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Purpose: Maintenance of cognitive performance is important for healthy aging. This
study aims to elucidate the relationship between brain networks and cognitive function
in subjects maintaining relatively good cognitive performance.

Methods: A total of 120 subjects, with equal number of participants from each age
group between 20 and 70 years, were included in this study. Only participants with
Addenbrooke’s Cognitive Examination – Revised (ACE-R) total score greater than
83 were included. Anatomical T1-weighted MR images and resting-state functional
MR images (rsfMRIs) were taken from all participants using a 3-tesla MRI scanner.
After preprocessing, several factors associated with age including the ACE-R total
score, scores of five domains, sub-scores of ACE-R, and brain volumes were
tested. Morphometric changes associated with age were analyzed using voxel based
morphometry (VBM) and changes in resting state networks (RSNs) were examined using
dual regression analysis.

Results: Significant negative correlations with age were seen in the total gray matter
volume (GMV, r = −0.58), and in the memory, attention, and visuospatial domains.
Among the different sub-scores, the score of the delayed recall (DR) showed the highest
negative correlation with age (r = −0.55, p < 0.001). In VBM analysis, widespread
regions demonstrated negative correlation with age, but none with any of the cognitive
scores. Quadratic approximations of cognitive scores as functions of age showed
relatively delayed decline compared to total GMV loss. In dual regression analysis,
some cognitive networks, including the dorsal default mode network, the lateral dorsal
attention network, the right / left executive control network, the posterior salience
network, and the language network, did not demonstrate negative correlation with age.
Some regions in the sensorimotor networks showed positive correlation with the DR,
memory, and fluency scores.
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Conclusion: Some domains of the cognitive test did not correlate with age, and
even the highly correlated sub-scores such as the DR score, showed delayed decline
compared to the loss of total GMV. Some RSNs, especially involving cognitive control
regions, were relatively maintained with age. Furthermore, the scores of memory,
fluency, and the DR were correlated with the within-network functional connectivity
values of the sensorimotor network, which supported the importance of exercise for
maintenance of cognition.

Keywords: resting state network, aging, healthy cohort, cognition, delayed recall

INTRODUCTION

According to Rowe and Kahn, successful aging consists of
three principal components: low risk of disease and disease-
related disability, maintenance of high mental, cognitive, and
physical functions, and continuous engagement with life, which
includes relations with others and productive activity (Rowe
and Kahn, 1987, 1997, 2015). During the last two decades,
worldwide life expectancy has increased by more than 6.6 years,
while healthy life expectancy (HALE), an average period of
life-time spent without limitation in daily activities, has also
increased by 5.4 years (World Health Organization, 2020).
Especially in Japan where the highest aging rate was recorded
in the world, the increase in the HALE has exceeded the
one in life expectancy (Cabinet Office Japan, 2020). Not only
mortality has kept declining, but also years lived with disability
has been drastically reduced. Under this global situation,
successful aging has gained its importance, and has greatly
affected a variety of fields including health science, sociology,
economics, and politics.

Cognitive function is an extremely important factor
influencing successful aging in the elderly people. It is widely
known that cognitive function gradually declines over age even
in people who seemed to be healthy. This is especially the case
for memory and fluid intelligence, acquired in order to adapt to
various circumstances including speed processing, reasoning,
working memory, and short term memory (Park et al., 2002).
On the other hand, crystalized intelligence, acquired from one’s
accumulated experience and education and included language
abilities, comprehension, and insight, is maintained or improved
with age (Baltes et al., 1999). Empirically, when a screening test
for cognitive function is performed, unexpected variations in
sub-scores can be observed to some extent even if subjects are
considered normal in cognitive function based on the total score
falling within the normal range.

Morphological studies of the brain using structural magnetic
resonance imaging (MRI) have reported wide range of gray
matter volume (GMV) decreases with age (Good et al., 2001;
Giorgio et al., 2010). The GMV begins to decrease in early
adulthood, and continues to decrease approximately linearly
throughout the lifespan (Ge et al., 2002; Sowell et al., 2003;
Lehmbeck et al., 2006). Although the GMV is generally reduced
with age during healthy aging, it still remains unclear whether a
cognitive function decline parallels GMV decline. Several studies
have been performed about the associations between regional

GMV and cognitive scores, but there is no detailed report on
the comparison between subtle changes of cognitive test scores
in healthy aging and the changes in GMV.

In network analysis using resting state functional MRI
(rsfMRI), reduction of the functional connectivity within the
default mode network (DMN) with age has been reported in
many literatures (Damoiseaux et al., 2008; Koch et al., 2010;
Jones et al., 2011). In addition, a within-network decline in
functional connectivity has also been reported in other large-
scale functional networks, including the salience network (SN),
executive control network (ECN), attention network, sensori-
motor network (SMN) and the visual network (VN) involved
in primary processing (Onoda et al., 2012; Tomasi and Volkow,
2012; Betzel et al., 2014; Geerligs et al., 2015; Huang et al.,
2015). Although such canonical networks showed decreases of
within-network connectivity, between-network connectivity of
some pairs of these networks somewhat increases (Meier et al.,
2012; Betzel et al., 2014; Chan et al., 2014; Bagarinao et al., 2019),
a possible reflection of the functional network reorganization
with aging. Several studies have also reported the relationship
between cognitive decline and network changes, e.g., between
anterior DMN and executive control function (Damoiseaux et al.,
2008), between SN and configuration ability and frontal lobe
function (Onoda et al., 2012), and between cingulate network and
episodic memory, attentional function, and executive function
(Hausman et al., 2020). However, the target age and the number
of subjects included were limited in each study, and the findings
were inconclusive.

