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Sensorimotor adaptation is a central function of the nervous system, as it allows
humans and other animals to flexibly anticipate their interaction with the environment.
In the context of human reaching adaptation to force fields, studies have traditionally
separated feedforward (FF) and feedback (FB) processes involved in the improvement
of behavior. Here, we review computational models of FF adaptation to force fields and
discuss them in light of recent evidence highlighting a clear involvement of feedback
control. Instead of a model in which FF and FB mechanisms adapt in parallel, we
discuss how online adaptation in the feedback control system can explain both trial-
by-trial adaptation and improvements in online motor corrections. Importantly, this
computational model combines sensorimotor control and short-term adaptation in a
single framework, offering novel perspectives for our understanding of human reaching
adaptation and control.

Keywords: feedback control, motor adaptation, reaching control, sensorimotor integration, computational
models

INTRODUCTION

Sensorimotor adaptation can be characterized by an update of motor commands following changes
in body or environment dynamics. This critical function of the nervous system allows humans and
other animals to improve the efficiency of their movements with practice. Traditionally, studies on
upper limb reaching movements in laboratory settings have described trial-by-trial improvement
performance in terms of two interacting processes: feedforward and feedback control. Feedforward
control can be defined as the formation of motor commands independent of sensory feedback, and
it is typically associated with predictive aspects and planning. Feedback control refers to real-time
adjustments of motor commands based on sensory inflow. These two controllers can be modified
between movements (i.e., offline) or within a movement (online). Characterizing how adaptation
impacts feedforward and feedback control has recently been a lively research topic.

In the context of force field learning, it is assumed that the difference between actual and
expected sensory information, also called sensory prediction error, is used internally to re-calibrate
an internal model of limb and environment dynamics (Shadmehr et al., 2010; Wolpert et al.,
2011). Here, we adopt a generic definition of an internal model, as a neural mechanism that
can simulate the consequences of an action, and drive estimation and control based on this
knowledge (McNamee and Wolpert, 2019). Accordingly, adaptation has often been understood
as an iterative update of the feedforward controller following sensory prediction errors from the
previous movement. Recently, mounting evidence has highlighted that adaptation was not confined
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to the feedforward process, as it also occurs in the feedback
control system. Yet a theory linking feedforward and feedback
adaptation has been lacking.

Here, we present computational models of reaching
adaptation and review current evidence that adaptation
also impacts feedback control. We highlight that the feedback
control system can adapt without necessarily implying changes
in behavioral proxies of feedforward control such as initial
movement directions. Moreover, evidence suggests that
adaptation in feedback pathways can occur within a time interval
shorter than the time of a reaching movement, which is difficult
to reconcile with a sequential adaptation of feedforward and
feedback controllers across trials. These observations suggest
that models of sensorimotor adaptation require revision to
include adaptation in feedback pathways explicitly. We describe
a candidate model to accommodate these behavioral findings.

COMPUTATIONAL MODELS OF HUMAN
REACHING ADAPTATION

Models of human reaching adaptation have typically dissociated
trial-by-trial changes in movement performances from
continuous variables that the nervous system handles within
a movement, thereby separating control and adaptation
mechanisms. A standard definition of a trial is a single point-
to-point movement, but it is clear that this artificial construct
has impacted models of adaptation and that translating the
concepts developed below to continuous tasks, such as cyclic
movements or tracking, is an important question for prospective
work. Although it is accepted that adaptation is a continuous
process (Krakauer et al., 2019), the main computational models
characterize discrete-time adaptation with a time step is equal
to a trial. The categories presented below also correspond to
model properties, which are not exclusive, thus some previously
published models fall into several categories.

A first category corresponds to time-series models, which
aim at capturing the evolution of learning curves across trials.
A prominent example is the two-states model proposed by
Smith and colleagues (Smith et al., 2006), who demonstrated
that there exist fast and slow processes that learn and forget
at different rates. Kording et al. (2007), added that multiple
timescales could underlie the dynamics of memory. The addition
of multiple timescales was also associated with a parallel
architecture in the context of visuomotor adaptation (Lee and
Schweighofer, 2009). Although these models differ by their
structure, they make the same assumption that any error [or
filtered error (Wei and Körding, 2010)] perceived on a given
trial influences the next trial. Indeed, in Smith et al. (2006),
the time unit was the trial. In Kording et al. (2007), it was
hypothesized explicitly that the fastest timescale in the adaptation
model was slower than the movement time, thereby only
allowing trial-by-trial adjustments. These models also describe
the evolution of an abstract state variable (or motor gain),
without considering continuous variables related to movement
execution, hence it is it difficult to link adaptation and control
in this framework.

