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In this quantitative meta-analysis, we used the activation likelihood estimation (ALE)
approach to address the effects of linguistic distance between first (L1) and second
(L2) languages on language-related brain activations. In particular, we investigated how
L2-related networks may change in response to linguistic distance from L1. Thus, we
examined L2 brain activations in two groups of participants with English as L2 and either
(i) a European language (European group, n = 13 studies) or (ii) Chinese (Chinese group,
n = 18 studies) as L1. We further explored the modulatory effect of age of appropriation
(AoA) and proficiency of L2. We found that, irrespective of L1-L2 distance—and to an
extent—irrespective of L2 proficiency, L2 recruits brain areas supporting higher-order
cognitive functions (e.g., cognitive control), although with group-specific differences
(e.g., the insula region in the European group and the frontal cortex in the Chinese
group). The Chinese group also selectively activated the parietal lobe, but this did not
occur in the subgroup with high L2 proficiency. These preliminary results highlight the
relevance of linguistic distance and call for future research to generalize findings to other
language pairs and shed further light on the interaction between linguistic distance, AoA,
and proficiency of L2.

Keywords: bilingualism, Ginger-ALE meta-analysis, fMRI, linguistic distance, language families, age of
appropriation (AoA)

INTRODUCTION

The majority of the world population is bilingual. They speak two or more languages (Grosjean,
2010), which may even belong to different language families, namely, groups of languages or dialects
with a common progenitor sharing a certain degree of similarity at lexical, phonological, and
morphosyntactic levels (Rowe and Levine, 2018). The following four main macrolinguistic families
have been identified: (i) African and Southwest-Asian family, (ii) European and North-Asian
family (including the Indo-European family), (iii) East-Asian, Southeast-Asian, and Australian
family (including the Sino-Tibetan family), and (iv) American family (Wichmann et al., 2012).
Language families were identified by comparing languages for linguistic features as well as analyzing
genetic data and corresponding evolutionary trees of the populations speaking those languages
(Cavalli-Sforza et al., 1992; Henn et al., 2012; Reich, 2018).
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The Indo-European language family is one of the most
commonly spoken languages worldwide. It includes ancient
languages such as Greek, Latin, and Sanskrit and many modern
European languages (e.g., English, French, German, Italian,
Modern Greek, Spanish, and Russian), but also languages spoken
in the Indian subcontinent (e.g., Hindi) and in the Iranian
region (e.g., Fārsı̄) (Beekes, 2011). English is spoken by 900
million individuals, Hindi by 570 million, and Spanish by 400
million. The other most commonly spoken language family is
Sino-Tibetan, with Mandarin being spoken by approximately one
billion individuals (Corballis, 2017).

Languages differ structurally to a certain degree and are thus
characterized by different degrees of linguistic distance. It is not
easy to determine such distance as languages may be similar
in some respects and differ in other respects. For instance,
Chinese and English are similar in some aspects of syntax as
both have a subject-verb-object order, but they markedly differ
in writing and phonology.

To establish a quantitative index for linguistic distance,
several methods have been developed, which compare languages
at lexical, phonological, and morphosyntactic levels (Spielman
et al., 1974). Most commonly, the lexical similarity between
two languages is examined. Several automatic systems have
been developed to compare a limited number of words (up to
100) which are considered fundamental (Holman et al., 2008a).
Accordingly, linguistic distance is defined as the overall number
of additions, deletions, or substitutions of symbols (e.g., letters)
necessary to change a given word in a given language into
the corresponding word in the target language (Levenshtein
distance). Recently, this method was used to automatically
determine the linguistic distance between languages belonging to
different families (Holman et al., 2008b; Serva and Petroni, 2008;
Wichmann et al., 2010). Other approaches focused on qualitative
and quantitative differences in phonemes (Atkinson, 2011) or on
syntactic differences (Comrie, 1989).

Nevertheless, since such comparison may be a reductive
criterion, other scholars (Hart-Gonzalez and Lindemann,
1993; Chiswick and Miller, 2005) operationalized linguistic
distance in terms of the difficult people normally encounter
when learning a specific language. Accordingly, Hart-Gonzalez
and Lindemann (1993) monitored the average performance
scores achieved by English-speaking individuals on a newly
learned language following a training period. Based on the
proven assumption that learning a new language is easier
when this is structurally close (vs. distant) to the native
language (Crystal, 1987), performance scores were taken as
an inverse index of linguistic distance (Chiswick and Miller,
2005), with scores ranging from 1.00 to 3.00, indicating
languages that are hardest and easiest to learn by native
English speakers.

With regard to brain representation of languages in bilingual
individuals, different languages are associated with specific
cerebral microcircuits, involving both overlapping and distinct
cortical areas (Fabbro, 1999; Paradis, 2004). Generally, second
language (L2) is represented more extensively than native
language (L1) and involves brain regions subserving cognitive
control, in particular, in bilinguals who have learned their L2

later and/or had low L2 proficiency/exposure, as shown in
previous meta-analyses on both healthy bilinguals (Sebastian
et al., 2012; Liu and Cao, 2016; Cargnelutti et al., 2019;
Sulpizio et al., 2020) and bilinguals with aphasia (Kuzmina
et al., 2019). The age at which appropriation of L2 (i.e., Age
of Appropriation, AoA)1 (Paradis, 1994, 2009; Ullman, 2001,
2005, 2006) occurred and the level of proficiency associated
with L2 (Sebastian et al., 2012; Cargnelutti et al., 2019)
are the two main factors shaping brain representation of
languages in bilinguals.

Linguistic distance may be another potentially important
aspect contributing to the different L1 vs. L2 brain
representations. Several crosslinguistic studies compared
the functional networks associated with processing Chinese or
Japanese vs. English showing that differences, for instance in
phonology or writing, translate into the recruitment of different
brain circuits (Bolger et al., 2005; Tan et al., 2005). Studies
focused on bilinguals enable to understand how the bilingual
brain deals with different processing demands associated
with each language.

Nevertheless, this factor has not been systematically studied
yet, in particular, in neuroimaging studies on bilinguals, in
which quantification of the linguistic distance between the
languages spoken by tested bilinguals is not normally assessed.
Although this quantification is more a matter of linguistics
than neuroscience, a few interesting results can be found in
neuroimaging studies too.

