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Networks are present in many aspects of our lives, and networks in neuroscience

have recently gained much attention leading to novel representations of brain

connectivity. The integration of neuroimaging characteristics and genetics data allows

a better understanding of the effects of the gene expression on brain structural

and functional connections. The current work uses whole-brain tractography in a

longitudinal setting, and by measuring the brain structural connectivity changes studies

the neurodegeneration of Alzheimer’s disease. This is accomplished by examining the

effect of targeted genetic risk factors on the most common local and global brain

connectivity measures. Furthermore, we examined the extent to which Clinical Dementia

Rating relates to brain connections longitudinally, as well as to gene expression. For

instance, here we show that the expression of PLAU gene increases the change over

time in betweenness centrality related to the fusiform gyrus. We also show that the

betweenness centrality metric impact dementia-related changes in distinct brain regions.

Our findings provide insights into the complex longitudinal interplay between genetics

and brain characteristics and highlight the role of Alzheimer’s genetic risk factors in the

estimation of regional brain connectivity alterations.

Keywords: Alzheimer’s disease, connectome, gene expression, connectivity metrics, diffusion-weighted imaging,

dementia, PLAU, MRI

INTRODUCTION

The advancement in technologies and the integration of genetic and neuroimaging datasets have
taken Alzheimer’s research steps further, and produced detailed descriptions of molecular and
brain aspects of the disease (Shaw et al., 2007). Previous studies have utilized the connectome
(Hagmann et al., 2008) to study different brain diseases through associating genetic variants to
brain connectivity (Thompson et al., 2014). A structural connectome is a representation of the
brain as a network of distinct brain regions (nodes) and their structural connections (edges),
calculated as the number of anatomical fibers. Those anatomical fibers are generally obtained
by diffusion-weighted imaging (DWI) (Alexander et al., 2007). DWI is the most commonly
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used in-vivo method for mapping and characterizing the
diffusion of water molecules in three-dimensions, as a function
of the location, and ultimately to construct the structural
connectome. The connectome representation of the brain allows
measuring of important properties, such as the ability of the
brain to form separated sub-networks (network segregation), or
the measure of a network dispersion (i.e., how segregated sub-
networks are connected network integration) (Deco et al., 2015).
Given such measures of the brain, it is also possible to represent
each individual brain as single scalar metrics which summarize
peculiar properties of the network’s segregation and integration
(Rubinov and Sporns, 2010), and calculate what is known as
global connectivity metrics. Moreover, the connectome can also
be used to quantify local properties of the brain (i.e., properties
at specific nodes/areas). These measures (i.e., global and local
connectivity metrics) can reflect neurodegeneration in the sense
that neuronal apoptosis (i.e., programmed cell death) can be
represented as a reduction in structural connectivity (Douaud
et al., 2007; Elsheikh et al., 2020b).

There are many factors which may affect susceptibility to
Alzheimer’s disease (AD) and various ways tomeasure the disease
status. However, there is no single factor which can be used
to predict the disease risk sufficiently (Barnes and Yaffe, 2011).
Genetics is believed to be the most common risk factor in
AD development (Gatz et al., 1997). Genetic variants located
in about 20 genes have been reported to affect the disease
through many cell-type specific biological functions (Gaiteri
et al., 2016). Genome-Wide Associations Studies (GWAS), also
highlighted dozens of multi-scale genetic variations associated
with AD risk (Lambert et al., 2013; Escott-Price et al., 2014;
Elsheikh et al., 2020b). From the early stages of studying the
disease, the well known genetic risk factors of AD were found
to lie within the coding genes of proteins involved in amyloid-
β(Aβ) processing. These include the Apolipoprotein E gene
(ApoE) which increases the risk of developing AD (Corder et al.,
1993), the Amyloid precursor protein (APP) (Goate et al., 1991),
presenilin-1 (PSEN1), and presenilin-2 (PSEN2) (Levy-Lahad
et al., 1995; Rogaev et al., 1995).