A second category of adaptation models can be referred to
as partial compensation. Contrary to time-series models, these
models express a control problem in continuous time with partial
knowledge of environment dynamics. For instance, Shadmehr
and Mussa-Ivaldi (1994) used a model based on trajectory
tracking with an adaptive internal model. Mistry and colleagues
(Mistry et al., 2013) made similar assumptions in the context of
Linear-Quadratic-Gaussian (LQG) control (Todorov and Jordan,
2002), with an estimated plant dynamics that differed from the
true plant dynamics including the force field. Recently, Ikegami
and colleagues (Ikegami et al., 2021) used the same approach
to demonstrate that both target failure and altered hand path
may interact to drive adaptation hierarchically. In these models,
the level of adaptation depended on how much the force field
was compensated during movement by the approximate internal
model, which simply takes the form of a function used in the
controller. While they explicitly formulated a control problem
in continuous time, these models did not include any learning
rule that transforms sensory mediated errors into a novel model
estimate for the next movement.

A relationship between discrete-time adaptation and
continuous control can be found in the following classes of
models. The first includes motor primitives as building blocks
linking continuous control during a movement and updates
between movements. Motor primitives are defined as basis
functions available in the brain tuned to position and velocity
(Thoroughman and Shadmehr, 2000; Hwang et al., 2003),
which are combined to minimize the error between actual
and ideal or expected forces. In this framework, the internal
model takes the form of a weighting matrix used to combine
the primitives. The power of this theory has been to capture
human generalization patterns. The main question toward
linking adaptation and control with motor primitives is whether
this model can reproduce behaviorally the same properties as
state-feedback controllers, which characterize human motor
responses to perturbations (Crevecoeur and Kurtzer, 2018).

In favor of this idea, Sing and colleagues (Sing et al., 2013)
argued that limb motion determined adaptation independent of
the disturbance profile, suggesting that the variables underlying
adaptation are limb position and velocity. However, this
hypothesis is at odds with the fact that similar patterns of
motion evoke different feedback responses dependent on the
limb configuration and context, suggesting that an internal model
of limb dynamics and externally applied loads are used in the
brain for online control (Kurtzer et al., 2008, 2009; Crevecoeur
and Scott, 2013; Maeda et al., 2017). Moreover, assuming that
the weighting matrix of motor primitives can be used with time
varying signals, it could be taken for a linear feedback controller.
But in this case, this model does not include time-varying control
gains known to characterize goal-directed reaching control in
human (Liu and Todorov, 2007; Dimitriou et al., 2013; Poscente
et al., 2021). Hence, the possibility that adaptation rests on the
combination of motor primitives tuned to position and velocity
may not capture all properties of human state-feedback control.
The question arises as to whether it is still biologically plausible to
assume the existence of a library of primitives including a broader
set of variables as well as time-varying mixing matrices.
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The other class of discrete time models: adaptive impedance-
control, proposes muscle co-activation as a link between
feedforward adaptation and online movement execution.
According to this view, it is proposed that trial-by-trial
adjustments were complemented by within-trial rejection
of disturbances, inherent during early phases of adaptation,
mediated by the limb intrinsic properties (Shadmehr and
Mussa-Ivaldi, 1994; Franklin et al., 2003, 2008). In Shadmehr
and Mussa-Ivaldi (1994), it was hypothesized that disturbances
are countered by instantaneous opposition to deviation in
position and velocity. Franklin and colleagues (Franklin et al.,
2008) further demonstrated that trial-by-trial adjustments
could be captured by changes in co-activation following
unexpected muscles stretches (“V-shape” learning rule), while
limb stability during movement was preserved in the model by
the muscles viscoelastic properties. This model featured a simple
learning rule, but the main shortcoming was that common
estimates of limb stiffness are strongly impacted by feedback
components. Indeed, measurements of stiffness are calculated
up to ∼100 ms after an abrupt limb displacement (Burdet et al.,
2000, 2001), thereby including proprioceptive, visuomotor,
and early voluntary responses (Scott, 2016). Consequently, the
relationship between online control and movement adaptation
remains elusive.

To summarize, current computational models have in
common the assumption that control during a movement is
performed with a fixed internal model, and that adjustments are
performed between two trials based on an error signal coming
from the previous trial. In this view, it is easy to consider motor
adaptation as an update in a feedforward pass across two trials.
However, as we review in the next section, the expression of
adaptation in feedback control makes feedforward and feedback
adaptation mechanisms increasingly difficult to dissociate.