For instance, Jeong et al. (2007a) investigated the functional
brain networks associated with each language in native
Korean trilinguals with English as L2 and Japanese as a third
known language (L3). Both these languages were learned
late (mean AoA 12.3 and 20.6, respectively). Proficiency
in L2 and L3 was comparable. All three languages belong
to different language families, although Korean is more
similar to Japanese than English (e.g., they have similar
syntactic structures and are left-branching, agglutinative
languages). The results showed comparable functional activation
during auditory sentence comprehension between Korean
(L1) and Japanese (L3), whereas English (L2) determined
additional activations in both cortical (e.g., pars opercularis
of left inferior frontal gyrus and right superior temporal
cortex) and subcortical (i.e., right cerebellar hemisphere)
regions. This study clearly shows that the brain functional
networks associated with each language are also shaped,
besides AoA and proficiency, by structural differences
between languages.

A recent meta-analysis addressed the role that the writing
system has on L2 brain representation (Liu and Cao, 2016).
The authors observed that, when L2 is orthographically
shallower (i.e., more transparent) than L1, the primary
sensorimotor cortex and phonological processing areas are
primarily activated, reflecting regularity in grapheme-phoneme
conversion. On the contrary, when L2 is orthographically deeper
(i.e., opaquer), higher-order frontal regions are recruited to
meet additional cognitive demands. These findings suggest
that bilinguals may rely on different processes when using
L2; these processes can be the same as, or differ from,
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FIGURE 1 | PRISMA flowchart. Schematic representation of the paper search and selection processes.

those associated with L1, depending on how much the latter
successfully meet L2 demands, therefore, depending also on
linguistic distance.

This Study
Considering that an increasing percentage of the population
worldwide masters even structurally distant languages, this study
aimed to investigate how L1-L2 linguistic distance may have an
effect on L2 brain representation. We carried out a quantitative
meta-analysis to investigate the role of this factor, although the

linguistic distance was not directly assessed or quantified in the
studies we selected.

In particular, we focused on studies with bilinguals speaking
English (i.e., an Indo-European language) as L2 and either
a European language with Latin script or Chinese (i.e.,
a Sino-Tibetan language) as L1. These specific language
groups were chosen for two reasons as follows: the overall
marked linguistic distance between English and Chinese
(Chiswick and Miller, 2005; Wichmann et al., 2012) and
the fact that there is an adequate number of neuroimaging
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studies involving these language pairs. As detailed below,
we limited our choice to European languages with Latin
script, which are phylogenetically close to English and
have a close common progenitor, as shown by several
language trees (Serva and Petroni, 2008; Chang et al.,
2015). Furthermore, as reported in Chiswick and Miller
(2005), English appeared to be structurally much closer to the
selected Indo-European languages (with a score of 2.25–2.50)
than to Chinese (with a score of 1.00). In other words, we
aimed to inspect whether linguistic distance as derived from
this index can actually translate into differential English-L2
functional activations.

Second, we controlled for the effect of L2 AoA and proficiency,
given that both these factors were identified by prior meta-
analyses as fundamental influencers of the L2 language network
in healthy bilinguals (Sebastian et al., 2012; Liu and Cao, 2016;
Cargnelutti et al., 2019; Sulpizio et al., 2020) and bilinguals
with aphasia (Kuzmina et al., 2019). Specifically, given that late
AoA and low proficiency are likely to pose greater L2 demands
and therefore translate into additional functional activations, we
investigated whether these factors could further modulate the
effect of linguistic distance on L2 brain representation.

We provided an almost exploratory description because only a
few studies to date have explored these specific bilingual patterns.
However, we believed that investigating how L2-related network
changes in response to L1-L2 linguistic distance are a relevant
topic of growing interest. With our current preliminary findings,
we also aimed to prompt further research in the field using
different language pairs and a better conceptualization of the
linguistic distance concept.

METHODS

Paper Selection
We performed a keyword search (i.e., “fMRI” or “functional
MRI,” “PET,” “bilingual∗,” “multilingual∗”) in databases
such as PubMed/MedLine, Scopus, and Scholar to extract
papers published in the 1995–2019 period and focused on
language representation in the bilingual brain. This sample
was complemented by papers identified from inspection
of the reference lists of the identified papers. We selected
peer-reviewed papers written in English, a process that
could lead to a publication bias. However, coordinate-based
meta-analyses look for spatial convergence between reported
coordinates and thus they differ from effect-size meta-analyses,
which quantify the effect size, and are instead prone to
bias. Current meta-analyses are less prone to region- and
task-dependent biases and less affected by the exclusion of
unpublished data (Fox et al., 1998; Rottschy et al., 2012). To
limit potential sources of bias, we excluded findings related to
a priori selected ROIs and chose to include only those from
whole-brain analyses.

The paper selection procedure is shown in Figure 1
(PRISMA flow chart, Moher et al., 2009). We included only
studies performed on healthy adult individuals (aged 18–
60 years) addressing the main language structural domains (i.e.,

lexical semantics, phonology/articulation, and morphosyntax,
see Sebastian et al., 2012; Liu and Cao, 2016). To reduce
data variability, we excluded studies investigating non-
purely linguistic tasks (e.g., affective/emotional components
of language, numbers, and mathematics) and tasks that
were specific to bilinguals (e.g., translation/interpretation,
switching, and language control). The latter tap additional
brain processes as both languages are simultaneously activated
during these tasks and, therefore, deserve a specific meta-
analysis (Luk et al., 2011). We also excluded studies assessing
language performance after either a learning/training period
or some kind of manipulation in the degree of exposure to
a given language.

The paper selection consisted of several steps, which were
guided by the literature and the language pairs spoken by
bilinguals in the eligible papers. Paper inclusion was ultimately
determined by the languages addressed in the candidate papers
and by how much they were represented in the literature.
In the first step, we scrutinized all studies with bilinguals
having an Indo-European language as L2 and either another
Indo-European language or one of the languages spoken
in Eastern Asia as L1 (following language classification in
Wichmann et al., 2012 and measures of language distance in
Chiswick and Miller, 2005).

This first selection resulted in 108 potentially candidate
papers, which were then accurately read to possibly exclude
papers due to: (i) absent or incomplete (not full 3D) coordinates,
only coordinate ranges (i.e., no single coordinate corresponding
to the peak activation in a given functional cluster), coordinates
reported only for a single subject (n = 2); (ii) coordinates from
a priori selected ROIs (n = 3); (iii) analyses with contrasts
not being informative (e.g., they did not differentiate between
different languages or between bilinguals and monolinguals) or
that were too specific or related to a very low-level of linguistic
processing, such as passive viewing of single letters (n = 3); (iv)
assessment after language training (n = 1).

