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United Kingdom

Peripheral vision has different functional priorities for mammals than foveal vision.
One of its roles is to monitor the environment while central vision is focused on
the current task. Becoming distracted too easily would be counterproductive in this
perspective, so the brain should react to behaviourally relevant changes. Gist processing
is good for this purpose, and it is therefore not surprising that evidence from both
functional brain imaging and behavioural research suggests a tendency to generalize
and blend information in the periphery. This may be caused by the balance of perceptual
influence in the periphery between bottom-up (i.e., sensory information) and top-down
(i.e., prior or contextual information) processing channels. Here, we investigated this
interaction behaviourally using a peripheral numerosity discrimination task with top-
down and bottom-up manipulations. Participants compared numerosity between the
left and right peripheries of a screen. Each periphery was divided into a centre and
a surrounding area, only one of which was a task relevant target region. Our top-
down task modulation was the instruction which area to attend – centre or surround.
We varied the signal strength by altering the stimuli durations i.e., the amount of
information presented/processed (as a combined bottom-up and recurrent top-down
feedback factor). We found that numerosity perceived in target regions was affected
by contextual information in neighbouring (but irrelevant) areas. This effect appeared as
soon as stimulus duration allowed the task to be reliably performed and persisted even
at the longest duration (1 s). We compared the pattern of results with an ideal-observer
model and found a qualitative difference in the way centre and surround areas interacted
perceptually in the periphery. When participants reported on the central area, the
irrelevant surround would affect the response as a weighted combination – consistent
with the idea of a receptive field focused in the target area to which irrelevant surround
stimulation leaks in. When participants report on surround, we can best describe the
response with a model in which occasionally the attention switches from task relevant
surround to task irrelevant centre – consistent with a selection model of two competing
streams of information. Overall our results show that the influence of spatial context in
the periphery is mandatory but task dependent.
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INTRODUCTION

Visual resolution decreases toward the periphery of the visual
field, compared to foveal vision. Accordingly, while functional
brain imaging research using a visual occlusion paradigm shows
that the content of a visual scene can be decoded from brain
activity patterns in a non-stimulated, peripheral part of the
retinotopic visual cortex (Smith and Muckli, 2010; Muckli et al.,
2015; Revina et al., 2018; Morgan et al., 2019), human peripheral
vision tends to generalise scene information, as evidenced by
behavioural phenomena such as crowding (e.g., Balas et al.,
2009), the uniformity illusion (Otten et al., 2017), and a higher
prominence of gist processing (Larson and Loschky, 2009). This
tendency to generalize and blend information is ecologically
relevant, if we consider that one of the roles of peripheral vision
is to monitor the environment for relevant changes while we
use foveal vision to focus on the current task. For example, in
rabbits, the upper peripheral visual field is particularly tuned
for dark spots on blue skies signifying predator birds (Levick,
1967; Steele-Russell et al., 2012). As humans, we need to cancel
out redundant or predictable information in the periphery to
save processing power and not be too easily distracted. On the
other hand, we need to be made aware of those changes in the
environment that are sufficiently salient or unpredictable to be
worth further consideration.

Here, we aimed to study behaviourally the specific perceptual
processing supporting these features of peripheral vision. In
particular, we were interested in whether these phenomena can
be explained by a distinct calibration of bottom-up (i.e., sensory
information) and top-down (e.g., Stewart et al., 2020) selection of
task relevant visual space in the peripheral vision. We selected
numerosity as a perceptual property because it is a low-level
feature susceptible to gist processing (Park et al., 2016; Fornaciai
et al., 2017), and independent to other primary visual properties
like objects, colour, shape, or location (Burr and Ross, 2008).
It is also easy to manipulate on a numerical continuum for
psychophysics purposes (e.g., Valsecchi et al., 2013).

We designed a task using Maximum Likelihood Conjoint
Measurement (MLCM; Ho et al., 2008; Knoblauch and Maloney,
2012; Maloney and Knoblauch, 2020), a signal-detection based
scaling paradigm which we used to characterises the separate
contribution of perceptual attributes to perceived numerosity in
the periphery. We presented arrays of dots of varying numbers
in the left and right peripheral visual fields and participants
had to indicate whether there were more dots on the left or
the right side. The peripheral areas on each side were further
divided into a centre and a surrounding region, only one of which
was the task-relevant target while the other was a task-irrelevant
context. We could then quantify how perceived numerosity in the
relevant part of the display (bottom-up information) is biased
toward the number of dots presented in the irrelevant part
(contextual information).

In the case that we found a perceptual bias toward the task-
irrelevant signal, a possible account would be based on the
imprecision of the top-down connections that span out to a larger
region. The feedforward input is then not matched by the correct
top-down predictions. In such a leaking model prediction errors

around the boundaries could lead to an over or underestimation
around the boundaries. This Predictive Coding account would
lead to an integrative process in which bottom-up and top-
down signals are combined to a distorted perception based on
integration of a prediction error around boundaries (e.g., Rao
and Ballard, 1999; Friston, 2005). An alternative outcome would
be observing a serial process under which only one source of
information can be perceived at a time (e.g., limited perceptual
capacity; Yiǧit-Elliott et al., 2011), and including contextual
signals increases the ambiguity of the overall stimuli to the extent
that the irrelevant cue is sometimes perceived as the target (e.g.,
Craig, 1976; Berry and Fristedt, 1985). This model of a serial
process could be explained in terms of Predictive Coding the
way Jakob Hohwy explains binocular rivalry (Hohwy et al., 2008):
the target model explains away the stimuli of the target region,
but leaves the stimuli in the irrelevant regions unexplained as
a consequence the irrelevant region creates so much prediction
error that it sometimes forces the internal model into one that is
consistent with the irrelevant information. In order to assess these
two accounts, we consider the integration and switching models
that make different assumptions about mandatory integration
for perceiving the target and contextual stimuli. We aimed to
clarify whether the perceptual decisions were made as a weighted
average of relevant and irrelevant signals, or were made on the
basis of a probability either according to the relevant or irrelevant
part of the display, on a trial by trial basis.

