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This study aimed to validate the efficacy of single-task event-related potential (ERP)
measures of cognitive workload to be implemented in exergame-based rehabilitation.
Twenty-four healthy participants took part in a novel gamified balance task where task-
irrelevant auditory tones were presented in the background to generate ERPs in the
participants’ electroencephalogram (EEG) as a measure of cognitive workload. For the
balance task, a computer-based tilt-ball game was combined with a balance board.
Participants played the game by shifting their weight to tilt the balance board, which
moved a virtual ball to score goals. The game was manipulated by adjusting the
size of the goalposts to set three predefined levels of game difficulty (easy, medium,
and hard). The participant’s experience of game difficulty was evaluated based on the
number of goals scored and their subjective reporting of perceived difficulty. Participants
experienced a significant difference in the three levels of task difficulty based on the
number of goals scored and perceived difficulty (p < 0.001). Post hoc analysis revealed
the lowest performance for the hardest level. The mean amplitude of the N1 ERP
component was used to measure the cognitive workload associated with the three
difficulty levels. The N1 component’s amplitude decreased significantly (p < 0.001),
with an increase in the task difficulty. Moreover, the amplitude of the N1 component
for the hard level was significantly smaller compared to medium (p = 0.0003) and easy
(p < 0.001) levels. These results support the efficacy of the N1 ERP component to
measure cognitive workload in dynamic and real-life scenarios such as exergames and
other rehabilitation exercises.

Keywords: cognitive workload, exergame, electroencephalogram, event-related potentials, rehabilitation

INTRODUCTION

In rehabilitation, the level of cognitive workload for an individual patient is, in part, dependent
on the task difficulty. Task difficulty is related to variables such as the number of repetitions of
the task and the intensity of the task or how hard the person is working (Brody, 2012). These
variables are important for clinicians to consider when setting rehabilitation programs and lead
the clinician to determine how challenging each rehabilitation task is for the individual and the
optimal number of repetitions and intensity required to achieve good rehabilitation outcomes
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for each patient. In other fields a number of subjective procedures
have been developed for measuring cognitive workload. In
particular, the Cooper–Harper Scale (Cooper and Harper, 1969),
the Subjective Workload Assessment Technique (Reid and
Nygren, 1988), and the NASA-TLX are widely used (Hill et al.,
1992; Rubio et al., 2004; Hart, 2006). However, these subjective
measures are insensitive to cognitive workload changes that
occur during the task or rehabilitation session (Eggemeier,
1988; Deeny et al., 2014). Currently, there is no objective
measure sensitive enough to evaluate cognitive workload during
the performance of a rehabilitation task. Therefore, this study
proposed an electroencephalogram (EEG) based paradigm to
measure cognitive workload during rehabilitation.

EEG has the potential to measure cognitive workload with a
high temporal resolution while allowing freedom of movement
during data collection, thus facilitating adaptability to clinical,
operational, or real-world settings (Kruse, 2007; Lan et al.,
2007; Casson et al., 2008; Seneviratne et al., 2013). Remarkably,
although efforts to use measures of cognitive workload such as
event-related potentials (ERPs) in EEG are increasingly abundant
in the literature for several real-life tasks (Kramer et al., 1995;
Suzuki et al., 2005; Allison and Polich, 2008; Miller et al.,
2011; Causse et al., 2015; Takeda et al., 2016), ERP measures of
cognitive workload have not been adapted and applied to the
field of rehabilitation. Our previous study evaluated the cognitive
workload in three predefined difficulty levels (easy, medium,
and hard) during a custom-made visuomotor task (Ghani et al.,
2020a). The task used was a tilt-ball game (played on an iPad
with participants sitting on a chair). The study involved 25
healthy young adults (age range 20–30 years). There were three
predefined difficulty levels, and the target was to move the
ball (by tilting an iPad) into highlighted goals while avoiding
the obstacles. Goals scored, collisions with moving obstacles,
and subjective ratings were used as performance measures. The
results showed a significant decrease in the N1 ERP component
with increased task difficulty. Similarly, both behavioral measures
showed significant effects of task difficulty. For example, goals
scored were significantly decreased, and subjective ratings were
significantly increased when the task difficulty was increased
from easy to medium to hard.