A sample of 99 papers survived this scrutiny as they all
met the criteria for our meta-analysis. Then, we focused on
the available language pairs. We observed that East-Asian
languages considered as L1 included Chinese, Korean, and
Japanese, which belong to three different language families
(i.e., Sino-Tibetan, Koreanic, and Japonic, respectively). In the
large majority of these studies, L2 was English. This led us
to choose this language as a common denominator between
the two groups. Concerning L1, given that only the studies
with Chinese-native speakers had the number of experiments
(n > 15) sufficient to perform robust meta-analyses, we restricted
the analyses to this language. In the group with an Indo-
European language as L1, we chose languages with less linguistic
distance from English (Chiswick and Miller, 2005; Serva and
Petroni, 2008; Chang et al., 2015), namely, alphabetic European
languages with Latin script (as previously described). Then,
Dutch, French, German, Italian, Portuguese, and Spanish were
included (and Bengali, Hindi, Macedonian, and Fārsı̄ excluded).
The resulting sample consisted of 31 studies: 13 studies with
a European language as L1 and 18 studies with Chinese as
L1. Hereafter, we named the two groups as European group
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TABLE 1 | List of all the studies included in the meta-analysis.

Authors N L1 L2 AoA Participants’ age L2 proficiency Technique Type of task Type of contrast

(i)
a,bBerken et al.
(2015)

16
Simultaneous
b; 13
sequential b

French English From birth, for
simultaneous b; 13.9
(5), for sequential b

Simultaneous b: 23.3(3.1);
sequential b: 25.2(4.2)

High fMRI Sentence reading L2>L1

a,bBuchweitz
et al. (2012)

11 Portuguese English 13.08 (3.1; range:
10–22)

29.9 (5.74; range: 20–40) High fMRI Inner speech
production from
different semantic
category items

L2>Baseline

aGolestani et al.
(2006)

10 French English Range: 10–12 Range: 20–28 Varying (overall, moderately
fluent)

fMRI Sentence generation
from single words

L2>Baseline

cHernandez
et al. (2015)

20 Spanish English 3.95 (2.17) 21.55 (2.14; range: 18–26) Higher than L1 fMRI Word reading L2>Baseline

bKovelman
et al. (2008)

11 Spanish English From birth or at 4–5 (at
school)

19 (range: 18–22) High (>80% accuracy in
screening task)

fMRI Semantic judgment on
sentences with classic
or unusual word order

L2>L1

b,cJamal et al.
(2012)

12 Spanish English 3.79 (2.21) 22.67 (range: 18–29) Comparable to L1 fMRI Word reading while
focusing on letter font

L2>Baseline;
L2>L1

cMeschyan and
Hernandez
(2006)

12 Spanish English 4.33 (1.16) 22.3 (1.35; range: 20–25) Higher than L1 fMRI Word reading L2>Baseline;
L2>L1

a,cNosarti et al.
(2009)

17 Italian English 16 (range: 11–21) 31 Self-ratings: 75.8(12.1)/100 fMRI Regular- and
irregular-word reading

L2>Baseline;
L2>L1

a,bPerani et al.
(1998)

9 High-
proficiency b; 9
low-proficiency
b

Italian English After 10 High-proficiency b: 19–50
(range); low-proficiency b:
21–32 (range)

High for one group, low for
the other

PET Story listening
(comprehension)

L2>Baseline

aPerani et al.
(1996)

9 Italian English After 7 Range: 21–32 Moderate PET Story listening
(comprehension)

L2>Baseline

aReiterer et al.
(2013)

26 German English Around 10 28.38 (5.0) and 25.46 (5.0)
(two subgroups
characterized by a different
ability to pronounce an
unknown language)

Varying fMRI Sentence reading
(focus on
pronunciation)

L2>Baseline

a,b,cvan
Heuven et al.
(2008)

12 Dutch English Mean around 11 24.1 (range:19–30) Self-ratings: around 5–6/7 fMRI Lexical decision L2:
Words>pseudo-
words;
L2:bilinguals>
monolinguals

aWaldron and
Hernandez
(2013)

11 early b; 11
late b

Spanish English For early b: 3.18 (1.53;
range: 1–6); for late b:
11 (3.33; range: 7–17)

Early b: 21.5 (1.7); late b:
24.9 (4.1)

Not explicitly stated fMRI Past-tense verb
generation

L2>Baseline;
L2>baseline,
late>early b.
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TABLE 1 | (Continued)

Authors N L1 L2 AoA Participants’ age L2 proficiency Technique Type of task Type of contrast

(ii)
aCao et al.
(2014)

15 Chinese English 11.7 (range: 9–13) 22.9 (2.3) Varying fMRI Word reading with
rhyming judgment

L2>Baseline

aCao et al.
(2013)

26 Chinese English 11.7 (range: 9–13) 22 (range: 19–27) Varying fMRI Word reading with
rhyming judgment

L2>Baseline

cChan et al.
(2008)

11 Chinese English Range: 3–5 Range: 21–32 Significantly lower than L1 fMRI Lexical decision L2>baseline

b,cChee et al.
(2001)

9 Chinese English 5 or before Range: 23–34 High fMRI Semantic association
between words or
characters

L2>Baseline;
L2>L1

b,cChee et al.
(2000)

6 Chinese English 5 or before Range: 20–23 High fMRI Semantic association
between words or
characters

L2>Baseline

a,b,cDing et al.
(2003)

6 Chinese English 12.17 (range: 11–13) 22.67 (Range: 21–24) High fMRI Word reading either
with focus to word font
or with semantic
categorization

L2>Baseline;
L2>L1

aFeng et al.
(2015)

40 Chinese English 12.2 (after 10) 23.2 (1.5) Low to intermediate fMRI Story reading
(comprehension)

L2>L1

a,Jeong et al.
(2007b)

12 Chinese English 12.1 (1.2) 26 (Range:19–35) Level 2 in Society for
Testing English Proficiency

fMRI Sentence
comprehension

L2>Baseline;
L2>L1

a,b,cKlein et al.
(1999)

6 Chinese English 12.1 (range: 10–14) 29 (Range:19–45) > 90% Accuracy on four
different tasks

PET Noun-to-verb
generation

L2>Baseline

a,cLi et al.
(2013)

15 Chinese English 10.64 (2.59) 24.44 (3.43) Moderate fMRI Picture naming L2>L1; L2:
Bilinguals>
monolinguals

a,cLiu et al.
(2010)

24 Chinese English Around 12 21.8 (2.15) Self-ratings: 5.87/10 fMRI Picture naming L2>L1

a,cLuke et al.
(2002)

7 Chinese English After 10 Range: 20–31 Varying (self-ratings:
5.86(0.90)/7 for reading,
5.29(1.60)/7 for speaking)

fMRI Syntactic and semantic
plausibility judgment of
phrases

L2>Baseline

b,cNelson et al.
(2009)

11 Chinese English N/A Not specified (but University
students)

High fMRI Passive viewing of
written words and
characters

L2>Baseline
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and Chinese group, respectively. The full list of papers is
reported in Table 1.