Quantifying contextual effects also allowed us to study how
the combination of perceptual cues is modulated by both higher-
level top-down and bottom-up factors. Firstly, as a bottom-up
factor, we varied the duration of presentation intervals to assess
how contextual influence is related to the amount of acquired
information. Summary representation of visual features in the
periphery can be processed within a brief temporal window as
short as 50 ms (Chong and Treisman, 2003), and here we aimed
to investigate how perceived numbers in the periphery is affected
by the strength of bottom-up signals with temporal intervals up
to 1 s. Secondly, as a top-down factor, we modulated the area of
display participants were attending to. We compared a condition
in which the task-relevant targets were the centre areas and
the irrelevant context were the surround areas (i.e., contextual
filling-in from surround to centre), to a condition in which the
task relevant targets were the surround areas and the irrelevant
context were the centre areas (i.e., contextual expansion from
centre to surround). By varying the spatial arrangement of task-
relevant regions, we examine whether the perceptual mechanism
of spatial interaction is comparable for filling-in or expanding the
context information.

MATERIALS AND METHODS

Participants
We recruited 18 volunteers with normal or corrected to normal
vision (15 females and 3 males, mean age 25.3 ± 4.22 years)
through the Psychology Experiments Participant Pool of the
University of Glasgow, and we paid participants 6 pounds
per hour. All participants gave informed consent prior to the
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experiment. We randomly assigned participants to two groups
of equal size, each group performing a different task (see
Procedure). The study was approved by the ethics committee
of the College of Science and Engineering of the University of
Glasgow and conducted according to the principles expressed in
the Declaration of Helsinki.

Apparatus and Design
The experiment was controlled by PsychoPy v3.2.3 (Peirce, 2007)
on a Windows 10 HP EliteOne 800 All-in-one PC, with a monitor
size of 525 × 296 mm, refresh rate of 59 Hz and 1,920 × 1,080
resolution. Participants were placed at a distance of 57.3 cm from
the screen with a chin rest so that 1 cm was equivalent to 1 degree
of visual angle.

The display had a mid-grey background with the central part
of the visual field masked by a 200 × 295 mm black area, in
order to restrict stimulations to only the near-peripheral visual
field. A red fixation point (5 × 5 mm) was placed in the middle
of the central black area. In the left and right peripheral parts
(10 degrees each from the fixation point) were two peripheral
displays, each divided into two sub-parts, centre and surround,
with a black rectangle shape indicating the border of the centre
(see Figure 1). The centre and surround areas were always of
the same size for each peripheral display. Thus, the four regions
of interest in the study were: centre (area inside the rectangle)
in the left periphery (CL), centre in the right periphery (CR);
surround (area outside of the rectangle) in the left periphery (SL)
and surround in the right periphery (SR).

Visual stimuli were circular black and white dots (50 and 50%),
5 mm diameter each applied with a Gaussian blur. The spacing

of dots was determined by a uniform random distribution. Note
that the dots covered only the peripheral areas of the visual
field, and not the central black area (Figure 1). In each trial,
the number of dots in a given area (CL, CR, SL or SR) could
be 30, 60 or 120, in accordance to the Weber’s Law (Fechner,
1860) that a multiplicative increase in the physical magnitude of
numbers is expected to translate into a linear perceptual increase
(Brannon et al., 2001; Ross, 2003; Jordan and Brannon, 2006;
Merten and Nieder, 2009; Anobile et al., 2014). This yielded 9
possible combinations of the number of dots for the centre and
surround regions on one side of the display (Table 1). Hence, for
the whole display, there were a total of 36 combinations in which
left and right peripheries were non-identical, as non-identical dot
numbers on the two sides are required for the psychophysical task
(see below). Centre/surround dot combinations were randomly
assigned over left and right peripheral displays on each trial. In
addition, we varied the duration of visual display by presenting
the stimuli for 100, 400, 700 or 1,000 ms. We chose these
values to include a range of exposure durations that gradually
increase in clarity.

Procedure
The testing cubicle remained dark throughout the experiments
to prevent observers from experiencing changes in luminosity.
For each trial, participants were shown the stimuli (for 100,
400, 700 or 1,000 ms) followed by a 200 ms white visual
noise (covering only both peripheral areas, excluding rectangles
that define the central and surround areas and the mid-screen
black area) to control for visual aftereffects. All observers
performed a numerosity discrimination task: when the visual

FIGURE 1 | Experimental protocol. For each trial, a varying number of dots was presented in left centre, left surround, right centre, right surround, for a varying
duration: 100, 400, 700 or 1,000 ms. This was followed by brief visual white noise, after which the observers had to discriminate, for the relevant area, either left or
right side presented more dots (Two- Alternative Forced Choice).
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TABLE 1 | An example of the experimental conditions (number of dots) presented
on one side of the display.

Experimental combinations Centre Surround

Number of dots

1 120 30

2 120 60

3 120 120

4 60 30

5 60 60

6 60 120

7 30 30

8 30 60

9 30 120

noise disappeared, observers had to press one of the two buttons
to indicate whether there were more dots on the left or right
relevant part of the screen. One of the two groups of participants
was instructed that only the centre regions of both sides were
relevant (judging CL vs. CR), and the other group was assigned
the surround of both sides as relevant regions (judging SL vs.
SR). The next trial began after a 300 ms inter-trial interval after
each response. The experiment lasted approximately 30 min with
a short break halfway through the experiment.