ADAPTATION IN HUMAN FEEDBACK
CONTROL SYSTEM

Assuming separate forward and feedback passes with the
adaptation of the feedforward pathway only can now be rejected
in light of compelling evidence that adaptation of reaching
movements also evokes changes in feedback control. A seminal
study by Bhushan and Shadmehr proposed to include internal
models in feedforward and feedback pathways (Bhushan and
Shadmehr, 1999). Wagner and Smith (2008) demonstrated that
resisting or assisting forces applied after adaptation to a lateral
velocity-dependent force field evoked feedback responses with
a lateral force component, indicative that the online correction
took into account the acquired knowledge of the force-field.
Subsequent studies showed that exposure to a force field evoked
a modulation of visuomotor (Franklin et al., 2012), and long-
latency pathways, that is as early as ∼60 ms following an abrupt
load applied to the limb (Ahmadi-Pajouh et al., 2012; Cluff
and Scott, 2013; Maeda et al., 2018). Long-latency responses
have played a key role in understanding the neural basis of
feedback control since they include a transcortical pathway
through primary sensorimotor areas, premotor cortex, parietal

areas, and cerebellum (Flament et al., 1984; Pruszynski et al.,
2011; Omrani et al., 2016). Hence, it could be deduced from a
modulation in long-latency responses that the underlying neural
structures have access to the acquired knowledge of the force field.

It was further shown that changes in long-latency feedback
gains paralleled the learning curve and correlated with the
extent of adaptation (Cluff and Scott, 2013). More recently,
a modulation in long-latency feedback gains has been linked
to the fast time-scale of movement adaptation in a dual-rate
model (Coltman and Gribble, 2020). A comparable change in
long-latency response gain has been associated with transient
and unpredictable disturbances, evoking co-contraction and
modulation of overall control gains (Crevecoeur et al., 2019).
It remains unclear when changes in long-latency responses
start expressing knowledge of the new force field rather than
reflecting a robust control strategy. But clearly, over the course
of a few trials, the imprint of movement errors in the brain
produces adjustments in the neural bases of both feedforward and
feedback controllers.

These previous studies still implicitly assumed that
feedforward adaptation occurred and the feedback control
system inherited or shared the novel reach representation to
produce adapted feedback responses. However, there is also
evidence that adaptation occurs in the feedback control system
without adapting the feedforward mechanism. Indeed, Maeda
and colleagues (Maeda et al., 2020) trained volunteers to counter
perturbation while blocking shoulder motion physically. They
observed that participants reduced their shoulder response,
which in turn affected reaching movements performed when the
shoulder was suddenly unlocked. Thus, internal representations
of dynamics (in this case, the limb dynamics) could be acquired
by exposing the feedback control system only. It is therefore
necessary to at least consider adaptation in both feedforward
and feedback pathways with reciprocal interactions (Figure 1A).
An additional property must still be added to the picture: the
possibility that adaptation occurs online, within a movement, as
suggested in our recent series of reports.

Indeed, we documented evidence for adaptation in feedback
responses to unpredictable application of a force field during
reaching. By looking at the whole movement execution, we
showed that participants learned to correct for the unexpected
disturbance without anticipation, and that the tuning of the
force profiles applied by participants to the handle, displayed
the same properties as adapted movements measured in a
standard adaptation paradigm (Crevecoeur et al., 2020b). The
possibility that movement representation was different at the
beginning (no anticipation) and end (adapted feedback) of a
single reaching movement means that the controller changed
online. The improvement in feedback corrections was observed
for force fields of different directions and different kinds,
and was expressed while relearning to move in a previously
experienced force field (Crevecoeur et al., 2020a; Mathew et al.,
2021). These responses also evoked rapid and stable re-planning
when they were performed in a rapid sequence of movements
(Mathew et al., 2020).

Measuring the timescale of this process was crucial. When we
trained participants to perform a rapid movement including a
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A B C

FIGURE 1 | (A) Feedforward-feedback control architecture, each pass corresponds to different neural structures that share knowledge of the environmental
dynamics. Feedforward and Feedback are associated with red and blue colors, respectively. (B) Adaptive state-feedback control model in which an identification of
the system parameters (Syst. ID) updates a state-feedback controller online (State-FB Control). The timescales are represented: it is assumed that state-feedback
control is supported by long-latency feedback loops (timescale: ∼60 ms), and the online updates are associated with a slower timescale (∼250 ms). (C) Conceptual
representation of the adaptive state-feedback controller which can replace feedforward and feedback mechanisms, while different time scales are associated with
online and offline mechanisms.

stop-over at a via point, we observed that the second movement,
from the via-point to the goal, was quickly updated according to
a force field perturbation experienced before the via-point. This
update was visible in hand kinematics as early as ∼0.5 s following
reach onset (Crevecoeur et al., 2020b; Mathew et al., 2020).
In a different experiment, we observed that adaptive changes
in muscles recordings that correlated with force modulation
occurred after ∼250 ms following reach onset (Crevecoeur et al.,
2020a). Thus, the timescale of adaptation may lie between 250 ms
(from EMG) and 500 ms (from hand kinematics).

Including such a fast timescale of adaptation in a
computational model of reaching control is a two-sided
story: on the one hand, there is no difference with previous
models since it also considers that sensory prediction errors
update internal representations. On the other hand, the fact
that adaptation happens faster than a trial blurs the distinction
between feedforward and feedback mechanisms.