Statistical Analyses
The analyses were carried out using the GingerALE software
(brainmap.org), relying on a coordinate-based activation
likelihood estimation (ALE) algorithm, looking for consistency
in functional coordinates across reported contrasts (Turkeltaub
et al., 2012; Eickhoff et al., 2009; Laird et al., 2009a,b). This
algorithm is based on a random-effect approach that accounts
for spatial uncertainty by treating the reported foci as centers for
3D Gaussian probability distributions. The provided probability
distribution maps, which were weighted on the number of
subjects, described the probability for a given focus to be
within a given voxel.

We performed the following analyses:

(i) Investigation of the functional brain networks associated
with the two languages, and specifically with L2, in both
groups and subsequent comparison between the two groups.
We were confident in including different language tasks in the
same analysis, given that the algorithm, as just described, looks
for areas showing a convergence of activation across different
experiments and therefore provides only consistently recurring
activations. This choice was also motivated by the restricted
number of selected studies, which prevented robust analyses
for specific linguistic domains, tasks, or stimulus presentation
modalities. However, in Supplementary Results, we reported an
exploratory analysis on lexical semantics, which was the most
frequently represented domain.

(ii) Investigation of the role of AoA. After carrying out the
analysis on the whole groups of bilinguals—which we expected
to provide the most general and robust functional activations
irrespective of influencers –, we identified two groups of early and
late bilinguals following the most commonly adopted AoA cutoff
(i.e., L2 appropriation either before or after the age of 6 years).
We found that studies including early bilinguals (AoA < 6) were
limited in number, especially for the Chinese group. For this
reason, we restricted the analyses to late bilinguals. We expected
the analysis to focus on late bilinguals to better highlight potential
differences between the two groups.

(iii) Investigation of the role of L2 proficiency. Assessment
of proficiency is sometimes inappropriate for the purpose of
systematic analyses. Accordingly, many studies reported either
qualitative or quantitative—yet non-objective—proficiency rates
(e.g., self-ratings in rating scales). Only a small percentage
of studies tested the proficiency level by a comprehensive
screening and standardized batteries, even though neither proved
an optimal measure of proficiency (Grosjean, 2010). Although
conscious of possible biases, we retained only studies declaring a
high proficiency or with high self-rating or screening test scores.
As long as proficiency was observed to reduce differences in brain
activations between L1 and L2 (Sebastian et al., 2012), it was
interesting to investigate to what extent these differences could
be modulated by linguistic distance.
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TABLE 2 | Results of main effect and contrast activation likelihood estimation (ALE) meta-analyses for L2 (i.e., English) in the European and Chinese (whole) groups.

Cluster (local maxima) MNI coordinates Cluster size (voxels) z-score

x y z

L2—European group (30 experiments, 368 subjects, and 265 foci)

1 L precentral gyrus –42 –4 38 116 5.15

2 L inferior frontal gyrus –38 22 –10 439 4.87

L insula lobe –46 4 4

L inferior frontal gyrus –40 28 0

L insula lobe –42 12 –2

L2—Chinese group (24 experiments, 320 subjects, and 173 foci)

1 L superior parietal lobule (area hIP3) –30 –64 48 271 5.63

2 L inferior frontal gyrus –40 6 26 436 4.91

L precentral gyrus –56 12 32

L insula lobe –38 0 18

L inferior frontal gyrus –44 20 30

3 R posterior-medial frontal gyrus 2 10 52 324 4.77

L posterior-medial frontal gyrus –2 24 54

R mid cingulate cortex 6 26 40

L2—European group ∩ Chinese group (54 experiments, 688 subjects, and 438 foci)

No suprathreshold clusters

L2—European group > Chinese group (54 experiments, 688 subjects, and 438 foci)

1 L insula –40 14 –10 97 3.09

L2—Chinese group > European group (54 experiments, 688 subjects, and 438 foci)

1 L inferior parietal lobule (area hIP3) –34 –62 46 65 2.74

2 L inferior frontal gyrus –42 6 24 242 3.29

Anatomical localization, macroanatomic area and, when provided, cytoarchitectonic location (in parentheses) are indicated.

We performed (i) main effect analyses, which provide results
consisting in the functional activations associated with a specific
condition (i.e., L2 in the European group and L2 in the Chinese
group) and (ii) contrast analysis, which provide conjunction
results, namely, the areas activated in both conditions (i.e., in
both the European and the Chinese groups), and subtraction
results, which reveal specific activations, namely, areas emerging
from the direct comparison between the two conditions and
being activated in one condition but not in the other (i.e.,
the functional activations of the European group survived after
subtracting activations of the Chinese group and vice versa).

To set thresholds for both main effect and contrast analyses,
we followed the software user instructions and reference articles
(Eickhoff et al., 2016; Xu et al., 2020), in order to use approaches
already observed to be highly reliable. For main effect analyses,
we used a p < 0.05 permutation-based cluster-level family-wise
error (FWE) corrected threshold (1,000 permutations; voxel-wise
threshold p < 0.001, uncorrected) and a minimum cluster size
of 200 mm3 (25 voxels). This is a conservative thresholding
approach. For contrast analyses, we based on the conservative
minimum statistics (Nichols et al., 2005); therefore, only areas
that resulted to be significant in the individual analyses were
included. We thresholded probability values at p < 0.001,
with 10,000 p-value permutations and minimum cluster size of
80 mm3 (10 voxels); however, for the conjunction results, we only
retained clusters of at least 120 mm3 (15 voxels), in order to avoid
incidental overlap between individual ALE maps (Rottschy et al.,
2012; Krall et al., 2015).

We transferred the coordinates to Montreal Neurological
Institute (MNI) standard space. Coordinates in Talairach and
Tournoux (1988) space were converted to the MNI space
by icbm_spm2tal transform before running the analyses.
Anatomical localization and labeling of resultant clusters of
activation were performed using the SPM Anatomy toolbox
(Eickhoff et al., 2005), which assigns activations to the most
probable cytoarchitectonic area.