The 36 combinations of the number of dots were presented 8
times at each temporal interval, yielding 36 (combinations) × 4
(time intervals) × 8 (repetitions for each unique trial) = 1,152
trials in total for each participant. The timing factor was a within-
subject design, and the task factor was a between-subject design
to avoid adaptation effects and confusion between the tasks.

Analysis
In this section we describe the implementation of Maximum
Likelihood Conjoint Measurement, allowing us to use scaling
measures to estimate the perceptual bias of judgments and
examine the possibility of integrated perceptual information with
three decision models. We also simulate the observer’s responses
with two specific decision rules to determine the mechanism of
such perceptual integration.

Maximum Likelihood Conjoint Measurement
Our protocol and analyses followed the principles of Maximum
Likelihood Conjoint Measurement (MLCM; Knoblauch and
Maloney, 2012; Maloney and Knoblauch, 2020), a signal-
detection based scaling paradigm, under which the contribution
of different features to perceptual decisions can be quantified.
Although initially designed to study how multiple physical
properties (e.g., visual roughness and glossiness) interact in their
perception (Ho et al., 2008), MLCM has recently been applied
to study how the properties of a background surface affect the
perception of a central surface (Hansmann-Roth and Mamassian,
2017; Hansmann-Roth et al., 2018). Here, we manipulate the
physical properties of centre and surrounding areas in the
periphery, and we examine how irrelevant areas contribute to the
perceived numerosity in the relevant area, depending on the task
(centre task or surround task).

Assuming we are handling the data of an observer from the
centre task group (CL vs. CR), the simplest decision model would
be one where the observer compares some internal function of
the number of dots in left and right centre areas:

∆C = ψC (CL)− ψC (CR)+ ε (1)

Where CL and CR are the number of dots in the centre on the
left and on the right, respectively. On a given trial, ψC is some
internal function determining the perceived number of dots in
centre on a single side given the actual number, ε is an unbiased
and normally distributed decision noise, and ∆C is the decision
variable whereby the left side (if ∆C > 0) or the right side (if
∆C < 0) is chosen by the observer as containing the highest
number of dots in the central area. This is called an Independence
Model, and such a model assumes that the perceived number of
dots in CL is completely independent from SL. However, it is
also possible that the number of dots in SL will contribute to the
numerical estimate of CL.

The simplest model to take such effects into account is the
Additive Model:

∆C = [ψC (CL)+ ψS (SL)]− [ψC (CR)+ ψS (SR)]+ ε (2)

Where SL and SR are the number of dots in surround on the
left and on the right, respectively, and ψS is some internal
function determining the contribution of the number of dots in
the surround to the number of dots perceived in the centre on a
single side. In the Additive Model, we make the hypothesis that
the contribution of CL will not vary when changing the number
of dots in SL (and vice versa).

To test this hypothesis, we can introduce interaction effects in
the Full Model:

∆C = [ψC (CL)+ ψS (SL)+ ψCS (CL, SL)]

− [ψC (CR)+ ψS (SR)+ ψCS (CR, SR)]+ ε (3)

Where ψCS is a function determining interaction effects for
each combination of the number dots in centre and surround.
A possible instance of the full model could be a contrast
enhancement model allowing for the centre to appear more
numerous in the context of low numerosity and less in case of
a surround of higher numerosity.

The three models defined here can be formalized as
Generalized Linear Models to estimate ψ functions using
maximum likelihood. As the models are nested within each other,
the difference of their log-likelihoods is distributed as χ2 with
degree of freedom the difference in the number of parameters (see
e.g., Wood, 2015). We can therefore compare them to test our
hypotheses using likelihood ratio tests (Maloney and Knoblauch,
2020). Such analysis, applied to different tasks (centre task group
or surround task group) and different temporal intervals, will
allow us to reconstruct different but comparable contribution
values for perceiving CL, CR, SL, and SR.

Simulated Observers: Integration and Switching
If the independence model is rejected in favour of the additive
model in MLCM, one would usually assume that results suggest
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a form of perceptual integration took place between the cues
of interest. In our paradigm, for example, the number of dots
perceived on one peripheral display can be interpreted as a
weighted sum of the number of dots presented in the centre
and surround of that side. However, because observers were
instructed to judge only one of the two areas of each side,
the perceptual weights of each sub-part contribution will vary
depending on the task. For the centre task condition, for instance,
more weight should be attributed to the centre and less to
surround. This combination rule can be expressed as:

ψ1 = wC · ψC (CL)+ (1− wC) · ψS (SL) (4)

Where ψ1 is the number of dots perceived on a single side of the
screen and wC ∈ [0, 1] is the weight attributed from the centre.
Under this rule and given assumptions from the Signal Detection
Theory (Green and Swets, 1966), an experimental combination
repeated over many independent trials with constant number of
dots in centre and surround should follow a Gaussian distribution
(Figure 2, top left panel).

As an alternative account, it is also plausible that responses
followed a switching pattern: in any given trial, only one source of
information is selected with probability wC of choosing according
to centre and 1− wC of choosing according to surround. This
switching rule can be expressed as:

ψ1 = [x < wC] · ψC (CL)+ [x > wC] · ψS (SL) (5)

Where x ∈ [0, 1] is a random uniform variable. With the
switching rule, an experimental combination repeated over many
trials with constant number of dots in centre and surround
should follow a bimodal distribution (Figure 2, top right panel).

Note that when weight values are extreme, i.e., wC = 0 and
wC = 1, there is no difference between the two rules over
many repetitions of the same trial. The average value over many
repetitions with a constant wC is also the same between the rules.