The current study aimed to validate the same approach
to evaluating cognitive workload during rehabilitation settings.
We developed a custom-made exergame with three predefined
difficulty levels. Exergames incorporate exercises into on-
screen computer games or use in clinical rehabilitation settings
(Fitzgerald et al., 2010; Gil-Gómez et al., 2011; Harvey and
Ada, 2012; van den Berg et al., 2016). The main idea behind
introducing exergames into rehabilitation is to motivate and
enhance engagement in rehabilitation (van den Berg et al., 2016).
The exergame used in this study had two parts (1) the cognitive
(tilt-ball game) and (2) the physical (balance board) components.
We kept the challenge in the balance component of the task
constant and to a minimum to ensure that the participants
were preferentially focused on the cognitive component (tilt-ball
game). Similar to our previous study, the current study utilized
task-irrelevant auditory stimuli to generate ERP components, and
no instructions for these stimuli were given to the participants.

Hence, these stimuli were expected to consume involuntary
attention orienting response highlighted by the early ERP
components (N1, P1, P2) (Näätänen and Michie, 1979; Ghani
et al., 2020a,b).

Out of these early ERP components, the N1 ERP component
is strongly associated with stimulus filtering and involuntary
attention orienting (Näätänen and Michie, 1979; Takeda et al.,
2016; Ghani et al., 2020a). The N1 ERP component is also
considered to mark stimulus detection and perhaps later stages
of sensory processing in conjunction with later ERP components
(Fogarty et al., 2020). These properties make the N1 ERP
component the most suitable to look at during a task-irrelevant
auditory ERP paradigm. Therefore, we selected the N1 ERP
component’s amplitude concerning cognitive workload and
hypothesized that the N1 ERP component’s amplitude would
decrease with the increased cognitive workload.

MATERIALS AND METHODS

Participants
An a priori power analysis was conducted using G∗Power3 (Faul
et al., 2009) with previously reported effect size (η2

ρ = 0.264)
(Ghani et al., 2020a), power (β = 0.8), and significance level
(α = 0.05). A total of twenty-four healthy young adults (11
females, age range: 20–30, mean age: 25 ± 3.4) were recruited
via advertisements through university networks and word of
mouth. People with a neurological disorder, hearing loss, recent
head injury, or metal implants were excluded from the study.
Participants were advised to avoid caffeine before the experiment
and asked about their caffeine intake for the day on arrival. All
the participants signed a written informed consent before the
experiment and received a $20 gift voucher.

Task
The exergame rehabilitation task involved playing a tilt-ball game
via a balance board. Participants stood on a balance board which
could tilt in multiple directions up to an angle of ten degrees.
While standing on the board, the participant could control the
tilt direction and angle by moving their center of mass. The
custom designed tilt-ball game (see Figure 1A) was installed on
an android phone embedded in the center of a balance board,
as shown in Figure 1B. The participant tilted the balance board,
and consequently the phone, to control the ball within the tilt
ball game. The tilt-ball game was projected from the phone to a
screen in front of the participants. This complete setup is shown
in Figure 1C.

The tilt-ball game had eight different goalposts, a soccer
ball, and a moving obstacle. One of the eight goalposts was
highlighted randomly, and the task was to move the soccer
ball into the highlighted goalpost by tilting the balance board.
The participant scored one point for each goal. The absolute
difficulty of the task was manipulated by adjusting the size of
the goalposts. Three absolute difficulty levels (easy, medium, and
hard) were predefined. The easy level had a large goalpost (1
unit long) as compared to medium (0.8 unit long) and hard (0.6
unit long) levels.
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FIGURE 1 | Panel (A) shows a tilt-ball game on an android device. Panel (B) shows a balance board with a tilt angle and top view of a person standing on the
balance board. Panel (C) shows the complete study setup.