RESULTS

L2
Results of both main effect and contrast analyses are reported in
Table 2. Figure 2 shows the results from main effect analyses and
Figure 3 from contrast analyses.

Main Effect: European (Whole) Group
This analysis included 30 experiments, 368 subjects, and 265
foci. L2-associated brain activations emerged in the following
regions of the left hemisphere: (i) precentral gyrus, (ii) inferior
frontal gyrus (including regions associable with the dorsolateral
prefrontal cortex, DLPFC), and (iii) insula.

Main Effect: Chinese (Whole) Group
This analysis included 24 experiments, 320 subjects, and 173 foci.
L2 activation clusters in the group of bilinguals with Chinese as
L1 included left-lateralized activations in the (i) superior parietal
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FIGURE 2 | Rendered functional activations associated with L2 (i.e., English) main effects. Rendered anatomical depiction (in neurological convention) of main effect
results associated with L2 in the European and Chinese (whole) groups. IFG, inferior frontal gyrus; L, left hemisphere; MCC, mid-cingulate cortex; PCG, precentral
gyrus; posterior-medial FG, posterior-medial frontal gyrus; R, right hemisphere; SPL, superior parietal lobule. On axial slices, numbers in blue indicate z-coordinates
in MNI space. Bars indicate ALE values.
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FIGURE 3 | Rendered functional activations associated with L2 (i.e., English) specifically for the European and Chinese groups. Rendered anatomical depiction (in
neurological convention) of contrast analysis results specifically associated with L2 in the European and Chinese (whole) groups. IFG, inferior frontal gyrus; IPL,
inferior parietal lobule; L, left hemisphere; R, right hemisphere. On axial slices, numbers in blue indicate z-coordinates in MNI space. Bars indicate z-scores.
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lobule (SPL) (area hIP3), (ii) inferior frontal gyrus (including
regions associable with the DLPFC), (iii) precentral gyrus, and
(iv) insula; activations in both hemispheres were observed for the
(iv) posterior-medial frontal gyrus.

Contrast analyses included 54 experiments, 688
subjects, and 438 foci.

Conjunction Analysis: European (Whole) Group ∩

Chinese (Whole) Group
The analysis did not provide any suprathreshold clusters.

Subtraction Analysis: European (Whole)
Group > Chinese (Whole) Group
This analysis showed a specific activation in the (i) left insula.

Subtraction Analysis: Chinese (Whole)
Group > European (Whole) Group
This contrast provided activations in the left (i) inferior parietal
lobule (IPL) (area hIP3) and (ii) inferior frontal gyrus (region
including the DLPFC).

L2 in Late Bilinguals
The main effect and contrast analysis results are detailed in
Table 3. Figure 4 shows the results from main effect analyses and
Figure 5 from contrast analyses.

Late-Learned L2 in the European Group
This analysis included 16 experiments, 188 subjects, and 135
foci. L2-associated activation clusters were found in the following
regions of the left hemisphere: (i) area not matching with any
probability map (located in the hippocampus) and (ii) inferior
frontal gyrus (including regions associable with the DLPFC).

Main Effect: Late-Learned L2 in the Chinese Group
This analysis included 16 experiments, 230 subjects, and 120
foci. L2-associated functional activations included left-lateralized
activations in the (i) SPL (area 7A) and (ii) precentral gyrus
(BA 44), whereas bilateral activation involved the (iii) posterior-
medial frontal gyrus.

Contrast analyses included 32 experiments, 418
subjects, and 255 foci.

Conjunction Analysis: Late-Learned L2 in the
European Group ∩ Late-Learned L2 in the Chinese
Group
The analysis did not provide any suprathreshold clusters.

Subtraction Analysis: Late-Learned L2 in the
European Group > Late-Learned L2 in the Chinese
Group
Direct group comparison showed activations in the left (i)
area not matching with any probability map (located in the
hippocampus) and (ii) insula.

Subtraction Analysis: Late-Learned L2 in the Chinese
Group > Late-Learned L2 in the European Group
This contrast provided activations in the left (i) SPL (area hIP3)
and (ii) inferior frontal gyrus (region including the DLPFC).

L2 in Proficient Bilinguals
The main effect and contrast analysis results are detailed in
Table 3. Figure 6 shows the results from main effect analyses and
Figure 7 from contrast analyses.

Main Effect: L2 in the Proficient European Group
This analysis included 12 experiments, 140 subjects, and 113
foci. L2-associated activation clusters were found in the left (i)
superior frontal gyrus and (ii) insula.

Main Effect: L2 in the Proficient Chinese Group
This analysis included 11 experiments, 119 subjects, and 54 foci.
In this group, L2-associated activations were found in the left (i)
inferior frontal gyrus (including regions associable with DLPFC)
and (ii) posterior-medial frontal gyrus.

Contrast analyses included 33 experiments, 259
subjects, and 167 foci.

Conjunction Analysis: Proficient L2 in the European
Group ∩ Proficient L2 in the Chinese Group
The analysis did not provide any suprathreshold clusters.

Subtraction Analysis: Proficient L2 in the European
Group > Proficient L2 in the Chinese Group
This comparison showed activations in the left (i)
inferior frontal gyrus.

Subtraction Analysis: Proficient L2 in the Chinese
Group > Proficient L2 in the European Group
This comparison provided activations in the left (i) inferior
frontal gyrus and (ii) posterior-medial frontal gyrus.

DISCUSSION

It is widely known that second language (L2) generally poses
greater cognitive demands to bilinguals than the first language
(L1), resulting in the recruitment of wider and/or additional
brain regions (see meta-analyses by Indefrey, 2006; Sebastian
et al., 2012; Liu and Cao, 2016; Cargnelutti et al., 2019).
Nevertheless, the impact of linguistic distance is not completely
clear. We identified two groups, both having English as L2, and
explored whether the L2 functional network differed between
bilinguals having as L1 either an Indo-European language
structurally close to English or Chinese, which belongs to
the Sino-Tibetan family and is structurally distant to English
(Chiswick and Miller, 2005; Chang et al., 2015). We also
controlled for the effects of L2 AoA and proficiency. Although,
in these analyses, we could only control for one factor
at a time (therefore, the group of late bilinguals included
both low- and high-proficiency bilinguals and the group of
proficient bilinguals included both early and late bilinguals),
we observed that the resulting suprathreshold clusters were
independent of the other factor (e.g., clusters in the group of
late bilinguals were driven by both low- and high-proficiency
bilinguals), indicating that AoA and proficiency are likely to
shape independently—at least partially—the functional network
associated with L2. Findings from the current meta-analysis
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TABLE 3 | Results of main effect and contrast ALE meta-analyses for late-learned L2 and proficient L2 (i.e., English) in the European and Chinese groups.