We can then simulate the responses to an MLCM experiment
with either integration rule, where the response to each trial is
determined by:

1I = wC · (CL − CR) + (1− wC)· (SL − SR) + ε (6)

or switching rule, where the response to each trial is determined
by;

1S = [x < wC]· (CL − CR) + [x > wC]· (SL− SR) + ε

(7)
Where the 1I and 1S are the decision variables for the additive
integration and switching model, respectively, and the notation
otherwise follows Eqs. 2, 4, and 5. In particular we define the
link functions as ψC (X) = X and ψs (X) = X for these
simulated observers.

This yields contribution scales (Figure 2, middle panel) that
are similar to typical empirical results when applying MLCM
analysis. Most importantly, this method allows us to recover
specifically which rule and weight value were implemented by a
given simulated observer if we compare, with root-mean squared
error, the observer’s result with the results of other simulated
observers using a representative sample of rules and weight values

(Figure 2, lower panel, which also includes a random rule under
which the observer responds left or right randomly regardless of
trial). We will use this method to determine which rule better
describes the responses of our human observers under different
experimental conditions.

RESULTS

Maximum Likelihood Conjoint
Measurement
First, we compared MLCM models in terms of complexity.
We fitted the independence, additive and full models at each
time interval for each participant. This allowed us to compare
independence vs. additive and additive vs. full model in each case
using likelihood ratio tests. The details of these comparisons are
presented in Supplementary Table 1. To summarize, while the
finding is somewhat noisy at 100 ms time interval due to the
difficulty of the task, with longer time intervals we found that
the independence model should always be rejected in favour of
the additive model (all p < 0.001), and that in most cases the
additive model should not be rejected in favour of the full model
(except one participant from the surround task group at 400 ms:
χ2 (4) = 14.87, p = 0.005).

This being the case, we turned our focus to the additive model,
of which the average contributions across participants are shown
in Figure 3. Given the outcome of model comparison, results of
the additive model were expected, which showed a qualitative
difference between 100 ms and other temporal intervals (i.e., 400,
700 ms, and 1 s). For the 100 ms interval, the contributions of
centre and surround were always low across all combinations
but not completely flat, which indicated that participants did not
respond randomly even with 100 ms. For longer intervals, results
showed more contribution of the task-relevant area. Interestingly,
there was no reduced contribution of the task-irrelevant area with
longer intervals, and these contributions were still significant
even at the 1,000 ms interval for both centre and surround tasks
as indicated by model comparison.

Moreover, the increase of the perceived number of dots when
multiplying the actual number of dots in centre or surround by 2
is, as expected, relatively linear in all cases. The variation between
timings and tasks can therefore be interpreted in terms of changes
in perceptual weights and/or in perceptual strategy between
Integration and Switching. These questions will be addressed in
the next section.

In Supplementary Figure 1, we propose an alternative
representation of the results without relying on MLCM
modelling. The proportion of times each combination of
centre/surround dot number was chosen for both tasks is
represented for each time interval. Grey lines represent “ideal
observers” responding either randomly (horizontal line) or
always choosing the highest number of dots in the relevant
dimension and randomly when the same number is presented
on both sides (this occurs in 1/3 of cases). This shows that the
number of dots in the relevant area (centre or surround) is the
most important factor determining the observers’ choices, while
the number of dots in the irrelevant area biases this choice. When
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FIGURE 2 | Simulating observers using an Integration rule (left column) or a Switching rule (right column) to estimate perceived numerosity in the centre and
surround. Top panel: Probability density functions over 1,000 simulations of the same single combination. In this example weights of 0.7 for centre and 0.3 for
surround are applied. Density for the perceived number of dots in centre and surround are represented in green and orange, respectively, and the resulting
representations under Integration and Switching rules are in blue and red, respectively. Second panel: results of the MLCM analysis (additive model) applied to
simulated responses of observers using Integration and Switching rules (in both cases, the simulated trials were the sum of all trials done by 9 of our human
participants to make it comparable to empirical results). Bottom panel: comparison of two rules using RMSE between the simulated data (from the mid-panel) and
other simulations with varying weight values and combination rules (Integration, Switching, and Random choice for each trial as a control).

the number of dots in the irrelevant area is 30 or 120, the number
of dots in the relevant area is underestimated or overestimated,
respectively. When the number of dots in the irrelevant area is
60, the estimated number of dots in the relevant area is very close
to an ideal observer which responds to the number of dots in the
relevant area with maximal accuracy. Compared to this analysis,
MLCM allows a straightforward significance test for the effect
of the irrelevant area (independent vs. additive model) and for
interaction effects (additive vs. full model). It also allows further
modelling of the underlying decision processes as proposed in
the next section.

Integration and Switching, Simulated
Observers
We compared the empirical data to simulated data to establish the
best-fitted weight value and combination rule for each task and

at each timing interval. In accordance with our previous results,
we found a difference between the 100 ms interval and the other
intervals. At 100 ms, neither the Integration nor Switching rule at
any weight value performed better than an observer choosing at
random to predict the participants’ decisions (Figure 4 top panel:
the left tab in both plots). For the remaining longer intervals,
we observed a consistent pattern in which the Random Choice
Model was the worst-fitted model, the Integration Model was
better at predicting the choices of observers judging according
to centre, and the Switching Model was better at predicting the
choices of observers judging according to surround (Figure 4 top
panel, the right tab in both plots). This difference was significant
over 10 independent simulations as assessed by independent
t-tests: for centre task, Integration (M = 0.09, SD = 0.03),
Switching (M = 0.17, SD = 0.03), t(18) = −6.85, p < 0.001.
For Surround task, Integration (M = 0.20, SD = 0.04), Switching
(M = 0.13, SD = 0.02), t(18) = 4.87, p< 0.001.
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FIGURE 3 | Results of MLCM analysis (additive model). Average contributions to the perceived numerosity in centre (green) and surround (orange) as a function of
30, 60, and 120 dots. Plots are organized by task (i.e., top panel: centre task, bottom panel: surround task) and presentation intervals (columns). All error bars are
standard error of the mean.