Procedure
After participants had provided written informed consent, they
undertook six minutes of practice to familiarize themselves with
the exergame. They were then prepared for EEG recording
(section “EEG Data Collection and Processing”). Data collection
was undertaken in six separate runs of nine minutes each. In
each run, three predefined difficulty levels (easy, medium, and
hard) were presented in a random order (randomization was
done using a MATLAB code), where each level lasted for two
minutes. After each two-minute block, a one-minute break was
given. In this break time, the participants were instructed to sit

on a chair and asked to subjectively rate the task difficulty of the
block on a numeric scale (1 = “Very easy” to 10 = “very hard”).
This presentation is shown in Figure 2, with three difficulty levels
highlighted in different colors. The participants experience of task
difficulty was evaluated in two ways; (1) the number of goals
scored during each level and (2) the subjective rating of perceived
task difficulty.

During the task, 1,000 Hz tones (100 ms duration, 10 ms
rise/fall time, 95 dB SPL) were presented over a pair of speakers
placed about 50 cm behind the participant. These tones were
presented in the background, and no instruction was given to
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FIGURE 2 | Figure shows the procedure of presenting three difficulty levels in random order during six separate runs.

the participant about the auditory stimuli. According to the
literature, the interstimulus interval can affect the amplitude
of ERP components (Gonsalvez et al., 2007). Therefore, based
on the study of Allison and Polich (2008), the auditory tone
interstimulus interval was varied randomly between 6 to 10 s.
There were 45 tones presented during each run, with 270 tones
presented to a single participant while performing the task.

EEG Data Collection and Processing
The EEG data was recorded using a 64 channel Brainwave EEG
cap with a REFA amplifier (TMSi, Twente, Netherlands) at a
sampling rate of 2,048 Hz. EEG data was recorded from all 64
scalp sites according to a 10–20 electrode system (Homan, 1988).
The ground electrode was placed at AFz, and both mastoids
(M1 and M2) were used as a reference for the recording. The
impedance of all the electrodes was kept below 10 k�. The
online filter settings were DC −100 Hz, where a 50 Hz notch
filter was also used during the recording of raw data. The raw
EEG data were preprocessed offline using EEGLAB (version
14.1.1) (Delorme and Makeig, 2004) and ERPLAB (version 6.1.4)
(Lopez-Calderon and Luck, 2014) running on MATLAB (2015b)
(The MathWorks, Inc, Natick, MA, United States).

The PREP pipeline (version 0.55.1) (Bigdely-Shamlo et al.,
2015) was used to remove and interpolate bad channels, remove
line noise, and find the average reference. Then the data was
high pass filtered at 1 Hz before independent component analysis
(ICA). ICA and IClabel (Pion-Tonachini et al., 2019) were
used to visually remove noisy components such as eyeblinks or
other muscle artifacts. The data was then bandpass filtered at
(0.05–30 Hz). Following preprocessing, epochs were extracted
from −200 to 1,000 ms to the stimulus and were baseline
corrected using the pre-stimulus period. The epochs obtained
were then subjected to the ERPLAB artifact detection algorithm
of moving window threshold (Lopez-Calderon and Luck, 2014).

A 200 ms window width and a 100 ms step were defined with a
threshold of ±100 µV. The epochs in which the signal exceeded
±100 µV on any channel were rejected.

The grand-average ERP waveform for each predefined
difficulty level (collapsed across all runs) was calculated. The
latency window of the N1 ERP component for all three predefined
difficulty levels (easy, medium, and hard) was defined as
previously reported (Ghani et al., 2020a). The reported method
suggests placing a narrow time window around the peaks in the
grand average ERP waveform of the Cz electrode. The grand
averaged ERP waveform was obtained by averaging the waveform
of three levels (easy, medium, and hard). This ERP waveform was
then used to mark narrow time windows across three prominent
peaks. The latency window for the N1 component obtained from
this method was 150–230 ms for three midline electrodes (Fz,
Cz, and Pz). This latency information was provided to ERP
measurement tool (Lopez-Calderon and Luck, 2014) to extract
amplitude of the N1 component. After all the pre-processing
steps on average 10 ± 5 epochs were rejected per level for each
participant. However, the number of epochs across each level
(easy, medium, and hard) were kept constant.