Cluster (local maxima) MNI coordinates Cluster size (voxels) z-score

x y z

Late-learned L2

European group (16 experiments, 188 subjects, and 135 foci)

1 N/A (hippocampus) –26 –44 8 153 6.01

2. L inferior frontal gyrus –40 28 0 223 5.11

L inferior frontal gyrus –38 20 –10

Chinese group (16 experiments, 230 subjects, and 120 foci)

1 L superior parietal lobule (area 7A) –30 –64 50 241 5.83

2 L precentral gyrus (BA 44) –56 12 32 177 4.65

3 L posterior-medial frontal gyrus –2 24 54 187 4.70

R posterior-medial frontal gyrus 2 10 52

European group∩ Chinese group (32 experiments, 418 subjects, and 255 foci)

No suprathreshold clusters

European group > Chinese group (32 experiments, 418 subjects, and 255 foci)

1 L N/A (hippo) –30 –48 2 153 3.43

2 L insula –38 18 –12 49 2.60

Chinese group > European group (32 experiments, 418 subjects, and 255 foci)

1 L superior parietal lobule (area hIP3) –28 –60 44 125 2.74

2 L inferior frontal gyrus –58 10 26 72 2.97

Proficient L2

European group (12 experiments, 140 subjects, and 113 foci)

1 L superior frontal gyrus –20 18 56 92 4.75

2 L insula –38 20 –8 212 4.85

3 R insula 36 26 –6 99 4.73

Chinese group (11 experiments, 119 subjects, and 54 foci)

1 L inferior frontal gyrus –44 10 28 310 4.46

L inferior frontal gyrus –44 20 30

L inferior frontal gyrus –50 18 20

2 L posterior-medial frontal gyrus –2 24 54 312 5.50

L posterior-medial frontal gyrus 0 14 50

L posterior-medial frontal gyrus –4 20 66

3 L inferior frontal gyrus –30 32 6 85 4.29

European group∩ Chinese group (33 experiments, 259 subjects, and 167 foci)

No suprathreshold clusters

European group > Chinese group (33 experiments, 259 subjects, and 167 foci)

L inferior frontal gyrus –40 18 –14 160 2.31

Chinese group > European group (33 experiments, 259 subjects, and 167 foci)

1 L inferior frontal gyrus –44 8 24 224 2.70

2 L posterior-medial frontal gyrus –4 16 50 69 2.04

Anatomical localization, macroanatomic area and, when provided, cytoarchitectonic location (in parentheses) are indicated.
1We used the term appropriation instead of the traditional term acquisition because—as pointed out by Paradis (2009)—appropriation is more general as it includes both
acquisition—which relies on implicit processes mainly characterizing early language appropriation—and learning—which relies on explicit processes mainly characterizing
late language appropriation.
2Parietal activation was not found in L1 main effect analysis (see Supplementary Results), probably because of the strict thresholds we applied and the small number of
studies included. Two clusters emerged in SPL (46 voxels, peaking at x = –24, y = –66, z = 40, and 42 voxels, peaking at x = –32, y = –62, z = 56) with more permissive
thresholds only. This hypothesis could be confirmed in future by further studies.

provide a glimpse of the mechanisms that regulate brain
response to L2 with important implications for research and,
possibly, clinical work.

Modulatory Effect of Linguistic Distance
The first analysis included all the selected studies independently
of language domain, task, and presentation modality or

factors relevant to bilingualism, such as AoA or proficiency.
Interestingly, contrast analysis revealed a specific activation of
the left insula for the European group and of the inferior
frontal gyrus in the territory of the DLPFC for the Chinese
group. Furthermore, the Chinese group selectively activated a
cluster peaking in the intraparietal sulcus and extending to
both IPL and SPL.
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Activation of the insula and of the DLPFC was not surprising
as these areas subserve more general higher cognitive functions
including cognitive control, monitoring, and attention. Although
not language-specific, these functions were observed to play a
relevant role in language, particularly in cognitively demanding
situations such as those posed by bilingualism. Concerning the
specific activation in the European group, the insula has a
relevant role in diverse cognitive functions including language
(Oh et al., 2014) and is particularly involved in supporting
the execution of tasks posing conflict and interference (Wager
et al., 2005). In light of these findings, it could appear
counterintuitive for this region to be specifically recruited in
bilinguals knowing closer languages. In point of fact, one may
hypothesize a greater need for cognitive support when dealing
with two languages significantly differing in many respects (e.g.,
phonology and writing system) due to the need to switch to
a different processing modality (e.g., the way graphemes are
converted into phonemes).

Nevertheless, there is strong evidence that handling two
languages is more challenging when they share linguistic
features rather than when they are more structurally distant
(Paradis, 1994, 2004, 2009; Fabbro, 1999); this is also shown by
interference occurring, in specific conditions, between cognate
words (Colomé and Miozzo, 2010; Muscalu and Smiley, 2019).
This phenomenon was also described in some clinical studies
in which languages sharing cognate words were observed to
interfere with each other, thus hampering recovery in some
bilingual patients with aphasia (Kurland and Falcon, 2011).

Regarding the Chinese group, selective activation of another
crucial area involved in general cognitive functions was observed,
namely, the DLPFC (MacDonald et al., 2000; Mansouri et al.,
2007). In bilinguals, the DLPFC located in the inferior frontal
gyrus included the control network, which regulates selection and
control, in particular when a weaker language is in use (Abutalebi
and Green, 2007, 2016). A cluster in the inferior/middle frontal
gyrus (MNI coordinates: x = -44, y = 18, and z = 20)
was also found in the meta-analysis by Liu and Cao (2016)
with an L2 which was orthographically deeper (i.e., opaquer)
than L1, as in the case of Chinese vs. English. The authors
hypothesized that this area was recruited to handle the greater
difficulty to coordinate sounds and meaning when L2 is an
opaque language.

Taken together, these findings seem to suggest that,
irrespective of similarity between known languages, bilinguals do
tend to strongly rely on cognitive resources when dealing with
their L2; however, the cognitive demands posed by closer vs.
more distant languages could be different and translate into the
specific recruitment of different areas. This hypothesis is more
deeply discussed in the next paragraphs, where we illustrated the
results obtained when controlling for AoA and proficiency.