What are the different factors influencing successful aging?
Can these factors be identified based on the characteristics
of brain-imaging-derived metrics such as brain volume and
connectivity? The purpose of this study was to identify such
characteristics by investigating the relationship among aging,
brain volume, brain network changes, and cognitive function
in healthy subjects. For this purpose, healthy individuals who
maintained relatively good cognition were enrolled in the
study. Within age groups, ranging from 20 to 70 years, an
equal number of subjects were included. Although voxel based
morphometry (VBM) analysis was performed as the first step,
network analysis using rsfMRI represented the main part of this
study. RsfMRI is a useful method to visualize various large-
scale networks in the brain by examining the synchronization of
the blood oxygen level dependent (BOLD) changes in different
brain regions during rest, i.e., without performing any tasks,
and has been utilized in evaluating changes in brain networks
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in aging (Bagarinao et al., 2020) and the pathology of various
diseases in the central nervous system from Alzheimer’s disease
to brain tumors (Greicius et al., 2004; Maesawa et al., 2015;
Mulders et al., 2015; Putcha et al., 2015; Abbott et al., 2016).
Our hypotheses are as follows: (1) Even in healthy subjects
with total score of the cognitive screening test within normal
range, some variations of the sub-items in the cognitive test
may reflect association with aging. (2) Such sub-items may
have a spatiotemporal relationship with the brain’s structural
differences with age. Some sub-items may show differences
with age that parallel with the structural differences, whereas
others may show the maintenance of these scores, independent
from the structural differences. (3) To help us understand such
maintenance, a network-based approach may be necessary aside
from the morphological approach, and the analysis using rsfMRI
may contribute to the evaluation of the alterations of the RSNs,
which may be correlated with the subtle change of cognition
observed in our healthy cohort. (4) On the other hand, some
networks may be maintained despite of advancing age, which may
provide an explanation for the neuronal basis of the maintenance
of cognitive function. Through these analyses, we will identify
the different conditions necessary for the maintenance of good
cognitive function during aging, that is, the different conditions
for successful aging.

MATERIALS AND METHODS

Participants
This study was part of the on-going healthy aging cohort study
in the Brain & Mind Research Center (BMRC) in Nagoya
University, which was approved by the Ethics Committee of
Nagoya University Graduate School of Medicine (approval
number 2014-0068), and conducted following the Ethical
Guidelines for Medical and Health Research Involving
Human Subjects as endorsed by the Japanese Government.
All participants were healthy volunteers who joined in
response to the recruitment using leaflets and the website
of the BMRC. Inclusion criteria for the original project
were as follows: older than 20 years, not pregnant, had no
episode for MRI contraindications, no brain diseases such as
cerebrovascular diseases, brain tumor, head injury, depression,
and schizophrenia. They provided written informed consent
before joining the study. Between 2014 and 2020, more than
1,000 volunteers participated. From the pool of volunteers, a
total of 120 participants, consisting of 10 men and 10 women
in each of the 6 age groups, 20s, 30s, 40s, 50s, 60s, and 70s,
were randomly chosen. Exclusion criteria were as follows: (1)
inability to complete the Japanese version of Addenbrooke’s
Cognitive Examination-Revised (ACE-R) assessment, (2)
presence of structural abnormalities (e.g., asymptomatic cerebral
infarction, benign brain tumor, white matter abnormalities,
etc.) in structural MRI as identified by Japanese board-certified
neurologists (HW, KH, and KK) and neurosurgeon (SM), (3)
ACE-R total score less than 83, and (4) incomplete imaging data.
The mean age for all participants was 48.9 ± 17.6 (SD) years,
22.7± 2.0 years old for those in the 20s (n = 20), 34.7± 2.9 years

old in the 30s (n = 20), 44.5 ± 2.7 years old in the 40s (n = 20),
53 ± 2.7 years old in the 50s (n = 20), 63.9 ± 2.7 years old in
the 60s (n = 20), and 74.6 ± 3 years old in the 70s (n = 20). The
average number of years for education was 14.24 ± 2.52 years.
The percentage of participants who smoked were 58.3% in men,
25% in women, and 41.7% in total (Table 1). In term of head
motion, which typically affect the estimation of the functional
connectivity, the mean frame-wise displacement (FD) values
(Power et al., 2012) was 0.18 + 0.069 mm on average. The
number of subjects with mean FD greater than 0.2 mm was 39
(32.5%) and those with less than 0.2 mm was 81 (67.5%). No
participants had mean FD greater than 0.5 mm.

Acquisition of MR Imaging Data
T1 anatomical images and rsfMRI data were obtained from
all participants. MRI scanning was performed using a Siemens
Magnetom Verio (Siemens, Erlangen, Germany) 3.0-T scanner
with a 32-channel head coil at the BMRC in Nagoya
University. The high-resolution T1-weighted images (T1-WI)
were acquired using a 3D magnetization prepared rapid
acquisition gradient echo (MPRAGE) sequence with the
following imaging parameters: repetition time (TR) = 2.5 s, echo
time (TE) = 2.48 ms, 192 sagittal slices with a distance factor
of 50% and 1-mm thickness, field of view (FOV) = 256 mm,
256 × 256 matrix size, and an in-plane voxel resolution of 1 × 1
mm2. For the rsfMRI data, a gradient-echo (GE) echo-planar
imaging (EPI) sequence was used with the following acquisition
parameters: TR = 2.5 s, TE = 30 ms, 39 transversal slices with a
0.5-mm inter-slice interval and 3-mm thickness, FOV = 192 mm,
64 × 64 matrix dimension, flip angle of 80◦ and 198 total
volumes. During rsfMRI scan, the participants were instructed to
close their eyes but to stay awake. The subject’s head was tightly
fixed with cushions to minimize its motion.

Neuropsychological Test
A Japanese version of ACE-R was performed to evaluate cognitive
function for all participants. ACE-R is a brief battery that provides
evaluation of five cognitive domains (orientation / attention,
memory, verbal fluency, language and visuospatial ability) with
a total score of 100 points, and usually requires about 15 min for
the examination (Mathuranath et al., 2000; Yoshida et al., 2012).
Participants who obtained 82 points or less in total score were
excluded from this study because of the possibility of dementia.
The sensitivity and specificity of the total ACE-R score was
reported to be 99 and 99%, respectively, for dementia when the
cut-off score of 82/83 was used, and 87 and 92%, respectively, for
MCI, when the cut-off score of 88/89 was used (Yoshida et al.,
2012). In addition to the total score, the scores for each of the
five cognitive domains, the sub-score of verbal fluency such as
semantic or phonological word recall, the sub-score of memory
such as memorization, delayed memory, and recognition, and the
sub-scores for others were also documented.