Furthermore, because each rule model had a single free
parameter that has been varied to show the range of patterns
that can be captured by the model (i.e., Figure 2), here with
the smallest root-mean square error, we obtained the statistically
optimal weight values for each timing interval and for each
rule (Figure 4, bottom row, see Supplementary Table 2 for
a statistical comparison between RMSE distributions for the
best and second-to-best weight values at each time interval,
and Supplementary Figure 2 for an illustration). Our results,
again, suggested a consistent and robust behavioural trend that
performances of 100 ms intervals were significantly distinctive
from other longer intervals, where Integration and Switching
Model performed similarly and obtained a weight value around
0.6 for the centre task and 0.4 for the surround task. It is worth
noting that intervals above 100 ms held the same weight value for
the centre task, but for the surround task there was an increase in
optimal weight, specifically in a way that decisions favoured the
relevant area with longer intervals until a floor effect.

DISCUSSION

We investigated the processing of numerical magnitude in
peripheral visual displays, in which we found that the perceived
numerosity of the target area is biased toward the number of
dots presented in irrelevant neighbouring areas. Specifically, our
results suggested that numerical magnitudes in the periphery
were sampled following either a “weighted integration” or a
probability switching’ process between the target and irrelevant
areas. In other words, contextual cues presented in the

surroundings were used for inferences about the numerosity
in the centre; whereas contextual cues presented in the centre
competed on a trial-by-trial basis to the perceived numerosity
in the targeted surround. Thus, we argue that top-down
factors, such as directing attention toward different areas in
the peripheral visual field, have an impact on how predictions
are incorporated into perceptual decisions about numerosity in
peripheral vision.

We generally observed that numerosity perception in
peripheral displays required a sufficient sampling time. Results
from both centre and surround tasks showed that peripheral
displays presented for 100 ms seemed highly ambiguous,
and consistent with random responses of simulated observers.
For presentation intervals longer than 100 ms, our results
suggested an involuntary perceptual bias between task relevant
and irrelevant parts of a display, supported by the significant
advantage of the MLCM additive model (where the model’s
decisions were based on both relevant and irrelevant areas),
compared to the independence model (where the model
considered only the relevant area). Interestingly, results showed
that the perceptual contribution of target and irrelevant areas
remained consistent across all intervals above 100 ms in
the centre task, while the contribution of irrelevant central
information while judging the surrounding region decreased
progressively with longer intervals. By comparing the results of
centre and surround task to the simulated observers, we identified
an integration process for the centre task and a switching process
for the surround task.

Specifically, perceived numerosity of a target region with
irrelevant surrounding influences is best described as “contextual
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FIGURE 4 | Observer simulations and optimal weights. Top panel: a comparison using the root-mean squared error between empirical data from the centre and
surround conditions (left and right plot, respectively) and simulated data with varying combination rules (Integration in blue, Switching in red, and Random choice in
grey). Ten datasets were simulated for 9 weight values (from 0.1 to 0.9) and for each rule. In both plots the lowest RMSE values across all weights at the 100 ms
interval for all combination rules (and their standard errors across the 10 simulations) are shown on the left, while the mean and standard errors of the lowest RMSE
values averaged across the remaining intervals are shown on the right. Bottom panel: pattern of weight values yielding the lowest RMSE at each timing and for
Integration Model (in blue) and Switching Model (in red) when compared to empirical data (left: centre task, right: surround task). ***p < 0.001.

leaking in” effect, i.e., perceived numerosity of the central
area is a perceptual combination with a weight of 0.8
attributed to the number of dots physically presented in
centre, and 0.2 to the number of dots physically presented
in its surround. In other words, it is as if the integration
window fits with some insufficient precision on the centre
areas, and 20% of the information from the surrounding spills
into the decision in a way that the two channels cannot
be separated with sufficient spatial precision. These weight
values are stable across timing conditions above 100 ms,
suggesting a common mechanism of integration for stimuli
presented briefly and for longer durations. This low-level
spatial integration involves incorporating a small amount of
sensory signal from the surround area, and corresponds to
an integration process described in the cue combination
literature whereby independent noisy sources of information
are combined into a weighted average, boosting the precision
of perceptual estimates (e.g., Ernst and Banks, 2002; Ernst and
Bülthoff, 2004; Hillis et al., 2004; Acerbi et al., 2014). Sensory

integration, in fact, has been the only interpretation for additive
MLCM models so far.

In contrast, perceptual decisions about surrounding areas
with irrelevant central influences are described as an expansion
contextual prior. In this case, participants’ responses are most
consistent with a perceptual switching process, i.e., participants
responded inaccurately according to the central region in some
instances, while the surround targets are perceived accurately
in the remaining majority of trials. Contrary to the weighted
combination of perceptual inputs described above, this switching
process does not require spatial integration of signals from
relevant and irrelevant areas. Our results showed that participants
made incorrect switches 30% of the time with 400 ms intervals,
but the proportion was reduced to 20% of the trials for 700 and
1,000 ms intervals. To put this more parsimoniously, perhaps two
separate streams of information are processed for the surround
task, and the perceptual decision is reached by a lateral inhibition
process between the two channels. Unlike an integration process,
the switching process was therefore sensitive to changes in
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FIGURE 5 | One plausible explanation for border expansion responses when
participants were asked to judge the number of dots in the surrounding
portion of the display. Here bistable perception is assumed to depend on
whether the subjectively defined border which is expanded includes both
central and surround areas, which doesn’t affect numerosity perception in
surround (A), or only the central area, which would then be expanded into the
surround (B).

interval lengths, although with a floor effect. One may argue that a
perceptual switching process is evidence for sequential processing
with limited resources (e.g., Landy et al., 2007; Whiteley and
Sahani, 2008; Scharff et al., 2011; Yiǧit-Elliott et al., 2011). This
account implies that participants only had time to process one
of the two parts of the display due to capacity limitations (e.g.,
difficulty of the surround task), where participants mistakenly
prioritised assessing the number of dots in centre, instead of
surround, for a small proportion of the trials. This account is
partially supported by our empirical data where we showed a
decreased tendency to make incorrect switches when participants
were provided longer temporal intervals with the display.
However, the fact that we still observed the switching behaviour
at the longest interval makes this explanation less plausible unless
we consider the possibility of another, incompressible, source of
error such as motor or attentional mistakes.