The other specific activation for the Chinese group involved
the IPL and SPL.2 The IPL has been mainly (although not
uniquely) associated with phonological processing in both
Chinese (Wu et al., 2012) and European languages (Hartwigsen
et al., 2010) as well as with lexical knowledge in both (Mechelli
et al., 2004; Abutalebi et al., 2015). Inspection of the contrasts
contributing to this cluster showed that they pertained to

different language domains and suggested that this activation was
not task-specific.

The cluster we found also covered the SPL, which is generally
recruited during spelling-to-sound mapping (Taylor et al., 2013)
and acts as a station for audio-visual multisensory integration
(Molholm et al., 2006). This area was observed to be particularly
crucial for Chinese language processing, for instance when
processing characters across diverse tasks (e.g., orthographic
and semantic; see meta-analysis by Wu et al., 2012), but it is
also involved in processing Japanese Kanji characters (Matsuo
et al., 2000). For this reason, the SPL is considered a typical
logographic language area, with a hypothesized involvement in
holistic visuospatial processing (Bolger et al., 2005).

Activation of this area can be tentatively explained by
drawing on the assimilation-accommodation hypothesis (Perfetti
et al., 2007), which postulates that bilinguals may either
rely on assimilation (i.e., applying the same procedures
developed for L1 to L2 as well) or on accommodation (i.e.,
“abandoning” the procedures associated with L1 processing to
activate those specific for L2). Our results cautiously suggest
that Chinese-English bilinguals tend to rely on assimilation
when using English.

Overall, these findings (Liu and Cao, 2016) suggest that
the application of long-established mechanisms, although not
perfectly fitting with the new language demands, could be the
default strategy used to deal with a new distant language. This
can more likely occur with late language learning, as findings
the related paragraph seem to suggest. Bilinguals would use
these mechanisms as long as these are effective and develop
new-language-specific processing mechanisms only when those
associated with L1 are inefficient.

Another interesting activation cluster in the Chinese—but
not the European—group was represented by the posterior-
medial frontal cortex, although it did not survive the statistical
thresholds in the subtraction analysis. The cluster was located
in close proximity to the pre-SMA/ACC region described by
Abutalebi and Green, another fundamental station in language
control, as it is involved in appropriate language selection and
switching between languages (Abutalebi and Green, 2007, 2016).
This activation, too, showed the high cognitive demand posed by
L2 in this group of bilinguals.

These preliminary results probably reflect the activation
clusters that are more tightly associated with the two conditions
(closer vs. more distant language pairs). These activations are
also likely to bypass language domain-specificity and represent
the brain areas that are generally recruited when performing any
task in L2, as they can reflect the cognitive load of managing
an additional language (see also the exploratory lexical-semantic
analysis in Supplementary Results).

Age of Appropriation Effect
Several previous meta-analyses addressed the role of AoA and
showed that, overall, late language learning (typically after the
age of 6 years) is associated with the recruitment of additional
and/or wider brain areas (Liu and Cao, 2016; Cargnelutti et al.,
2019). This reflected a higher cognitive effort with respect to
early L2 acquisition. The impact of AoA can be even more
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FIGURE 4 | Rendered functional activations associated with L2 (i.e., English) main effects in late bilinguals. Rendered anatomical depiction (in neurological
convention) of main effect results associated with late-learned L2 in the European and Chinese groups. hippo, hippocampus; IFG, inferior frontal gyrus; L, left
hemisphere; PCG, precentral gyrus; posterior-medial FG, posterior-medial frontal gyrus; R, right hemisphere; SPL, superior parietal lobule. On axial slices, numbers
in blue indicate z-coordinates in MNI space. Bars indicate ALE values.
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FIGURE 5 | Rendered group-specific functional activations associated with L2 (i.e., English) in late bilinguals. Rendered anatomical depiction (in neurological
convention) of contrast analysis results specifically associated with late-learned L2 in the European and Chinese groups. hippo, hippocampus; IFG, inferior frontal
gyrus; L, left hemisphere; R, right hemisphere; SPL, superior parietal lobule. On axial slices, numbers in blue indicate z-coordinates in MNI space. Bars indicate
z-scores.
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FIGURE 6 | Rendered functional activations associated with L2 (i.e., English) main effects in proficient bilinguals. Rendered anatomical depiction (in neurological
convention) of main effect results associated with proficient L2 in the European and Chinese groups. IFG, inferior frontal gyrus; L, left hemisphere; posterior-medial
FG, posterior-medial frontal gyrus; R, right hemisphere; SFG, superior frontal gyrus. On axial slices, numbers in blue indicate z-coordinates in MNI space. Bars
indicate ALE values.
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FIGURE 7 | Rendered group-specific functional activations associated with L2 (i.e., English) in proficient bilinguals. Rendered anatomical depiction (in neurological
convention) of contrast analysis results specifically associated with proficient L2 in the European and Chinese groups. IFG, inferior frontal gyrus; L, left hemisphere;
posterior-medial FG, posterior-medial frontal gyrus; R, right hemisphere. On axial slices, numbers in blue indicate z-coordinates in MNI space. Bars indicate z-scores.
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interesting in relation to linguistic distance: one may hypothesize
that learning a new structurally distant language might be more
demanding when it takes place late, therefore, when the cognitive
mechanisms for L1 are already established.

For this reason, we replicated the analysis while controlling for
AoA. Unfortunately, data for early bilinguals were limited, and
therefore, comparison between early and late bilinguals was not
possible. However, we can make indirect inferences on the results
of late bilinguals. Our analyses showed that the European group
activated specifically the left insula and hippocampus, whereas
the Chinese group activated the left DLPFC and SPL. The main
effect analysis showed that this group also activated the posterior-
medial frontal gyrus. Also, in this case, the two groups did not
share any suprathreshold activation clusters.

Findings for the Chinese group replicate those achieved for the
whole group (i.e., without distinction based on AoA), suggesting
that the specific activations we observed could be more relevant
for the Chinese bilinguals having learned English late. This is
reasonable as greater cognitive control—reflected in the specific
activation of the DLPFC—can be necessary to learn L2 when
the L1 network is already developed. Furthermore, as previously
commented, late learners may tend to approach a new language
by first applying—and, if successful, keeping—the same cognitive
mechanisms developed to process L1 (assimilation). Activation of
the SPL in late bilinguals suggested that this could be the case.