Image Preprocessing
Image preprocessing for the anatomical T1WI and rsfMRI
dataset was performed using Statistical Parametric Mapping
(SPM12, Wellcome Trust Center for Neuroimaging, London,
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United Kingdom) running on Matlab (R2016a, MathWorks,
Natick, Mass, United States). The T1WI images were first
segmented into component images including gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), among others,
by the segmentation approach included in SPM12. Bias-corrected
T1WI and the transformation information from subject space
to MNI (Montreal Imaging Institute) space were also obtained
during segmentation. For rsfMRI dataset, we excluded the first
5 volumes in the series in order to account for the effects of
the initial scanner inhomogeneity. Slice-time correction was then
performed relative to the middle slice (slice 20), and the images
were realigned to the mean functional volume. The mean volume,
together with the realigned functional images, were then co-
registered to the bias-corrected T1WI anatomical images. The
co-registered functional images were normalized to the MNI
space using the transformation information obtained during
segmentation, resampled to have an isotropic voxel resolution
equal to 2 x 2 x 2 mm3, and smoothed using an isotropic 8-
mm full-width-at-half-maximum (FWHM) 3D Gaussian filter.
To correct for head motion and contribution from other nuisance
signals, we regressed out 24 motion-related regressors [Rt Rt

2

Rt−1 Rt−1
2], where R = [x, y, z, roll, pitch, yaw] represents the

estimated motion parameters (3 translations and 3 rotations).
Signals extracted from spherical ROIs within the CSF (center’s
MNI coordinate = [20, −32, 18], radius = 4 mm) and WM
(center’s MNI coordinate = [24, −12, 34], radius = 4 mm),
the global signal, as well as the signals’ derivatives were also
removed. Finally, the preprocessed data were then bandpass
filtered within 0.01–0.1 Hz. All preprocessing were performed
using in-house Matlab scripts as reported previously (Bagarinao
et al., 2019). The preprocessed dataset were used in the
succeeding analysis.

Data Analysis
A Correlation Analysis and Regression Analysis for
Age-Related Factors
In order to identify the factors related to aging, correlation
analyses with age were performed using Spearman’s rank
correlation coefficient method. Variables individually examined
included gender, years of education, GMV, WMV, CSFV, and
total intracranial volume (TICV) calculated from the anatomical
T1WI images, the total score of ACE-R, and the sub-score
of each domains (orientation / attention, memory, verbal
fluency, language and visuospatial ability). In addition, sub-
items of cognitive function in the ACE-R were also examined.
Considering the ceiling effects, only sub-items with relatively
high variance (SD > 0.5), such as the counts of the correct answer
to the serial subtraction of number 7, phonological or semantic
word recall score, picture naming score, and delayed recall (DR)
score, were included in the analysis. The threshold for statistical
significance was set at p < 0.05. Next, regression analysis was
performed for each factor with significant correlation with age.
The statistical significance threshold was set at p < 0.05. We
examined two regression models. One is linear in age, and the
other is quadratic. The appropriate regression model (linear vs.
quadratic) was assessed using the coefficient of determination
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(R2), the Bayesian information criterion (BIC), and the Akaike’s
information criterion (AIC).

VBM Analysis With Factors Associated
for Aging
The total volumes of GM, WM, and CSF were calculated using the
segmented components of the T1-weighted images. Using SPM
12, multiple regression analysis was performed with covariates
including age, gender, years of education, and five cognitive
domains (orientation/attention, fluency, memory, language, and
visuospatial). Global calculation was performed using TICV.
The threshold for statistical significance was set at a corrected
p < 0.05 with a family wise correction (FWE). We also examined
the association between GMV and the score of the DR, which
showed the highest significant relationship with age in the above
correlation analysis, under two different conditions. In one
condition, age and the TICV were included as covariates, while
in the other condition, age was excluded. Xjview1 was used to
examine regions with significant association with age or the score
of delayed memory in the resulting statistical maps. Automatic
anatomical labeling (AAL) was used for the anatomical name of
the identified region.

Resting State Network Analysis for
Aging and the Associated Factors
To evaluate the relationship between factors associated with
aging and brain functional networks, we used dual regression
analysis. The preprocessed rsfMRI datasets from the 120
subjects were temporally concatenated, and group independent
component analysis (ICA) was performed using the MELODIC
software from the FSL package (Jenkinson et al., 2012). Thirty
independent components (ICs) were derived across the whole
sample, extracted, and visually compared to a set of reference
RSN templates2 (Shirer et al., 2012) to identify several well-
known RSNs. In dual regression analysis (Filippini et al.,
2009), the extracted group ICs were used as spatial regressors
and the temporal dynamics associated with each IC for each
subject were estimated. These time courses were then used as
temporal regressors in a second regression analysis to generate
subject-specific maps associated with each group IC. Using
the constructed subject-specific maps, regression analysis was
performed with the cognitive function scores, year of education,
age, gender, and GMV set as regressors. For the cognitive
functional scores, in one condition, the scores of the five domains
(attention/orientation, fluency, memory, language, visuospatial)
were used. In another condition, the DR score was used instead
of the memory score. Statistical analysis of each component
map was performed using a non-parametric permutation test
(5000 permutations), and regions with connectivity showing
statistically significant association with each respective factors
were identified. All statistical maps were corrected for multiple
comparisons using FWE correction with threshold free cluster
enhancement. Statistically significance was set at p < 0.05.

1https://www.alivelearn.net/xjview/
2http://findlab.stanford.edu/functional_ROIs.html

RESULTS

A Correlation Analysis and Regression
Analysis for Age-Related Factors
In the correlation analysis using a Spearman’s rank correlation
coefficient, the CSFV was the only factor which showed a
significant positive correlation (r = 0.55). On the other hand,
significant negative correlations with age were seen in the
GMV (r = −0.58), DR score (r = −0.55), ACE-R total score
(r = −0.36), attention / orientation score (r = −0.35), memory
score (r = −0.38), and visuospatial ability score (r = −0.18)
(Table 2). The other domains, language and fluency, were
not significantly correlated with age. The education year also
demonstrated negative correlation with age, which reflect the
relatively high college enrollment rate in younger generation and
was, therefore, excluded for further regression analysis.

