randomised
controlled trial in 138 PD patients found a yoga-mindfulness
program significantly improved anxiety and depression scores
over a stretching and resistance training control, in addition to
their Unified Parkinson’s Disease Rating Scale Part III (motor)
score (Kwok et al., 2019). A smaller study of just 30 PD patients
participating in a yoga-meditation intervention experienced
marked improvements in their FOG-Q, whereas a control group
of no intervention did not change their freezing scores (Van
Puymbroeck et al., 2018). It is unclear if these benefits were
related to the meditation or physical rehabilitation component of
the intervention (Van Puymbroeck et al., 2018).

Larger trials specifically investigating neuropsychiatric
intervention strategies for FOG are now needed. These studies
could potentially target both those with established FOG and an
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enriched population of at-risk patients. These studies will need
to have much larger numbers than those already conducted,
which will probably necessitate coordinated international
multi-centre approaches where cross-over designs with multiple
active arms may be the most efficient method to compare
different techniques. These would ideally be conducted in
combination with standardised objective measures of FOG
and mechanisms for interpreting neurobiological changes such
as functional neuroimaging [e.g., MRI (Silva-Batista et al.,
2020)] or neurophysiological [e.g., EEG (Malinowski et al.,
2017)] parameters.

Non-invasive Brain Stimulation
Methods to modulate neuronal activity non-invasively also
represent an attractive approach to access the distributed
cortical and subcortical areas involved in FOG. Repetitive
transcranial magnetic stimulation (rTMS), transcranial direct
current stimulation (tDCS) and more recently, non-invasive
vagal nerve stimulation (nVNS), have all been explored as
potential options.

Non-invasive brain stimulation is thought to improve motor
symptoms of PD by inducing focal release of endogenous striatal
dopamine following stimulation of the ipsilateral cortex (Strafella
et al., 2001, 2003), as well as increasing cortical excitability of
motor and cognitive cortical areas involved in the upstream
regulation of gait. Though there have been several sham-
controlled studies investigating rTMS and tDCS for FOG (El-
Tamawy et al., 2013; Lee et al., 2014; Valentino et al., 2014; Kim
et al., 2015; Chang et al., 2017; Dagan et al., 2017; Lu et al., 2018;
Ma et al., 2019; Mi et al., 2019), the optimal target, stimulation
intensity and duration of treatment are yet to be confirmed. To
illustrate the heterogeneity of the literature, though the majority
of rTMS studies used high-frequency stimulation (≥10 Hz),
the number of pulses and sessions varied significantly (450–
3,000 pulses, delivered over 1–24 sessions) as well as treatment
duration (3 days to 3 months) (Kim Y.W. et al., 2019; Xie
et al., 2020). Indeed, two separate meta-analyses examining the
benefits of prefrontal or primary motor cortical (M1) rTMS
on FOG arrived at conflicting conclusions, though both noted
heterogeneity amongst the included trials that may have masked
a more positive outcome (Kim Y.W. et al., 2019; Xie et al.,
2020). However, these studies do add to our understanding of
brain networks involved in freezing. One resting-state functional
MRI study with 10 sessions of rTMS delivered over an alternate
target, the supplementary motor area (SMA), reported significant
improvements in clinical freezing on the FOG-Q, as well as
normalising functional connectivity patterns associated with
FOG (Mi et al., 2020). Stimulation of a key cortical modulator
confers effects on remote subcortical regions and demonstrates
the related neural network with FOG (Mi et al., 2020). Previously,
the SMA had not been thought to have a modulatory role on
FOG based on single-session stimulation studies (Lee et al.,
2014; Lu et al., 2018), suggesting that repeated sessions may be
necessary to amplify the benefits of this type of intervention.
Stimulation effects on FOG are likely transient rather than long-
term, with a subgroup meta-analysis (Xie et al., 2020) of four
rTMS studies with follow-up at ≥4 weeks (El-Tamawy et al., 2013;