Concerning the European group, it was interesting to observe
that the left insula was activated for the whole group. By
inspecting the contrasts contributing to the cluster, we observed
that these were represented by tasks involving potential conflict,
for instance, lexical decision (i.e., decide if letter strings were
real words or not). This finding contributes to supporting the
previously mentioned hypothesis of insula recruitment to solve
potential conflicts, which are amplified when dealing with L2.

With regard to the other European-group-specific activation,
this did not match any macroanatomic probability map
but it predominantly included the hippocampus. Contrasts
contributing to this cluster mostly emerged from the comparison
of morphological tasks in late vs. early bilinguals, suggesting
that the hippocampus might be more likely recruited in the
case of late AoA. This specific activation was observed to
be driven by tasks tapping grammar. This was in agreement
with the memory models describing language learning vs.
acquisition (Paradis, 1994, 2004, 2009; Ullman, 2001, 2005,
2006). In fact, late learning involves the explicit memory
system, whereas early acquisition relies on implicit processes,
allowing the automatic performance of these tasks. In light
of this theoretical background, the European group could rely
on hippocampal activation, which is fundamental for memory
retrieval, when performing morphological tasks in English.
The different European languages included in our study are
significantly more similar to English than Chinese (Chiswick and
Miller, 2005). Accordingly, it is plausible that European bilinguals
mainly rely on direct recall to perform these tasks in order to
bypass potential interference between grammar rules of close
languages. A retrieval could be a more effective strategy, whereas
recruitment of regions supporting cognitive processing might
be more successful for Chinese bilinguals. Another hypothesis

comes from the recently observed role of the hippocampus in
the flexible use and processing of language (Covington and Duff,
2016) and, remarkably, in associative learning (Brasted et al.,
2003). Accordingly, its activation could reflect a more efficient
learning process, where the potential obstacle represented by late
AoA is overcome by the development of flexible and associative
strategies for new rule application. These are only speculations,
which need to be confirmed by a sufficient number of studies
comparing activations associated with the same linguistic tasks
in different groups of bilinguals; in this way, it would be possible
to understand whether hippocampal involvement depends on
specific tasks, languages, or profile of bilinguals (e.g., AoA
and proficiency).

Proficiency Effect
Another crucial aspect concerns the role of proficiency as
discussed in previous meta-analyses (Sebastian et al., 2012;
Cargnelutti et al., 2019): low proficiency is associated with greater
cognitive effort and then with greater activation of areas involved
in cognitive control. The role of proficiency in relation to
linguistic distance could be particularly interesting to explore.

As previously detailed, we could not make a direct comparison
between low- and high-proficiency bilinguals owing to the
paucity of available data. The exploratory analysis carried
out on bilinguals who were proficient in their L2 shows—
partially unexpectedly—that both the European and Chinese
groups activated regions supporting general cognitive functions.
European bilinguals activated the insula bilaterally, although
this activation emerged from the main effect analysis only
and not from the subtraction analysis (again, probably due
to the paucity of studies, which is a limitation especially in
subtraction analyses). In contrast, the Chinese group activated
specifically the posterior-medial frontal gyrus. Taken together,
these findings indicate the role of these regions in supporting
even proficient performance.

The insula was previously observed to activate in balanced
bilinguals (i.e., bilinguals with native-like performance in both
languages) compared with less proficient bilinguals and also in
response to increased task difficulty (Chee et al., 2004). This
seems to confirm that this region is recruited to cope with
increased cognitive demands (Vigneau et al., 2011). In light of
these findings, we can also hypothesize that the insula is activated
when L2 is mastered very well: a very good mastery of more
than one language is a demanding process but the insula could
promote an anyway proficient performance.

By looking at peak location, it was similar between proficient
bilinguals and late bilinguals (note that analysis in the group of
late bilinguals included six contrasts referring to high-proficiency
bilinguals and 10 to low-proficiency bilinguals, suggesting that
a similar result could have been affected independently by both
AoA and proficiency). For both groups, we can hypothesize
a similar role of the insula in supporting the cognitive effort,
although for different reasons: (i) the need for proficient
bilinguals to perfectly master the two languages in conflict
situations (i.e., bilingual environment) and (ii) the need for
late bilinguals to overcome obstacles posed by late learning.
Therefore, the other activation clusters are likely to work
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in synergy with the insula to meet the specific demands of
the two conditions.

Regarding the Chinese group, the lack of SPL activation
in this analysis is noteworthy. Although a direct comparison
between high- and low-proficiency bilinguals was not possible,
we could speculate that a high level of proficiency can
be more easily reached when accommodation—rather than
assimilation—processes take place and may also be prompted
by accommodation. High proficiency is more likely gained
throughout proper recruitment of the areas supporting general
cognitive functions than by areas specifically associated with
a given language.

CONCLUSION

This meta-analysis showed recurrent L2-associated activation
of regions involved in general higher cognitive functions,
despite some differences between the two groups of bilinguals.
These differences probably reflected the different cognitive
efforts—therefore, recruitment of different cognitive resources—
associated with L2 depending on a different degree of linguistic
distance with L1.

The insula appeared to be mainly activated to solve potential
conflicts between structurally closer languages, whereas the
DLPFC and posterior-medial frontal gyrus (pre-SMA/ACC)
when the two languages differ to a greater extent. The crucial
SPL activation in the Chinese group seems to support a general
tendency for reliance on assimilation when processing English,
but this was not likely to be the case for proficient bilinguals.

However, we highlighted the limitations of this study and
declared its almost exploratory intent. These limitations were
not completed due to the study design. First, a small number of
studies met the inclusion criteria, which was probably the reason
why we observed fewer-than-expected functional activations.
Another limitation concerned the characteristics of the bilingual
populations, for instance, the small number of early Chinese-
English bilinguals. Furthermore, proficiency was not assessed in
an objective way in all the included studies, preventing a reliable
classification based on this criterion. Therefore, we suggested
a more accurate investigation of this variable in future studies,
possibly evaluating the degree of language exposure as well.
Another limitation is the lack of a robust definition of linguistic

distance and the fact that this was not assessed and quantified in
neuroimaging studies on bilinguals.

Nevertheless, these preliminary findings could help us better
understand how linguistic distance interacts with other relevant
factors such as AoA and proficiency in defining the L2 functional
network. Our findings may also provide some useful hints
from a clinical viewpoint: knowing which brain regions are
specifically involved in language processing in these bilinguals
may contribute to understanding the impact of potential damage
on L1 and L2 performance. This study stresses the importance of
cognitive control regions and suggests including specific training
of these abilities in the rehabilitation of patients developing
bilingual aphasia.
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