For the regression analysis of each factor with age, we
examined two regression models - linear and quadratic.
Individual plots for the different factors examined are shown
in Figure 1, whereas the combined plots for GMV, the DR
score, ACE-R total score, attention / orientation, and memory,
as functions of age are shown in Figure 2. The vertical axis
showed the volume and the score of each subject as a standardized
z-score, and the horizontal axis is age. The appropriate regression
model, shown as solid line, was identified using both AIC, BIC,
and R2. The best model was linear for GMV and visuospatial
and quadratic for the DR, memory, attention / orientation, and
ACE-R total. AIC, BIC, and R2 values for the two regression
models of each factor are summarized in Table 3. Among
the different cognitive function scores, the DR score showed
the highest significant relationship with age. GMV showed a
relatively steeper slope from the 20s, and fell below the average
value (z - score = 0) at around the age of 50. On the other
hand, the DR, total ACE-R score, memory and attention score
are relatively stable until late 50’s and decline sharply afterward.
The score of visuospatial ability showed mild linear change with
age, but the R2 value was small, and its change was not reliable.
The other two cognitive domains (language and fluency) did not
show significant relationship with age.

VBM Analysis With Factors Associated
With Aging
With VBM, a strong negative correlation with age was observed
in many regions across the cerebral cortex. The maximum
negative correlation was found in the right posterior central
gyrus. Areas with negative correlation with age were widespread
and bilaterally observed in the lateral frontal cortices, the
lateral temporal cortices, the lateral occipital cortices, the
parietal cortices, the cingulate gyrus, the areas surrounding the
intraparietal sulcus, and the medial temporal areas including the
hippocampus (Table 4, upper row in Figure 3). In VBM analysis
for 5 cognitive domains (attention/orientation, fluency, memory,
language, visuospatial ability) and education with age and TICV
as covariates, no region survived statistical significance.

VBM analysis for DR and with TICV as the covariate showed
positive correlation between DR and gray matter in a relatively
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2 large area including bilateral frontal cortices, bilateral temporal
cortices, bilateral insular cortices, and bilateral cingulate cortices
(p < 0.05, FWE) (Table 5, middle row in Figure 3). These
regions overlapped with the part of the areas showing negative
correlation with age (lower row in Figure 3). However, in the
analysis where the age was also included as a covariate, no
region survived.

Resting State Network Analysis for
Aging and the Associated Factors
In the first step of the dual regression analysis, 18 resting
networks were extracted (Figure 4). Those networks included
the ventral and dorsal DMN, the right and left ECN, the
anterior and posterior SN, the precuneus network, the dorsal
attention network (DAN), lateral DAN, the dorsal and ventral
SMN, the basal ganglia network (BGN), the language network
(LN), the auditory network, the primary, medial, and higher
VN, and the cerebellar network. Out of the 18 networks, eight
networks exhibited within-network functional connectivity that
was negatively correlated with age (p< 0.05, FWE), including the
primary, medial, and higher VN, dorsal and medial SMN, DAN,
anterior SN, and ventral DMN. The negatively correlated regions
in each network were shown in Figure 5, and the anatomical
location and voxel counts of those regions were summarized in
Table 6. On the other hand, 10 networks did not show significant
correlation with age. These networks included the left / right
ECN, dorsal DMN, posterior SN, LN, lateral DAN, precuneus,
cerebellum, auditory, and BGN.

With regards to the relationship with cognitive function,
the score of the domain of memory and the DR was found
to be positively correlated with the SMN (p < 0.05, FWE).
The regions with positive correlation in the SMN were almost
the same in the memory and the DR (Figure 6, Table 7).
Furthermore, the score of the fluency was found to be positively
correlated with 4 networks, the right ECN, the primary visual,
and the dorsal SMN (Figure 6, Table 7). Longer years of
education was weakly associated with higher connectivity in the
primary visual network, the precuneus, the DAN, and the ventral
DMN, and with lower connectivity in the cerebellar network
(p < 0.05, FWE).

DISCUSSION

In this study, we evaluated the relationship between aging and
cognitive function in a total of 120 healthy subjects consisting
of a balanced number of participants within age-groups of 20s,
30s, 40s, 50s, and 70s, who maintained relatively good cognition.
Our results were as follows: (1) Among the sub-scores of domains
in the cognitive test, the DR, memory, attention/orientation, and
visuospatial scores were significantly correlated with age. (2) The
score of the DR demonstrated the highest negative correlation
with age in this healthy cohort. In the regression analysis,
the language and fluency scores did not show significance,
whereas other domains (attention/orientation, memory, and
visuospatial), and the DR score showed significant relationship
with age. A quadratic approximation of the attention/orientation,
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FIGURE 1 | Plots for gray matter volume (GMV), total ACE-R score, five domains of the ACE-R (attention/orientation, memory, fluency, visuospatial, and language),
and the delayed recall (DR) score as functions of age. Points represent actual data, whereas solid line/curves represent regression functions.

memory, and the DR scores as functions of age showed
relatively delayed decline compared to the total GMV loss. (3) In
VBM analysis, widespread brain regions demonstrated negative

correlation with age. However, no regions have GM values that
correlated with the scores of all domains in the cognitive test
when age was included as a covariate. (4) In the analysis for
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FIGURE 2 | The plots for GMV (black), the DR score (red), ACE-R total score (blue), attention / orientation (yellow), and memory (pink), as functions of age are
shown. The vertical axis showed the volume and the score of each subject as a standardized z-score, and the horizontal axis is age.

TABLE 3 | A summary of AIC, BIC, and R2 values for the two regression models of each factor.

AIC BIC R2

Factor Linear Quadratic Linear Quadratic Linear Quadratic

Attention 327.94 315.55 333.52 323.91 0.1292 0.2276

Fluency 343.94 344.03 349.52 352.39 0.0050 0.0207

Memory 317.93 301.81 323.51 310.17 0.1989 0.3112

Language 343.43 340.02 349.00 348.38 0.0093 0.0529

Visuospatial 340.37 342.37 345.94 350.73 0.0342 0.0342

ACERTotal 321.41 312.16 326.98 320.52 0.1754 0.2491

GMV 287.73 289.72 293.31 298.08 0.3771 0.3772

DRscore 299.88 291.70 305.46 300.07 0.3108 0.3668

TABLE 4 | Anatomical structures correlated with age in VBM.