Early work demonstrated that ApoE-4 carriers have an
accelerated age-related loss of global brain inter-connectivity in
AD subjects (Brown et al., 2011), and topological alterations
of both structural and functional brain networks are present
even in healthy subjects carrying the ApoE gene (Chen et al.,
2015). A meta-analysis study also showed the impact of
APOE, phosphatidylinositol binding clathrin assembly protein
(PICALM), clusterin (CLU), and bridging integrator 1 (BIN1)
gene expression on resting state functional connectivity in AD
patients (Chiesa et al., 2017). Going beyond the ApoE gene,
Jahanshad et al. (2013) used a dataset from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) to carry out a GWAS
of brain connectivity measures and found an associated variant
in F-spondin (SPON1), previously known for its association
with dementia severity. A more recent study has also used
the ADNI dataset to conduct a GWAS on the longitudinal
brain connectivity, and provided an evidence of association
between some single nucleotide polymorphisms (SNPs) in the
CDH18 gene and Louvain modularity (a measure of network

segregation) (Elsheikh et al., 2020b). A landmark study identified
reproducible gene expression signatures related to functional
brain connectivity (Hawrylycz et al., 2015). Cortical atrophy
related to Alzheimer’s was associated with regional expression
levels of MAPT from the Allen brain atlas (Grothe et al., 2018).
Subsequently, further characterization of longitudinal misfolded
protein spreading was also associated with regional expression
levels of CLU (Sepulcre et al., 2018). a recent review summarized
these findings and other connectomics related studies (Yu et al.,
2021).

AD is a common dementia-related illness; in the elderly,
AD represents the most progressive and common form of
dementia. Accordingly, incorporating and assessing dementia
severity when studying AD provides more insights into the
disease progression from a clinical point of view. A reliable
global rating of dementia severity is the Clinical Dementia Rating
(CDR) (Morris et al., 1997), which represents a series of specific
evaluations for memory, orientation, judgment and problem
solving, community affairs, home and hobbies (intellectual
interests maintained at home), and personal care. The ultimate
CDR measure is an ordinal scale which rates the severity
of dementia symptoms, it uses the values 0, 0.5, 1, 2, and
3, to represent none, very mild, mild, moderate, and severe,
respectively.

In this paper, we integrated different aspects of Alzheimer’s
Disease, including longitudinal measures of CDR, global and
local connectivity as well as gene expression extracted from blood
samples of AD patients and controls. For global connectivity, we
utilized the most commonly used metrics of network segregation
(i.e., Louvain modularity and transitivity) and integration (i.e.,
characteristic path length and global efficiency). Path length was
used in a plethora of studies as a biomarker to study the complex
brain connectivity in schizophrenia (van den Heuvel et al., 2010),
and the local efficiency and characteristic path lengths that were
used to study the structural organization of the brain network in
autism (Rudie et al., 2013). For a detailed review on work using
such metrics see (Griffa et al., 2013). A brief description of the
global connectivity metrics we used here, 1) Louvain modularity
is a community (cluster) detection method, which iteratively
transforms the network into a set of communities, 2) transitivity
quantifies the segregation of a network by normalizing the
fraction of triangles around an individual node, 3) characteristic
path length is the average shortest path, 4) the global efficiency is
the inverse of characteristic path length. For the local connectivity
features, we used one measure to represent node’s segregation,
integration and centrality. The local connectivity metrics of a
network represent large-scale organization which in turn may be
used to represent well functioning cognitive functions (Cohen
and D’Esposito, 2016). Measures of centrality (e.g., degree and
betweenness centrality) usually measure similar features in a
network (such as the amount or weight of connections that a
node has), and hence, can be highly related to each other. Indeed,
it has been shown that many of them can lead back to the degree
centrality at a node (Rubinov, 2016). Therefore, along with using
local connectivity measures, we computed their correlation with
the nodal degree metric—the simplest feature we can extract
from a graph node.
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Our work aimed to answer questions such as are there brain
connectivity metrics that discriminate changes longitudinally
in AD patients compared to healthy control subjects? Is there
a most representative metric, or a redundancy in the chosen
metrics? Is there a correlation between the metrics used and
expression of known AD-related genes? Is there a correlation
between connectivity metrics and clinical ratings?

We address these questions considering the global brain by
using global connectivity, and also considering specific brain
regions using the local connectivity metrics. We regressed the
absolute changes in connectivity metrics on gene expression,
studied the association between the longitudinal changes of
connectivity and CDR scores, and performed a ridge regression
between gene expression, the changes in CDR scores and brain
connectivity.