A potential mechanism that could induce such an attentional
error is biased bistable perception of ambiguous stimuli (e.g.,
Mamassian and Landy, 1998; Meng and Tong, 2004), in
which there is a competition for awareness between several
mutually exclusive interpretations of the same stimulus. Bistable
perception could be influenced by the boundary extension effect,
under which our recollection of scenes tends to extend beyond
the border of what was actually presented (as reviewed in
Hubbard et al., 2010). It shows how overall perception is affected
by ambiguity in our displays. While boundary-extension has
mostly been studied for natural scenes, line-drawing paradigms
also provided evidence for such an effect (Gagnier and Intraub,
2012) and occurs also in the absence of semantic associations
(McDunn et al., 2014), which leads to the possibility of similar
processing for the current paradigm. If the display boundary
is subjectively defined and the definition varies from trial to

trial (e.g., condition to saliency of varying density of dots),
such ambiguity would affect the perceived numerosity of the
display. In particular, if the boundary includes the end of
the complete peripheral display (centre plus surround, left
or right), extending this “overall boundary” only affects the
broader surrounding area. As a result, perceived numerosity
in the surround would not be affected by this extension (see
Figure 5A). However, if one considers only the boundary of
the centre region, applying boundary extension would have the
consequence of generalizing it to the surround area, making
the observer perceive the same numerosity in centre and
surround (Figure 5B), which may be the cause of incorrect
switching in our results.

On the whole, we showed that perception of a task-relevant
region is biased toward task irrelevant region, in agreement
to contextual influences that have previously been found
in situations where the resolution of sensory inputs was low
and thus signals were combined to strengthen the reliability of
perception (e.g., Levi et al., 2002; Kersten and Yuille, 2003),
or foveal-to-peripheral extrapolation in which foveal vision is
used to estimate the strength of stimulus properties in the
periphery where visual resolution is limited (Toscani et al.,
2017). However, we established the persistence of contextual
influences with numerosity information presented for as long
as 1 s, indicating that the accuracy of numerical magnitude
judgment is not rectified with more processing time added
awareness. We suggest that the influence of spatial context and
the perceptual bias of perceived numerosity that we observed
depends on a top-down mechanism, in which that signals
from the irrelevant areas automatically create a perceptual
expectation that participants used to infer about their perceived
number of dots, because peripheral vision is more limited in
terms of acuity than foveal vision. Furthermore, we found
this perceptual bias to be affected by top-down contextual
factors: the surround effect while judging a central area is most
consistent with spatial integration, while the centre effect when
judging a surrounding area is better explained as switching
between two information channels which we hypothesise to
be linked to ambiguous boundary extension. These findings
illustrate the complexity and flexibility of processing in peripheral
vision (Stewart et al., 2020), and more broadly, our data are
in line with evidence for predictive models of vision where
top-down priors are combined with incoming sensory inputs
(Rao and Ballard, 1999; Friston, 2002; Edwards et al., 2017;
Spratling, 2017; De Lange et al., 2018). Peripheral vision is
more limited in terms of visual acuity than foveal vision and
might involve lower precision predictions than cortical areas
processing foveal representations. Nevertheless, our data suggest
that peripheral vision encodes its inputs in a context-dependent
manner, even when that context is not necessary for the task.
This process could serve to explain away information in the
periphery during navigation for example, where we could use
contextual clues to filter out predictable features that we do
not need to attend to. In the future, studies should observe
in what measure our results are generalizable to other features
and complex displays, potentially introducing multimodal effects.
Investigating the neuronal bases of the current findings will
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also be necessary toward understanding how the visual system
encodes numerical magnitude.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by the Ethics Committee of the College of
Science and Engineering of the University of Glasgow. The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

ML, CA, and LM designed the study together. ML and CA
acquired, analysed, and modelled the data. All authors wrote and
edited the manuscript.

ACKNOWLEDGMENTS

We thank the Human Brain Project for support (Awarded to LM;
HBP: H2020 FETFLAGSHIP Nos. 785907 and 945539 (Human
Brain Project SGA2 and SGA3).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2021.750417/full#supplementary-material

REFERENCES
Acerbi, L., Vijayakumar, S., and Wolpert, D. M. (2014). On the origins

of suboptimality inhuman probabilistic inference. PLoS Comput. Biol.
10:e1003661. doi: 10.1371/journal.pcbi.1003661

Anobile, G., Cicchini, G. M., and Burr, D. C. (2014). Separate mechanisms for
perception of numerosity and density. Psychol. Sci. 25, 265–270. doi: 10.1177/
0956797613501520

Balas, B., Nakano, L., and Rosenholtz, R. (2009). A summary-statistic
representation inperipheral vision explains visual crowding. J. Vis. 9:13.
doi: 10.1167/9.12.13

Berry, D. A., and Fristedt, B. (1985). Bandit Problems: Sequential Allocation of
Experiments (Monographs on Statistics and Applied Probability), Vol. 5. London:
Chapman and Hall, 7–7.

Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., and Gibbon, J. (2001). Numerical
subtractionin the pigeon: evidence for a linear subjective number scale. Psychol.
Sci. 12, 238–243. doi: 10.1111/1467-9280.00342

Burr, D., and Ross, J. (2008). A visual sense of number. Curr. Biol. 18, 425–428.
Chong, S. C., and Treisman, A. (2003). Representation of statistical properties. Vis.

Res. 43, 393–404.
Craig, A. (1976). Signal recognition and the probability-matching decision rule.

Percept. Psychophys. 20, 157–162. doi: 10.3758/BF03198594
De Lange, F. P., Heilbron, M., and Kok, P. (2018). How do expectations shape

perception? Trends Cogn. Sci. 22, 764–779. doi: 10.1016/j.tics.2018.06.002
Edwards, G., Vetter, P., McGruer, F., Petro, L. S., and Muckli, L. (2017). Predictive

feedback to V1 dynamically updates with sensory input. Sci. Rep. 7:16538.
Ernst, M. O., and Banks, M. S. (2002). Humans integrate visual and haptic

information in astatistically optimal fashion. Nature 415, 429–433. doi: 10.
1038/415429a

Ernst, M. O., and Bülthoff, H. H. (2004). Merging the senses into a robust percept.
Trends Cogn. Sci. 8, 162–169. doi: 10.1016/j.tics.2004.02.002

Fechner, G. T. (1860). Elemente der Psychophysik, Vol. 2. Leipzig: Breitkopf und
Härtel.

Fornaciai, M., Brannon, E. M., Woldorff, M. G., and Park, J. (2017). Numerosity
processing inearly visual cortex. Neuroimage 157, 429–438. doi: 10.1016/j.
neuroimage.2017.05.069

Friston, K. (2002). Functional integration and inference in the brain. Prog.
Neurobiol. 68, 113–143. doi: 10.1016/s0301-0082(02)00076-x

Friston, K. (2005). A theory of cortical responses. Philos. Trans. R. Soc. B Biol. Sci.
360, 815–836. doi: 10.1098/rstb.2005.1622

Gagnier, K. M., and Intraub, H. (2012). When less is more: line drawings lead
to greater boundary extension than do colour photographs. Vis. Cogn. 20,
815–824. doi: 10.1080/13506285.2012.703705

Green, D. M., and Swets, J. A. (1966). Signal Detection Theory and Psychophysics,
Vol. 1. New York, NY: Wiley, 1969–1972.

Hansmann-Roth, S., and Mamassian, P. (2017). A glossy simultaneous contrast:
conjoint measurements of gloss and lightness. Iperception 8:2041669516687770.
doi: 10.1177/2041669516687770

Hansmann-Roth, S., Pont, S. C., and Mamassian, P. (2018). Contextual effects in
humangloss perception. Electronic Imaging 2018, 1–7.

Hillis, J. M., Watt, S. J., Landy, M. S., and Banks, M. S. (2004). Slant from texture
and disparity cues: optimal cue combination. J. Vis. 4, 967–992.

Ho, Y.-X., Landy, M. S., and Maloney, L. T. (2008). Conjoint measurement of gloss
and surface texture. Psychol. Sci. 19, 196–204.

Hohwy, J., Roepstorff, A., and Friston, K. (2008). Predictive coding explains
binocular rivalry: an epistemological review. Cognition 108, 687–701. doi: 10.
1016/j.cognition.2008.05.010

Hubbard, T. L., Hutchison, J. L., and Courtney, J. R. (2010). Boundary extension:
findings and theories. Q. J. Exp. Psychol. 63, 1467–1494. doi: 10.1080/
17470210903511236

Jordan, K. E., and Brannon, E. M. (2006). Weber’s Law influences numerical
representations in rhesus macaques (Macaca mulatta). Anim. Cogn. 9, 159–172.
doi: 10.1007/s10071-006-0017-8

Kersten, D., and Yuille, A. (2003). Bayesian models of object perception. Curr.
Opin. Neurobiol. 13, 150–158. doi: 10.1016/s0959-4388(03)00042-4

Knoblauch, K., and Maloney, L. T. (2012). Modeling Psychophysical Data in R, Vol.
32. Heidelberg: Science & Business Media.

Landy, M. S., Goutcher, R., Trommershäuser, J., and Mamassian, P. (2007). Visual
estimationunder risk. J. Vis. 7:4.

Larson, A. M., and Loschky, L. C. (2009). The contributions of central versus
peripheral vision to scene gist recognition. J. Vis. 9:6. doi: 10.1167/9.10.6

Levi, D. M., Hariharan, S., and Klein, S. A. (2002). Suppressive and facilitatory
spatial interactions in peripheral vision: peripheral crowding is neither size
invariant nor simple contrast masking. J. Vis. 2:3. doi: 10.1167/2.2.3

Levick, W. R. (1967). Receptive fields and trigger features of ganglion cells in the
visual streak of the rabbit’s retina. J. Physiol. 188, 285–307. doi: 10.1113/jphysiol.
1967.sp008140

Maloney, L. T., and Knoblauch, K. (2020). Measuring and modeling visual
appearance. Annu. Rev. Vis. Sci. 6, 519–537. doi: 10.1146/annurev-vision-
030320-041152

Mamassian, P., and Landy, M. S. (1998). Observer biases in the 3D interpretation
of linedrawings. Vis. Res. 38, 2817–2832. doi: 10.1016/s0042-6989(97)
00438-0

McDunn, B. A., Siddiqui, A. P., and Brown, J. M. (2014). Seeking the boundary of
boundary extension. Psychon. Bull. Rev. 21, 370–375. doi: 10.3758/s13423-013-
0494-0