Peak MNI coordinate Peak anatomical structure Peak T-value

‘34 −26 48 Postcentral_R 10.49

Anatomical structures of the clusters (voxel count>100)

Frontal lobe Postcentral_L (1781), Postcentral_R (1350), 1278, Frontal_Mid_L (1278), Frontal_Sup_L (1039), Frontal_Inf_Orb_R (1038), Rolandic_Oper_R
(983), Frontal_Mid_R (983), Precentral_R (900), Frontal_Inf_Orb_L (807), Frontal_Sup_R (803), Frontal_Inf_Tri_L (796), Rolandic_Oper_L (785),
Precentral_L (730), Frontal_Inf_Oper_R (679), Frontal_Inf_Oper_L (676), Frontal_Inf_Tri_R (558), Rectus_R (506), Rectus_L (451),
Frontal_Med_Orb_R (323), Frontal_Mid_Orb_R (253), Olfactory_R (228), Frontal_Sup_Orb_L (212), Frontal_Sup_Medial_L (158),
Frontal_Med_Orb_L (154), Frontal_Sup_Orb_R (148), Supp_Motor_Area_R (146), Olfactory_L (127), Frontal_Sup_Medial_R (120)

Temporal lobe Temporal_Sup_R (2051), Temporal_Sup_L (1876), Temporal_Mid_R (1265), Temporal_Mid_L (873), Temporal_Pole_Sup_L (693),
Temporal_Pole_Sup_R (661), Fusiform_R (636), Fusiform_L (571), Temporal_Pole_Mid_R (255), Heschl_R (242), Temporal_Inf_R (225),
Heschl_L (210)

Parietal lobe Lingual_L (266), Lingual_R (245), Calcarine_L (199), Calcarine_R (141)

Occipital lobe Lingual_L(1332), Lingual_R(1317), Calcarine_L(1002), Calcarine_R(701), Cuneus_L(342), Cuneus_R(312)

Limbic / Insula Insula_L (1776), Insula_R (1690), Cingulum_Mid_R (1482), Cingulum_Mid_L (1217), Cingulum_Ant_L (770), Cingulum_Ant_R (689),
Hippocampus_L (572), ParaHippocampal_R (348), Hippocampus_R (272), ParaHippocampal_L (238), Amygdala_R (222), Amygdala_L (173)

Subcortical structures Putamen_R (766), Putamen_L (655), Caudate_L (575), Caudate_R (536), Thalamus_L (195), Thalamus_R (113)

Cerebellum Cerebelum_6_R (1060), Cerebelum_6_L (1012), Cerebelum_Crus1_L (413), Cerebelum_8_L (408), Cerebelum_Crus1_R (396),
Cerebelum_4_5_L (357), Cerebelum_Crus2_R (352), Cerebelum_4_5_R (295), Cerebelum_Crus2_L (278), Cerebelum_9_L (213),
Cerebelum_8_R (197), Vermis_8 (185), Cerebelum_7b_L (150), Vermis_7 (131)
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FIGURE 3 | VBM results. Regions with negative correlation with the age are shown in the upper row (blue), those with positive correlation with DR score without age
as a covariate are shown in the middle row (yellow) and the overlapped regions between the two are shown in the bottom row (green) (FWE p < 0.05).

TABLE 5 | Anatomical structures correlated with age in VBM.

Peak MNI coordinate Peak anatomical structure Peak T-value

‘−56 2 2 Temporal_Sup_L 7.48

Anatomical structures of the clusters (voxel count>100)

Frontal lobe Frontal_Inf_Orb_R (664), Precentral_R (348), Rolandic_Oper_R (346), Rolandic_Oper_L (309), Postcentral_R (269), Frontal_Inf_Oper_R (159),
Frontal_Inf_Tri_R (154), Frontal_Mid_Orb_R (144)

Temporal lobe Temporal_Sup_L (588), Temporal_Sup_R (225), Heschl_L (145), Temporal_Pole_Sup_R (111), Heschl_R (105)

Parietal lobe Precuneus_R (142)

Occipital lobe Lingual_L (322), Calcarine_R (181), Calcarine_L (179), Lingual_R (127)

Limbic / Insula Insula_R (525), Cingulum_Mid_R (290), Cingulum_Mid_L (271), Insula_L (241), Cingulum_Mid_R (236)

Cerebellum Cerebelum_6_R (538), Cerebelum_6_L (268), Cerebelum_Crus1_L (266), Cerebelum_Crus1_R (132)

RSNs, although several networks demonstrated a decrease of
within-network functional connectivity with age, such a decrease
was not observed in 10 networks including the left / right
ECN, dorsal DMN, posterior SN, LN, lateral DAN, precuneus,
cerebellum, auditory, and BGN. (5) The SMN was positively
correlated with the scores of the domain of memory and fluency,
and the DR score.

Morphological Analysis for Aging and
Cognition
We selected subjects whose ACE-R score was above the
cutoff and was considered normal in cognition. Even in such
subjects, ACE-R showed variances in some domains and sub-
scores with the DR being the most sensitive sub-score for
aging. This finding has a clinical importance to interpret the

results of ACE-R. DR purely evaluates short-term memory,
not tightly associated with one’s experience, and reflects fluid
intelligence. Among the five domains of this cognitive screening
test, memory, attention/orientation, and visuospatial ability
significantly demonstrated negative correlation with age. On
the other hand, language and fluency were not significantly
correlated with age. These two domains may not be strongly
affected by aging in healthy cohort with a relatively maintained
cognition, because language ability is more related to one’s
experiences, knowledge, and vocabulary, that is, crystalized
intelligence, and fluency also requires such functionality.
These findings support the idea that crystalized intelligence
is more maintained than fluid intelligence in healthy aging
(Baltes et al., 1999).

In VBM analysis, our results showed that the GMV widely
declined with age, even starting from the early 20s. This result
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FIGURE 4 | The 18 resting networks extracted at the first step of the dual regression analysis. DMN – default mode network; ECN – executive control network; Rt –
right; Ant – anterior; Post – posterior.