ADAPTIVE STATE-FEEDBACK CONTROL
MODEL

The candidate model to explain the forgoing observations was
based on adaptive state-feedback control (Bitmead et al., 1990). It
must be noted that the computational advantage of an adaptive
neural controller was first discussed by Fortney and Tweed
(2011). The basic premise is that the state-feedback controller is
parameterized based on knowledge of the limb and environment
dynamics, coupled with an identification procedure that can
change the parameters of the controller online (Figure 1B). The
model can be viewed as two nested loops: the state-feedback
controller describes how the nervous system responds to changes
in state variables for a fixed parameterization, and the adaptive
loop consists in online tuning of the model parameters. When
mapped onto human neural mechanisms, we submit that the
state-feedback control loop is mediated by long-latency circuits
(∼60 ms) (Crevecoeur and Kurtzer, 2018), while adaptation is
associated with a longer timescale (>250 ms, Figure 1B).

This model is very close to the standard view of human
reaching adaptation while offering novel perspectives. In theory,
the learning rate must not be too high, but there is no lower

bound on the timescale at which the controller can be re-
parameterized. Thus it accommodates adaptation in real time
and within a reaching movement. Second, the learning rule
corresponds to a standard gradient descent: at each time step the
parameter estimate makes a step in the direction that reduces
the difference between expected and actual sensory input. It is
of course a strong assumption to state that the nervous system
performs a kind of gradient descent, however, this assumption
is inherited from even the simplest learning models that make a
step proportional and away from an error signal. It is the same
learning rule as in previous models based on motor primitives,
but it is applied to different variables. In the framework of motor
primitives, the difference between sensed and expected forces (or
trajectory) is used to change the mapping between primitives and
force output, whereas in the framework of adaptive control, the
difference between actual and expected sensory input is used to
update a parametric representation of the system dynamics.

Importantly, the variables used to update the model are not
abstract variables, such as learning states, instead they are the
same state-variables as those assumed by the controller, i.e.,
neural encoding of joint angles, velocities, torques, muscles state,
and potentially higher order derivatives. Thus, if we assume that
these variables are used for control, we do not add complexity by
assuming that they are also used for adaptation.

The adaptive feedback control model bridges together
discrete-time models, and control models with partial
compensation, simply by assuming that the time unit of
adaptation is smaller than reaching time. This consideration
suggests that the function of motor adaptation is not only to
support changes in internal models over medium to long-term
horizons but also to complement state-feedback control online.
Hence, instead of considering separate feedforward and feedback
processes (Figure 1A), we suggest that it is more accurate to
consider online and offline mechanisms (Figure 1C). The online
mechanism is an adaptive state-feedback controller. There is
a daily life example of this mechanism: the adjustment of grip
force that follows from lifting an unexpectedly heavy or light
object. In this case, the object mass is a model parameter that is
used to select control, and errors about this parameter produce
not only feedback corrections but also changes in the parameter
estimate. We propose that the same mechanism applies to
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online adaptation to velocity-dependent force fields. Other
processes linked to consolidation and memory may work offline
and follow longer timescales. Their expression takes the form
of an internal prior, reflecting the expected dynamics during
movement planning.

CONCLUSION AND PERSPECTIVE

The adaptive feedback control model opens many questions and
challenges. From a computational perspective, it is clear that non-
linear dynamics and delays limit the range of feasible online
adaptation rates. This theoretical limit is currently unknown
and it may impact the generalizability of the model. Moreover,
by adapting parameters online the adaptive feedback controller
becomes a non-linear control model. A theoretical bound on
the adaptation rate would also limit the range of non-linear
effects that this model can handle. We believe that it offers
the opportunity to understand which classes of movements
can be handled with adaptive linear approximations and which
movement properties require a forward pass to cope with non-
linear effects.

Another clear challenge is to link adaptive feedback control
with other learning mechanisms. We focused on adaptation
to force fields, but evidence for online adaptation has been
also reported with random visuomotor perturbations (Braun
et al., 2009). Besides, there are different ways the nervous
system expresses improvements in behavior including use-
dependent learning, reinforcement learning, and explicit

strategies (Krakauer et al., 2019). The relationship between
adaptive state-feedback control and these different learning
schemes remains to be established.

Finally, we believe that rapid feedback adaptation could
become a behavioral proxy of fast neural learning mechanisms
recently hypothesized (Sohn et al., 2021). On the one hand,
changes in connectivity in a network model of sensorimotor
adaptation may capture plasticity mechanisms and long-term
adaptation, on the other hand rapid or online adaptation must
rely on changes in neural trajectories for a fixed network
configuration (Sohn et al., 2021). It is expected that the imprint
of online adaptation is visible as changes in dimension or shape
of neural trajectories associated with reaching control.
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