Ma et al., 2019; Mi et al., 2019, 2020) showing no significant
difference in outcome by this time point. The effects of non-
invasive stimulation may also be additive, as there appears to
be a potential beneficial effect from multi-target compared to
single target stimulation (Chang et al., 2017; Dagan et al., 2018;
Manor et al., 2021). For example, simultaneous tDCS to the M1
and the left dorsolateral prefrontal cortex (DLPFC) improved
freezing parameters immediately after the combined session, but
not following primary motor cortex stimulation alone (Dagan
et al., 2018). There is no additional benefit of simultaneous rTMS
and rDCS stimulation compared to rTMS alone (Chang et al.,
2017). Limitations of non-invasive stimulation are largely related
to the need to remain within certain energy and pulse settings
for safety, which reduces its access to deeper brain structures,
but also contraindicates its use in PD patients with concomitant
DBS (Magsood et al., 2020). However, taken altogether, these
findings give cause for cautious excitement regarding the ability
to modulate pathophysiological networks in FOG as techniques
are further refined.

Vagus nerve stimulation (VNS) is an approved treatment for
refractory epilepsy and depression that is also being investigated
as a novel treatment for FOG in PD, especially following the
availability of non-invasive transcutaneous stimulators (nVNS)
(Farrand et al., 2017; Morris et al., 2019). It has been suggested
that VNS may indirectly activate noradrenergic projections from
the locus coeruleus, a region implicated in the pathogenesis of
FOG, as well as exerting anti-inflammatory properties that may
be important in halting disease progression. Recently, the first
randomised, double-blind trial to investigate nVNS administered
stimulation to the cervical vagus for 12 min each for 4 weeks in 33
PD patients with FOG (Mondal et al., 2021). The authors reported
positive effects on gait velocity and step length, as well as reduced
duration of freezing episodes in the laboratory gait assessment
circuit, though interestingly patients’ perception of their FOG-
related disability (FOG-Q score) did not improve (Mondal et al.,
2021). Excitingly there was a significant reduction in biomarkers
of inflammation [TNF-α, reduced-glutathione, and brain-derived
neurotrophic factor (BDNF)] which may have implications for
future disease modification trials.

Spinal cord stimulation (SCS) for FOG is also under
investigation targeting spinal afferents to modulate cortical motor
circuits (Reis Menezes et al., 2020). Despite several publications
arising over the past decade using percutaneously inserted
epidural spinal stimulators (Thevathasan et al., 2010; Agari
and Date, 2012; Pinto de Souza et al., 2017; de Lima-Pardini
et al., 2018; Fonoff et al., 2019; Hubsch et al., 2019), this
approach has yet to find its place in routine clinical practice.
This may relate to difficulty delivering long pulse width and
high-frequency stimulation to reach deep spinal tissue, which
drains battery life and increases unpleasant sensations in the
patient, as well as limited scope for a sham device (Fonoff
et al., 2019). More recently, the first non-invasive SCS study
was published exploring transcutaneous magnetic stimulation
to the fifth thoracic vertebra level in five PD patients (three
sessions of 400 pulses at 5 Hz) (Reis Menezes et al., 2020).
The authors reported significant improvements in NFOG-Q
and UPDRS-III motor scores at 7 days following stimulation
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FIGURE 2 | Current and experimental† developments in treating gait freezing based on their potential targets in the locomotor circuit. DBS, deep brain stimulation;
LC, locus coeruleus; PPN, pedunculopontine nucleus; SNr, substantia nigra pars reticulata; SSRI/SNRI, selective serotonin reuptake inhibitor/serotonin noradrenaline
reuptake inhibitor; tDCS, transcranial direct current stimulation; TMS, transcranial magnetic stimulation.

(Reis Menezes et al., 2020). Larger, sham-controlled studies are
needed to establish if there is true benefit.

WHAT APPROACHES COULD HELP US
IDENTIFY A NEW TREATMENT?

To date, methods in randomised controlled trials to improve
FOG are heterogeneous in timing, duration, type of intervention
(single target vs. multitarget), and outcome measures. Most
studies aim to improve FOG symptoms once they have
developed, which may be too late in the disease process.
There are, as yet, no studies using population enrichment
strategies (age, biomarker characterisation, motor phenotype) to
examine interventions in participants at high risk of developing
FOG. Designing future trials in FOG might also require
matching the candidate intervention to the subpopulation
most likely to benefit. For example, a trial testing cognitive
behavioural therapy might require a cohort of anxious freezers
(Ehgoetz Martens et al., 2018b).