FIGURE 5 | Resting state networks, shown in white, with within-network functional connectivity values that negatively correlated with age. The clusters shown in
blue represented the areas with connectivity values showing significant negative correlation with age (FWE p < 0.05).

is consistent with many previous studies (Good et al., 2001;
Giorgio et al., 2010; Taki et al., 2011). Regarding the location of
regions showing negative correlation with age, the areas around
the central sulcus and the intraparietal sulcus were commonly
reported in several literatures (Good et al., 2001; Giorgio et al.,
2010; Taki et al., 2011), but as to deep brain structures such
as the hippocampus, the results differed (Good et al., 2001;
Giorgio et al., 2010; Taki et al., 2011; Squarzoni et al., 2018).
In our study, we found a significantly lower GMV in bilateral
regions around the central sulcus and the intraparietal sulcus,
and bilateral medial temporal areas including the hippocampus

in older adults. In Alzheimer’s disease, atrophic changes of GMV
have been observed in the medial temporal lobe and the temporo-
parietal junction. These changes were also frequently observed
even in the stage of mild cognitive impairment (MCI) (Baron
et al., 2001; Risacher et al., 2009). We adopted 83 as the cutoff
of ACE-R in this study (Mathuranath et al., 2000; Yoshida et al.,
2012), and our cohort included four individuals whose total score
was between 83 and 89. These individuals may potentially be at
the prodromal stage of dementia, that is, MCI, and could have
influenced our results. The WMV was known to demonstrate a
U-shaped change with age (Bagarinao et al., 2018), and therefore,
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TABLE 6 | Anatomical regions decreasing functional connectivity with age in the canonical RSNs.

Primary visual network Peak MNI coordinate Peak anatomical region P-value at peak region

‘26 −54 −6 Lingual_R P = 0.0338

structures (voxel count):

23 Lingual_R (23), Fusiform_R (5)

Sensorimotor network (dorsal) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−36 −24 68 Precentral_L P = 0.0392

structures (voxel count):

Precentral_L (15)

Higher visual network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−22 −88 −14 Lingual_L P = 0.0026

structures (voxel count):

Fusiform_L (264), Occipital_Inf_L (241), Lingual_L (190), Occipital_Mid_L (96), Cerebellum_6_L (43), Temporal_Inf_L (8),
Temporal_Mid_L (2), Cerebellum_Crus1_L (1)

Higher visual network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘48 −84 8 Occipital_Mid_R P = 0.0016

structures (voxel count):

Fusiform_R (457), Occipital_Mid_R (132), Occipital_Inf_R (124), Lingual_R (90), Cerebellum_6_R (60), Temporal_Mid_R (20),
Temporal_Inf_R (2)

Higher visual network (3) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−14 −52 −8 Lingual_L P = 0.021

structures (voxel count):

Lingual_L (30), Cerebellum_4_5_L (3)

Higher visual network (4) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−28 −68 34 Occipital_Mid_L P = 0.0066

structures (voxel count):

Occipital_Mid_L (232), Occipital_Sup_L (84), Cuneus_L (41)

Higher visual network (5) Peak MNI coordinate Peak anatomical region P-value at peak region

‘34 −76 36 Occipital_Mid_R P = 0.0228

structures (voxel count):

Occipital_Mid_R (70), Occipital_Sup_R (11)

Dorsal attention network Peak MNI coordinate Peak anatomical region P-value at peak region

‘20 −50 66 Parietal_Sup_R P = 0.0162

structures (voxel count):

Parietal_Sup_R (75), Precuneus_R (34), Postcentral_R (21)

Anterior salience network Peak MNI coordinate Peak anatomical region P-value at peak region

‘6 16 66 Supp_Motor_Area_R P = 0.0162

structures (voxel count):

Supp_Motor_Area_R (57)

Medial visual network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘34 −76 −6 Occipital_Inf_R P = 0.03

structures (voxel count):

Occipital_Inf_R (29), Middle Occipital Gyrus, Occipital_Mid_R (11), Fusiform_R (6)

Medial visual network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−26 −76 −4 Occipital_Inf_L P = 0.0118

structures (voxel count):

Occipital_Inf_L (12), Occipital_Mid_L (7), Lingual_L (3), Fusiform_L (2)

Ventral default mode network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−34 −34 −8 Hippocampus_L P = 0.0208

structures (voxel count):

Hippocampus_L (19)

Ventral default mode network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−18 −42 −6 Lingual_L P = 0.0272

structures (voxel count):

Lingual_L (93), ParaHippocampal_L (19), Precuneus_L (8), Fusiform_L (1)

(Continued)
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TABLE 6 | (Continued)

Primary visual network Peak MNI coordinate Peak anatomical region P-value at peak region

Ventral sensorimotor network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−32 −8 6 Insula_L p = 0.013

structures (voxel count):

Insula_L (12)

Ventral sensorimotor network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘ 62 2 34 Postcentral_R P = 0.036

structures (voxel count):

Postcentral_R (14), Precentral_R (10)

Ventral sensorimotor network (3) Peak MNI coordinate Peak anatomical region P-value at peak region

‘ 44 −8 55 Precentral_R P = 0.001

structures (voxel count):

Precentral_R (161), Frontal_Mid_2_R (66), Frontal_Sup_2_R (11)

FIGURE 6 | Resting state networks, shown in white, with within-network functional connectivity values that positively correlated with the score of fluency, memory,
and delayed recall (DR). The clusters shown in yellow-red represented the areas with connectivity values showing significant positive correlation with the different
scores (FWE p < 0.05).

we could not find a linear correlation in our analysis. In VBM,
we did not find regions with GMV that correlated with the
scores of cognitive domain in ACE-R when age was included as
a covariate. This result reflects difficulty to evaluate significant
relationship between cognition and morphological changes when
simultaneously accounting for the influence of age. In the analysis
without age as a covariate, the DR score positively correlated with
the GMV of a relatively wider brain region that included bilateral
frontal cortices, bilateral temporal cortices, bilateral insular
cortices, and bilateral cingulate cortices. We assumed that the
function of the DR may require activities in a variety of regions
including the hippocampus and the nearby medial temporal
structures. However, such a topographic characteristic was not
observed in our results. These results should be interpreted with

care considering the dependence of both DR and GMV with
age. In other words, the affected regions may be "related to
the decline of the DR score due to aging" and not to the DR
function itself. A study by Takeuchi et al., which examined this
relationship using a large sample and age-matched healthy young
adults with mean age of 20.8 years and SD of 0.8, reported that
there was no strong correlations between regional GMV and
specific cognitive domains. Diverse cognitive functions may be
weakly associated with regional GMV in widespread brain areas,
and may be difficult to detect this association in this analysis.