Frontiers in Human Neuroscience | www.frontiersin.org 10 November 2021 | Volume 15 | Article 750417

https://www.frontiersin.org/articles/10.3389/fnhum.2021.750417/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnhum.2021.750417/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.1003661
https://doi.org/10.1177/0956797613501520
https://doi.org/10.1177/0956797613501520
https://doi.org/10.1167/9.12.13
https://doi.org/10.1111/1467-9280.00342
https://doi.org/10.3758/BF03198594
https://doi.org/10.1016/j.tics.2018.06.002
https://doi.org/10.1038/415429a
https://doi.org/10.1038/415429a
https://doi.org/10.1016/j.tics.2004.02.002
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/j.neuroimage.2017.05.069
https://doi.org/10.1016/s0301-0082(02)00076-x
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1080/13506285.2012.703705
https://doi.org/10.1177/2041669516687770
https://doi.org/10.1016/j.cognition.2008.05.010
https://doi.org/10.1016/j.cognition.2008.05.010
https://doi.org/10.1080/17470210903511236
https://doi.org/10.1080/17470210903511236
https://doi.org/10.1007/s10071-006-0017-8
https://doi.org/10.1016/s0959-4388(03)00042-4
https://doi.org/10.1167/9.10.6
https://doi.org/10.1167/2.2.3
https://doi.org/10.1113/jphysiol.1967.sp008140
https://doi.org/10.1113/jphysiol.1967.sp008140
https://doi.org/10.1146/annurev-vision-030320-041152
https://doi.org/10.1146/annurev-vision-030320-041152
https://doi.org/10.1016/s0042-6989(97)00438-0
https://doi.org/10.1016/s0042-6989(97)00438-0
https://doi.org/10.3758/s13423-013-0494-0
https://doi.org/10.3758/s13423-013-0494-0
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-15-750417 October 28, 2021 Time: 16:29 # 11

Li et al. Numerosity Perception in Peripheral Vision

Meng, M., and Tong, F. (2004). Can attention selectively bias bistable perception?
Differences between binocular rivalry and ambiguous figures. J. Vis. 4:539–551.
doi: 10.1167/4.7.2

Merten, K., and Nieder, A. (2009). Compressed scaling of abstract numerosity
representations in adult humans and monkeys. J. Cogn. Neurosci. 21, 333–346.
doi: 10.1162/jocn.2008.21032

Morgan, A. T., Petro, L. S., and Muckli, L. (2019). Scene representations
conveyed by cortical feedback to early visual cortex can be described by
line drawings. J. Neurosci. 39, 9410–9423. doi: 10.1523/JNEUROSCI.0852-19.
2019

Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K.,
et al. (2015). Contextual feedback to superficial layers of V1. Curr. Biol. 25,
2690–2695. doi: 10.1016/j.cub.2015.08.057

Otten, M., Pinto, Y., Paffen, C. L., Seth, A. K., and Kanai, R. (2017). The uniformity
illusion: central stimuli can determine peripheral perception. Psychol. Sci. 28,
56–68. doi: 10.1177/0956797616672270

Park, J., DeWind, N. K., Woldorff, M. G., and Brannon, E. M. (2016). Rapid and
direct encoding of numerosity in the visual stream. Cereb. Cortex 26, 748–763.

Peirce, J. W. (2007). PsychoPy–psychophysics software in Python. J. Neurosci.
Methods 162, 8–13. doi: 10.1016/j.jneumeth.2006.11.017

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2:79. doi: 10.1038/4580

Revina, Y., Petro, L. S., and Muckli, L. (2018). Cortical feedback signals generalise
across different spatial frequencies of feedforward inputs. Neuroimage 180,
280–290. doi: 10.1016/j.neuroimage.2017.09.047

Ross, J. (2003). Visual discrimination of number without counting. Perception 32,
867–870. doi: 10.1068/p5029

Scharff, A., Palmer, J., and Moore, C. M. (2011). Extending the simultaneous-
sequential paradigm to measure perceptual capacity for features and words.
J. Exp. Psychol. Hum. Percept. Perform. 37:813. doi: 10.1037/a0021440

Smith, F. W., and Muckli, L. (2010). Nonstimulated early visual areas carry
information about surrounding context. Proc. Natl. Acad. Sci. U.S.A. 107,
20099–20103. doi: 10.1073/pnas.1000233107

Spratling, M. W. (2017). A review of predictive coding algorithms. Brain Cogn. 112,
92–97. doi: 10.1016/j.bandc.2015.11.003

Steele-Russell, I., Russell, M. I., Castiglioni, J. A., and Graham, J. (2012). Differential
retinal origins of separate anatomical channels for pattern and motion vision in
rabbit. Exp. Brain Res. 222, 99–111. doi: 10.1007/s00221-012-3198-1

Stewart, E. E., Valsecchi, M., and Schütz, A. C. (2020). A review of interactions
between peripheral and foveal vision. J. Vis. 20:2. doi: 10.1167/jov.20.12.2

Toscani, M., Gegenfurtner, K. R., and Valsecchi, M. (2017). Foveal to peripheral
extrapolation of brightness within objects. J. Vis. 17:14. doi: 10.1167/17.9.14

Valsecchi, M., Toscani, M., and Gegenfurtner, K. R. (2013). Perceived numerosity
is reduced in peripheral vision. J. Vis. 13:7. doi: 10.1167/13.13.7

Whiteley, L., and Sahani, M. (2008). Implicit knowledge of visual uncertainty
guides decisions with asymmetric outcomes. J. Vis. 8:2. doi: 10.1167/8.3.2

Wood, S. N. (2015). Core Statistics, Vol. 6. Cambridge: Cambridge University Press.
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