Statistical Analysis
The statistical analysis was divided into two phases (1) analysis
of performance data and (2) analysis of physiological data. Two
separate repeated measures analysis of variance (ANOVA) tests
with main terms of predefined difficulty level (easy, medium, and
hard) and the measures of experienced difficulty (goals scored
and subjective rating of difficulty) were used for the analysis of
performance data. The goals scored and ratings of difficulty for
each level were averaged across six runs for each participant.
For the physiological data, a 3 × 3 (level × channels) repeated
measures ANOVA with main terms of predefined difficulty level
(easy, medium, and hard) and the measure of cognitive workload
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(mean amplitude of N1) was used. The data was then rearranged
by averaging across three electrodes for each level. Finally, the
data was subjected to a post-hoc pairwise comparison of each
level (easy, medium, and hard). The Bonferroni adjusted values
are reported for all post-hoc comparisons. Conventional degrees
of freedom are reported throughout the results. Additionally,
effect sizes were reported when required. For post-hoc correlation
analysis, we looked at the correlations between the change in
outcome measures (Easy–Hard) using Pearson’s correlation. The
outcome measures used in this analysis were behavioral measures
(goals scored, subjective ratings) and physiological measures (the
N1 ERP component). The amplitude of the N1 ERP component
was the average taken from three midline electrodes (Fz, Cz, and
Pz). The correlation between the change in the amplitude of the
N1 ERP component and change in goals scored, the change in the
amplitude of the N1 ERP component and change in subjective
ratings, and the change in subjective ratings and change in goals
scored, was examined separately.

RESULTS

Task performance parameters (goals scored and difficulty ratings)
were used to measure perceived difficulty to ensure that the
participants had experienced three predefined levels of task
difficulty (easy, medium, and hard). The N1 ERP component
was then used to measure cognitive workload associated with
the three predefined levels of task difficulty. Finally, to look at
the effect of increasing task difficulty on attentional demands
a correlation analysis between behavioral and physiological
measures was conducted.

Behavioral Results
Both measures of perceived difficulty goals scored F(2,46) = 26.9,
p < 0.001, η2

ρ = 0.438 and difficulty ratings F(2,46) = 32.2,
p < 0.001, η2

ρ = 0.483 showed that the participants experienced
significant differences in the three levels of task difficulty. Post-
hoc analysis revealed that the number of goals scored during
the easy level was significantly greater than goals scored during
the medium [t(69) = −3.29, p < 0.005] and hard [t(69) = 7.32,
p < 0.001] levels, respectively. Similarly, the goals scored
during medium level were significantly greater than goals scored
during hard level [t(69) = 4.03, p < 0.001]. For the second
measure of perceived difficulty, the subjective ratings given by
the participants to the easy level were significantly lower than
medium [t(69) = −3.64, p = 0.001] and hard [t(69) = −8.01,
p < 0.001] levels. Similarly, the medium level received a lower
rating than the hard level [t(69) =−4.37, p< 0.001]. These results
are shown in Figure 3.

Electrophysiological Measures
Figure 4A illustrates the grand average ERPs for each predefined
difficulty level (easy, medium, and hard). The P1, P2, and
N1 components are evident, and the N1 ERP component is
highlighted using a dotted circle. In the previous study, the N1
component’s amplitude showed a significant cognitive workload
change (Ghani et al., 2020a). Therefore, in this study, the N1

ERP component’s amplitude from three midline channels (Fz,
Cz, and Pz) was evaluated as a measure of cognitive workload.
There was no level channel interaction F(4,92) = 0.209, p = 0.933,
η2

ρ=0.005, and the statistical analysis revealed a main effect
for predefined difficulty levels (easy, medium, and hard) for
the mean amplitude of the N1 component F(2,46) = 94.6,
p< 0.001, η2

ρ=0.471. The effect of channel was also not significant
F(2,46) = 1.026, p = 0.280, η2

ρ=0.012. The N1 ERP component
exhibits a frontocentral scalp distribution (Parasuraman and
Beatty, 1980), shown in Figure 4B for all three levels of predefined
difficulty (easy, medium, and hard).