Regarding the relationship between the morphological
changes of the brain and cognition with age, Schnack et al. (2015)
reported about the relationship between the intelligence quotient
(IQ) and the thickness of the cortex over age. Higher IQ was
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TABLE 7 | Anatomical regions increasing functional connectivity with cognitive score in the canonical RSNs.

Anatomical regions increasing functional connectivity with Fluency score

Rt.executive control network Peak MNI coordinate Peak anatomical region P-value at peak region

32 44 26 Frontal_Mid_2_R P = 0.0274

Structures (voxel count):

Frontal_Mid_2_R (18), Frontal_Sup_2_R(4)

Primary visual network Peak MNI coordinate Peak anatomical region P-value at peak region

26 −90 22 Occipital_Sup_R P = 0.0044

structures (voxel count):

Occipital_Sup_R(60), Occipital_Mid_R(8)

Dorsal sensorimotor network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−30 −18 40 Precentral_L P = 0.0306

Structures (voxel count):

Precentral_L(2)

Dorsal sensorimotor network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘−40 −8 48 Precentral_L P = 0.0156

Structures (voxel count):

Precentral_L(53), Postcentral_L(31)

Anatomical regions increasing functional connectivity with Memory score

Ventral sensorimotor network Peak MNI coordinate Peak anatomical region P-value at peak region

‘58 6 −2 Temporal_Pole_Sup_R P = 0.0108

Structures (voxel count):

Temporal_Sup_R(32), Temporal_Pole_Sup_R(30), Rolandic_Oper_R(4)

Anatomical regions increasing functional connectivity with DR score

Ventral sensorimotor network (1) Peak MNI coordinate Peak anatomical region P-value at peak region

‘60 2 0 Temporal_Pole_Sup_R P = 0.022

Structures (voxel count):

Temporal_Pole_Sup_R(18), Temporal_Sup_R(3)

Ventral sensorimotor network (2) Peak MNI coordinate Peak anatomical region P-value at peak region

‘64 −8 6 Temporal_Sup_R P = 0.0332

Structures (voxel count):

Temporal_Sup_R(23), Heschl_R(5), Rolandic_Oper_R(4)

associated with larger and thicker surface area until around the
age of 20, but this relationship weakened from the age of 40 to
50. They also mentioned that individuals maintaining high IQ
may form highly efficient formation of brain networks (Schnack
et al., 2015). Although they utilized the IQ, which has four
domains including the language, working memory, visuospatial,
and performance speed, the results was similar to ours. Our
results also demonstrated that the GMV decreased with age from
a relatively early stage (20’s), whereas the domain of memory
and attention, as well as the DR score was maintained to some
extent until the late 50s. In healthy aging, a decrease in the GMV
and a decrease in cognition showed such temporal dissociation
and never showed parallel relationship. The absence of this
relationship could not be simply explained by morphological
analysis in the brain, and therefore, we supposed that the network
analysis was necessary.

More broadly, existing studies have shown that GM
continuously declined with age. Thus, it is indeed intriguing that
cognitive scores have inverse U-shaped behavior as a function
of age, while GMV decreased linearly. Although speculative, this
may point to some possible reserve mechanisms at work, where
reserve capabilities are accumulated during childhood and young

adulthood. The concept of brain or cognitive reserve (Stern,
2002; Satz et al., 2011; Barulli and Stern, 2013) hypothesized the
accumulation of neural resources over the years that could lessen
the effects of neural decline associated with aging or age-related
diseases (Cabeza et al., 2018). Factors such as longer education,
greater physical activity, and involvement in demanding leisure
activities, among others, affect reserve capacity (Cabeza et al.,
2018). This possibly drive the relative preservation in cognitive
scores before it peaks and started to decline. Since reserve can
also manifest in terms of efficient use of neural resources (Solé-
Padullés et al., 2009), large-scale brain networks may also have
important roles to play in the maintenance of cognitive functions
during aging. To fully understand the association among brain
structure, network, and cognition in the aging brain, more
studies are needed.

Network Analysis for Aging and
Cognition
Previous studies have reported that the connectivity within
networks, such as DMN, decreased with age (Damoiseaux
et al., 2008; Koch et al., 2010; Jones et al., 2011). Our results
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FIGURE 7 | The overlapped regions between the dorsal default mode network (DMN) and the language network (FWE p < 0.05).

also demonstrated similar within-network connectivity decreases
in 8 out of 18 RSNs. Specifically, the ventral DMN showed
significant decrease in functional connectivity, but not the dorsal
DMN. Similar results have been previously reported (Campbell
et al., 2013; Huang et al., 2015; Bagarinao et al., 2019). The
functional difference between the two is currently not well
understood. The ventral DMN is more associated with memory,
a hippocampus – dependent function (Damoiseaux et al., 2012),
and this network may weaken over age as memory declined.
Campbell et al. (2013) examined age-related differences in the
intrinsic functional connectivity in subsystems of the DMN.
Their findings showed that the subsystem involving dorsal
posterior cingulate cortex (PCC) to the fronto-parietal regions
was relatively maintained in the elderly, whereas that involving
the ventral PCC declined in functional connectivity. The dorsal
PCC is a core region in the dorsal DMN, and this could be
a reason for the observed discrepancy between ventral DMN
and dorsal DMN in our study. With regards to the LN, which
also showed no association between connectivity and age, we
found regional similarity of its connectivity to that of the
dorsal DMN. Both networks shared common regions in the
dorsal PCC and dorsomedial prefrontal cortex (Figure 7). The
relative maintenance of the dorsal PCC’s connectivity may also
explain the relative preservation of LN. In addition, the LN is
associated with language ability, an important part of crystalized
intelligence. Therefore, this result may be a reflection of the
relative maintenance of crystalized intelligence over age. In
the absence of supporting literature, more studies examining
the association between LN and the network associated with
crystallized intelligence are needed. Among the other core
cognitive networks, the right / left ECN, lateral dorsal attention,
precuneus, and posterior SN have within-network functional
connectivity values that did not significantly correlated with
age. Previous studies have reported that these networks have

decreased within-network functional connectivity (Onoda et al.,
2012; Ferreira and Busatto, 2013). However, relative sparing
of the functional connectivity in the prefrontal and parietal
cortex over age has also been reported (Rajah and D’Esposito,
2005; Reuter-Lorenz and Cappell, 2008; Grady, 2012). These
regions are well known to be important for cognitive control,
which is a function for the effortful use of cognitive resources
to guide, organize, or monitor behavior (Grady, 2012). The
networks which were not correlated with age in our study, such
as dorsal DMN, the LN, the right / left ECN, lateral dorsal
attention, and the posterior salience, included these regions.
Some reports suggested that these networks were important
for cognitive reserve (Onoda et al., 2012; Chand et al., 2017).
Taken together, our results suggest that networks involved with
cognitive control were not significantly associated with age. This
may reflect the characteristics of our cohort, who had relatively
maintained cognition.