Using a dataset from ADNI (http://adni.loni.usc.edu/) this
paper presents an integrated association study of specific
AD risk genes, dementia scores and structural connectome
characteristics. Specifically, we used the longitudinal case-control
dataset to examine the association of known AD risk-gene
expression with the change in local and global connectivity
metrics. Furthermore, we tested the longitudinal effect of
brain connectivity on the difference (i.e., change over time)
of CDR scores through a multivariate analysis to study the
longitudinal effect of gene expression and connectome changes
on CDR change. The identification of advanced imaging and
genetic biomarkers with regional effect can be put into clinical
practice, specially, the treatment of specific regions of the brain
though targeting circuitry affected by plaques (Canter et al.,
2019).

MATERIALS AND METHODS

Data Description
We used two sets of data from ADNI, which are available
at adni.loni.usc.edu. The experiments have been conducted
on the publicly available datasets described below, for which
ethical approval has already been granted, and data acquisition
has been conducted according to the Helsinki II regulations.
Additionally, we received ethics approval from the Faculty of
Health Sciences Human Research Ethics Committee at the
University of Cape Town. The populations are matched by
age, and the mean ages are, respectively, 76.5 ± 7.4 for AD
patients, and 77.0 ± 5.1 years for healthy subjects. To fulfill our
objectives, unless otherwise specified, we merged neuroimaging,
gene expression and CDR datasets for all the participants, who
have these three types of data available, at two-time points.
We considered follow-up imaging and CDR acquisition 1 year
later than the baseline visit. All those constraints drastically
reduced the number of available samples, yielding a total of
51 participants, 15 AD patients, and 36 healthy elderly subject.
Recent studies (Richiardi et al., 2015) focused on genetics and
MRI data also used similar sample sizes. Therefore, despite this
limitation this kind of study offers novel insights combining all
those multimodal data generally not reached by purely imaging
or non-longitudinal studies.

Imaging Data
For the imaging, we obtained the DWI volumes at two time
points, the baseline and follow-up visits, with 1 year in between.
Along with the DWI, we used the T1-weighted images which
were acquired using a GE Signa scanner 3T (General Electric,
Milwaukee, WI, USA). The T1-weighted scans were obtained
with voxel size = 1.2 × 1.0 × 1.0mm3TR = 6.984ms; TE =

2.848 ms; flip angle= 11◦, while DWI was obtained with voxel
size = 1.4 × 1.4 × 2.7mm3, scan time = 9 min, and 46 volumes
(5 T2-weighted images with no diffusion sensitization b0 and 41
diffusion-weighted images b= 1000s/mm2).

Pre-processing of Imaging Data
Each DWI and T1 volume had been pre-processed performing
eddy current correction and skull stripping. DWI and T1
volumes were already co-registered, and the atlas was further
linearly registered to them according to 12 degrees of freedom.
We used the same T1 reference to get the information needed to
compute the partial volume effect from the tissue segmentation
by using the FMRIB Software Library (FSL). More specifically,
we used FMRIB’s Automated Segmentation Tool (FAST) to
obtain 3 masks further used as anatomical constraints for the
tractography. Linear registration was used as although atrophy
was visible mostly in the cingulum, it was not case for the
overall cortex.

Genetic Data Acquisition
We used the Affymetrix Human Genome U219 Array profiled
expression dataset from ADNI. The RNA was obtained from
blood samples and normalized before hybridization to the array
plates. Partek Genomic Suite 6.6 and Affymetrix Expression
Console were used to check the quality of expression and
hybridization (Saykin et al., 2015). The expression values were
normalized using the Robust Multi-chip Average (Irizarry et al.,
2003), after which the probe sets were mapped according to
the human genome (hg19). Further quality control steps were
performed by checking the gender using specific gene expression,
and predicting the SNPs from the expression data (Vawter et al.,
2004; Schadt et al., 2012). Although it is more useful to extract
the gene expression profiles from the brain, we used the gene
expression extracted from blood samples, as provided by ADNI.
Blood gives a general idea of what is happening in the body,
and can detect differences in gene expression. Moreover, blood
samples are easy to obtain and are noninvasive. Nevertheless, we
verified that the investigated genes are expressed in the brain
parenchyma through the Allen gene expression atlas https://
human.brain-map.org/ish/search and Protein Atlas https://www.
proteinatlas.org. In this work, we targeted specific genes which
have been reported to affect the susceptibility of AD. We used
the BioMart software from Ensembl to choose those genes by
specifying the phenotype as AD (Smedley et al., 2015). We
obtained a total of 17 unique gene names and retrieved a total
of 65 probe sets from the genetic dataset.