Post hoc analysis with respective means, confidence intervals,
and Cohen’s d effect size is shown in Table 1. Post hoc analysis
revealed that for the N1 component, the mean amplitude during
the hard level was significantly lower than during the easy
[Hard < Easy, t(69) = −3.84, p < 0.001] and medium levels
[Hard < medium, t(69) = −2.28, p = 0.001]. Similarly, the
medium level’s mean amplitude was significantly lower than the
easy level [Medium < Easy, t(69) =−6.12, p < 0.001].

Correlation Between
Electrophysiological Measures and
Performance Measures
The change in the physiological measure (the N1 ERP
component) correlated significantly with the change in the
number of goals scored [r(22) = 0.407, p = 0.049] as the
difficulty increased from easy to hard. This suggests that as the
performance difference increased, the difference between the
amplitude of the N1 component between two difficulty levels also
increased. On the other hand, the correlation between the change
in the N1 ERP component and the change in subjective rating
was not significant [r(22) = 0.224, p = 0.293]. Change in both
behavioral measures such as goals scored and subjective ratings
were correlated [r(22) = 0.642, p < 0.001], highlighting the
consistency between the performance difference and subjective
ratings difference.

DISCUSSION

The present study was designed to assess a single-task ERP
method of evaluating cognitive workload to determine the
possibility of using this method during rehabilitation. We
intended to evaluate the cognitive workload associated with
a novel exergame. Behavioral measures of task difficulty were
recorded along with the EEG data. Behavioral results show that
the performance of the participants decreased with an increase
in task difficulty. On the physiological level, the amplitude of the
N1 ERP component decreased significantly with an increase in
task difficulty. These results were similar to those we obtained
in our previous study (Ghani et al., 2020a) and were also in
line with previous literature (Kramer et al., 1995; Suzuki et al.,
2005; Combs and Polich, 2006; Muller-Gass and Schroger, 2007;
Muller-Gass et al., 2007; Deeny et al., 2014). These findings
validated our single task ERP paradigms’ efficacy to evaluate
cognitive workload during rehabilitation settings.

Frontiers in Human Neuroscience | www.frontiersin.org 5 September 2021 | Volume 15 | Article 742384

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-742384 September 6, 2021 Time: 12:32 # 6

Ghani et al. ERP Measure of Cognitive Workload

FIGURE 3 | Panel (A) shows the boxplots of the mean goal scored during each difficulty level. Panel (B) shows the boxplots of the subjective difficulty ratings. The
has outliers so whiskers represent one and a half times the interquartile range (1.5 × IQR).

FIGURE 4 | Panel (A) shows a grand average ERP waveform of 24 participants: P1, P2, and N1 are evident. Panel (B) shows scalp maps of the N1 component for
three levels of cognitive workload.

TABLE 1 | Table shows the mean values and effect sizes from the post-hoc comparison.

ERP component Level Mean 95% confidence interval Pairwise comparison p-value Effect-size Cohen’s (d)

Lower Upper

N1 Easy −3.64 −3.88 −3.40 Easy–medium <0.001 1.206

Medium −2.73 −2.97 −2.49 Easy–hard <0.001 1.391

Hard −2.31 −2.55 −2.07 Medium–hard 0.0003 0.531

According to the literature, the most basic tasks in
psychological research are composed of different component
operations (Posner and Raichle, 1994). Some of these component
operations are more cognitive in nature, and others are more
motoric (e.g., the tilt-ball game in this study compared to
standing on a balance board). In the cognitive load theory,
there are three types of cognitive workloads (1) intrinsic (task

difficulty), (2) extraneous (depends on external parameters), and
(3) germane (depends on working memory). Therefore, the task
difficulty alone cannot define cognitive workload (Sweller, 1988).
We have argued that an increase in the difficulty of the cognitive
component of our task (requiring participants to score goals
in smaller goalposts) imposed a combination of three cognitive
workloads and induced participants to allocate more attention to
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the tilt-ball game. This shift of attention varied with the cognitive
task difficulty; for example, more attention was given to the tilt-
ball game as the cognitive component of the difficulty varied from
easy to medium to hard. In this study, the proposed relationship
of the change in cognitive task difficulty and attention was
validated by the correlation between the change in the N1 ERP
component and the change in number of goals scored as the
task difficulty increased from easy to hard. For example, as the
task difficulty increased, the difference in goals scored increased,
more attention was likely given to the task in compensation,
affecting the amplitude of the task-irrelevant auditory evoked
N1 ERP component.