Networks associated with primary processing, including
ventral and dorsal SMNs and primary VN, demonstrated
decrease in functional connectivity with age consistent with
previous reports using resting state fMRI and / or task
fMRI (Cliff et al., 2013; Roski et al., 2013; Huang et al.,
2015; Bagarinao et al., 2019). These results are reasonable
considering the vulnerability of the GMV in these areas to
aging, physical deterioration, and less external stimulation in the
elderly. However, other studies have also demonstrated that the
functional connectivity in the primary processing networks is
unchanged in advancing age (Geerligs et al., 2015). Therefore,
this finding remained inconclusive. The networks related to high-
order visual processing also showed negative correlation with age
in our study, consistent with previous reports (Yan et al., 2011;
Bagarinao et al., 2019).

In terms of the relationship between cognitive functions
and functional connectivity within networks, our results
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demonstrated that the memory score, the DR score, and the
fluency score were positively correlated with the SMN. A close
relationship between motor function and cognitive function has
been reported in behavioral experiments and epidemiological
surveys (Clarkson-Smith and Hartley, 1989; Weuve et al., 2004).
Recently, a study has reported that physical exercise improved
gait speed, and cognitive performance, through the increasing
involvement of motor-related networks (Ji et al., 2018). Voss et al.
also reported that cardiorespiratory fitness moderated the adverse
effects of aging on cognitively and clinically relevant functional
brain networks (Voss et al., 2016). Another study also reported
that increased functional connectivity of posterior cingulate
gyrus / precuneus in individuals with MCI after excise training
possibly increase cognitive reserve (Chirles et al., 2017). The
neural basis of exercise as an intervention for the maintenance
of cognition is being gradually elucidated by recent network
analyses, and this may lead to the development of an effective
modality about intervention by exercise to prevent cognitive
impairment (Huang et al., 2016). The fluency score also showed
positive correlation with the right ECN, and weak correlation
with the primary VN. Working memory is related to word
phonological fluency, and knowledge and vocabulary are related
to word categorization fluency (Ruff et al., 1997; Rende et al.,
2002; Stolwyk et al., 2015). This association may reflect the
relationship between the score of fluency and the ECN. Other
cognitive function scores did not show any significant association
with the connectivity of any network.

In terms of education history, longer schooling was associated
with higher connectivity in the primary VN, the precuneus
network, the DAN, and the ventral DMN. The education history
was reported to have a correlation with cognitive reserve. In a
study with a 4-year follow up, the group with short education
history had a 2.2 times higher risk of developing dementia
(Stern et al., 1994; Stern, 2009). A more recent study has
shown that the risk is 1.5 times higher (Livingston et al., 2017).
Given this, long education history plays an important role to
keep cognition within normal range, and the neural basis for
this may be related to cognition-related networks such as the
DAN and the ventral DMN. These networks may have an
important role for cognitive reserve. Although the long history
of education negatively correlated to the cerebellar network,
there has been no report regarding this finding. Recently, there
are some reports about detailed analysis for the RSNs in the
cerebellum (Dobromyslin et al., 2012; Kawabata et al., 2020).
Further study is warranted.

Limitations
Finally, we enumerated our study’s limitations. First, in the VBM
analysis for the DR score, the influence of age could not be
completely separated. To identify specific regions related to the
DR score using VBM, it is necessary to match the age of all
participants and examine individual differences in the DR score.
Second, ACE-R is typically used for healthy screening, and has
a ceiling effect. Under this limitation, we cannot fully discount
its contribution in the observed inverse U – shape behavior in
some cognitive domains as functions of age. However, such an
inverse U-shape curve is not uncommon in aging studies and has

been reported for some cognitive scores (Douaud et al., 2014).
Moreover, the sensitivity of the sub-score of ACE-R is not well
understood. Therefore, the use of specific cognitive batteries is
necessary for a more detailed cognitive evaluation. Third, we
just examined the strength of the connectivity within networks.
Analysis of the interaction among networks is necessary to fully
understand how brain networks contribute to preserve cognition
from the GMV loss. There are two important hypotheses, the
differentiation (Park et al., 2004; Voss et al., 2008; Goh, 2011)
and compensation (Grady et al., 1994; Cabeza, 2002; Davis
et al., 2008). To evaluate these mechanisms, the between-network
analysis will be performed in a future study. Fourth, this study
used cross-sectional data collected by each age-group, not a
longitudinal observation of individuals. Finally, the effect of head
motion during rsfMRI scanning cannot be completely ruled out
especially in aging studies (Kato et al., 2020).

CONCLUSION

In our study using a well-balanced healthy cohort in terms
of the number of participants and age, we found mixed aging
characteristics of brain networks. Among the sub-scores of the
cognitive screening test, the DR, memory, attention/orientation,
and visuospatial scores were significantly correlated with age, but
not language and fluency. Furthermore, the cognitive domains
that correlated with age, even the highly correlated sub-scores
such as the DR score, showed delayed decline compared to
the loss of total GMV. In RSN analysis, the ventral DMN,
some networks involving primary processing (the primary VN,
the dorsal and ventral SMN), and network related to visual
function have within-network connectivity values that negatively
correlated with age. On the other hand, some RSNs including
the left / right ECN, dorsal DMN, posterior SN, LN, and
lateral DAN, have within-network connectivity values that
were maintained with age in this cohort. This may reflect a
relative preservation in cognitive control function and crystalized
intelligence in our cohort. Furthermore, the score of memory,
fluency, and the DR was correlated with the sensorimotor
network, which supported the importance of the exercise for
maintenance of cognition.
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