To inform such trials, exploratory studies to clarify the
neurobiological components of freezing (e.g., imaging,
neurophysiology, epidemiology) and to identify the most
accurate ways to gather this data will be important. Objective
non-gait freezing paradigms that quantify freezing frequency and
duration such as Virtual Reality (VR) gait (Shine et al., 2013a),

Stepping in Place (Nantel et al., 2011) and alternate finger
tapping (D’Cruz et al., 2020; Trager et al., 2020) or handwriting
(Heremans et al., 2019) for upper limb freezing correlate well
with observed freezing behaviour and can also be combined with
functional neuroimaging (Shine et al., 2013b). Studies to compare
such models side-by-side to determine their sensitivity in distinct
subgroups could then be used to inform the design of larger
trials. Objective biomarkers for FOG, such as electrophysiological
changes in beta-band power (Handojoseno et al., 2015; Marquez
et al., 2020; Molina et al., 2020), could also be used to inform
larger trials. Indeed, whilst DBS provides a unique opportunity
to record continuously from deep brain structures, this would
potentially interfere with other measurement modalities
including MRI and EEG. Other dynamic imaging techniques,
such as functional near infra-red spectroscopy (fNIRS; Maidan
et al., 2015; Vitorio et al., 2020) or magnetoencephalography
(MEG; Boto et al., 2018), need to be explored for use in FOG and
may provide helpful insights into the phenomenon.

Wearable technology or home-based “smart” systems to non-
invasively measure FOG in the community should become
a priority. This would allow for long-term recording, providing
the large number of training events needed for algorithms
to learn freezing signals in the individual patient in order
to subsequently predict FOG in real time. Deep learning has
already been deployed to automatically detect gait freezing in
video recorded walks (Hu et al., 2020) and also using real-time
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inertial measurements from wearable devices (Bikias et al., 2021).
One group has recently developed an algorithm for use in
patients without any previous anomalous gait data, trained on
reference accelerometer data from a small group of reference
normal and anomalous gaits, identifying 87.4% of FOG onsets
(Bikias et al., 2021). Multi-modal measurements combining
accelerometer and EEG readings are more accurate than single-
modality measurement in detecting FOG events (Wang et al.,
2020), suggesting future systems may require integration of
different inputs. To create a multi-modal wearable system that
is also comfortable to wear, it is likely that only the most robust
signals from each modality will be included. Some progress has
been made in identifying specific gait parameters that are the best
for recognising abnormal steps (O’Day et al., 2020), and also in
minimising intrusiveness of such devices, for example, the use
of pressure-sensing insoles that were able to detect FOG in high
agreement with clinical ratings (Pardoel et al., 2020).

There are also opportunities to make better use of already
collected data. In a cross-sectional study of 172 PD patients,
longer duration of treatment with dopamine agonists trended
toward increased FOG, whilst longer duration of amantadine
use trended against FOG, though these results did not reach
significance in multiple regression (Giladi et al., 2001b).
Collaboration between PD research groups to pool such
data could prove useful. Interrogation of patient-level data
in completed drug trials for potential candidate drugs for
repurposing (e.g., if there was incidental reduction in fall
frequency) could also provide a shortlist of already approved
medications that can be investigated more cost-effectively.
Efforts to follow large cohorts of PD patients prospectively
with standardised biochemical, genetic and clinical assessments,

such as in the Parkinson’s Progression Markers Initiative
2.0 (NCT04477785), are already underway. The addition of
FOG-specific gait assessments to this dedicated study would
greatly add to our understanding of how FOG develops and
progresses, as well as allowing for an examination of triggering
or protective factors.

CONCLUSION

This review summarises the major difficulties in understanding
and treating FOG. What is apparent is that a multimodal
approach will be crucial to tackle this problem (Figure 2).
Collaboration between research centres to standardise FOG
measurement and share patient datasets will be necessary to
scale studies, in tandem with development of novel techniques
to better understand its pathophysiology.
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