In this study, the N1 ERP component was selected as a
measure of cognitive workload based on two possible reasons
(1) the neural generators of the N1 ERP component and (2)
properties of the N1 ERP component. The N1 generators are
located mainly in the superior temporal plane, including the
primary and secondary auditory cortices and auditory association
areas (Näätänen and Picton, 1987; Lü et al., 1992; Pantev et al.,
1995; Woods, 1995). The auditory association area is known to
mediate auditory and visual workload [for review, see Calvert
(2001)]. The finding that the auditory evoked N1 ERP component
was significantly modulated by the cognitive workload imposed
by the tilt-ball game suggests that the auditory association area
is linked with a cross-modal capacity limit. Another supportive
explanation is based on the generic properties of the N1 ERP
component. As suggested by Dien et al. (1997); Picton et al.
(1999); Grau et al. (2007), the N1 may also have sources in
the frontal lobe, supporting links between the N1 and attention
(Näätänen and Picton, 1987; Giard et al., 1994). Therefore, this
association of the N1 ERP with both the cross-modal capacity
limit and attention makes it a critical component in measuring
cognitive workload using task-irrelevant auditory probes.

To date, there are no objective measures of the cognitive
workload associated with any rehabilitation task, with health care
practitioners relying on patient self-report. This study represents
the first attempt to objectively quantify cognitive workload in
rehabilitation settings, and the results are promising to investigate
such methods. The N1 ERP component exhibited significant
cognitive workload effects illustrating the inverse relationship
between ERP (generated by task-irrelevant stimuli) amplitude
and task difficulty. This paradigm is easily adaptable to research
on various rehabilitation tasks where the cognitive workload
is relevant. Wireless EEG caps used with this paradigm can
enable real-time and offline EEG analysis for ecologically valid
movements during various rehabilitation tasks. An additional
advantage of the approach presented here is the sensitivity of
the information acquired through a small number of electrodes.
Although 64 channels of EEG data were obtained in this study,
the results could have been obtained using only three midline
electrodes (Fz, Cz, and Pz) with a ground and a reference
(Ghani et al., 2020a).

The current study was limited to healthy participants and
was conducted using an exergame. Future efforts will extend
to patient populations and be adapted to other rehabilitation
tasks. The use of a traditional averaged ERP paradigm limits
the implementation of this research into rehabilitation settings,

but it provides essential insights into how cognitive workload
affects ERPs in rehabilitation-like settings. These insights can
then be used with more advanced techniques such as single-trial
detection of ERPs (Jung et al., 2001) to implement this research in
actual rehabilitation settings. Another advantage of this research
in its current form is that it can be used to validate the clinical
efficacy of available rating scales used in rehabilitation. The
use of attentional reserve-based paradigm (ERPs) of assessing
cognitive workload also has broad adaptability for comparing
different tasks and strategies in various rehabilitation settings.
Furthermore, combining the current paradigm with more
sophisticated approaches such as source localization (Jatoi et al.,
2014) and obtaining data from more channels (Michel and
Brunet, 2019) can simultaneously address task difficulty, regional
activation, and functional communication between different
cortical regions (Rietschel et al., 2012) to examine the sensory,
motor, and cognitive demands.

CONCLUSION

This study aimed to examine the efficacy of using ERPs as
an outcome measure for cognitive workload in rehabilitation
settings, specifically during exergames. The amplitude of the
task-irrelevant stimuli generated N1 ERP component decreased
significantly with an increase in task difficulty. This decrease in
the amplitude of the N1 ERP component can be used to evaluate
the cognitive workload of a rehabilitation task objectively.
The current study examined only an exergame-based task in
healthy participants, which requires replication in patients and
adaptation to other rehabilitation settings. However, this single-
task ERP approach with task-irrelevant stimuli is adaptable to
various rehabilitation tasks as an objective outcome measure of
cognitive workload.
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