Clinical Dementia Rating
The Clinical Dementia Rating (CDR) score is an ordinal scale
used to rate the condition of dementia symptoms. It ranges from
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0 to 3, and is defined by five values: 0, 0.5, 1, 2, and 3, ordered
by severity (smaller values are less severe), these values stand
for none, very mild, mild, moderate and severe, respectively.
The scores evaluate the cognitive state and functionality of
participants. Here, we used the main six scores of CDR; memory,
orientation, judgement and problem solving, community affairs,
home and hobbies, and personal care. Besides these, we used
a global score, calculated as the sum of the six scores. We
obtained the CDR scores at two time points in accordance with
the connectivity metrics time points.

Connectome Construction
We generated tractographies by processing DWI data with Dipy
(Garyfallidis et al., 2014), a Python library. More specifically,
we used the constant solid angle model (Aganj et al., 2010) and
Euler Delta Crossings (Garyfallidis et al., 2014) deterministic
algorithm. We stemmed from 2,000,000 seed-points, and
as stopping condition we used the anatomically-constrained
tractography approach based on partial volume effect (Smith
et al., 2012). We also discarded all fibers with sharp angle (larger
than 75◦) or those with length < 30mm.

To construct the connectome, we assigned a binary
representation in the form of a matrix whenever connections
were present between two Automated anatomical labeling (AAL)
atlas (Tzourio-Mazoyer et al., 2002) regions, for any pair of
regions. Though the AAL atlas has been criticized for functional
connectivity studies (Gordon et al., 2014), it has been useful
in providing insights in neuroscience and physiology, and is
believed to be sufficient for our case study limited to structural
data and large brain regions (Gordon et al., 2014).

Global and Local Connectivity Metrics
To quantify the overall efficiency and integrity of the brain, we
extracted global measures of connectivity from the connectome,
represented here in four values of network integration and
segregation. Specifically, we used two network integration
metrics 1) global efficiency (E), and 2) weighted characteristic
path length (L). Both are used to measure the efficiency at
which information is circulated around a network. On the other
hand, we used; 1) Louvain modularity (Q), and, 2) transitivity
(T) to measure the segregation of the brain which is defined
as the capability of the network to shape sub-communities
which are loosely connected to one another while forming a
densely connected sub-network within communities (Rubinov
and Sporns, 2010; Deco et al., 2015).

Suppose that n is the number of nodes in the network,
N is the set of all nodes, the link (i, j) connects node i with
node j and aij define the connection status between node i
and j, such that aij = 1 if the link (i, j) exist, and aij = 0
otherwise. We define the global connectivity metrics as; E =

1
n(n−1)

∑

i∈N

∑

j∈N,j 6=i d
−1
ij , where, dij =

∑

auv∈gi↔j
auv, is the

shortest path length between node i and j, and gi↔j is the

geodesic between i and j. L = 1
n(n−1)

∑

i∈N

∑

j∈N,j 6=i dij. Q =

1
l

∑

ij∈N

[

aij −
kikj
l

]

δ(ci, cj), where l =
∑

i,j∈N aij, mi and mj are

the modules containing node i and j, respectively, and δ(ci, cj) =

1 if ci = cj and 0 otherwise. T =

∑

i∈N 2ti
∑

i∈N ki(ki−1)
, where ti =

1
2

∑

j,h∈N(aijaihajh) is the number of triangles around node i.

Moreover, using the AAL atlas, we constructed the following
local brain network metrics at each region or node. We used the
local efficiency (Eloc,i), clustering coefficient (Ci) and betweenness
centrality (bi) at each node to quantify the local connectivity.
Local efficiency and clustering coefficient measure the presence
of well-connected clusters around the node, and they are
highly correlated to each other. The betweenness centrality is
the number of shortest paths which pass through the node,
and measures the effect of the node on the overall flow of
information in the network (Rubinov and Sporns, 2010). The
local connectivity metrics used in this work, for a single node i,
are defined as follows;

Eloc,i =

∑

j,h∈N,j 6=i aijaih
[

djh(Ni)
]−1

ki(ki−1)
, where, djh(Ni), is the length

of the shortest path between node j and h—as defined in
Equation, and contains only neighbors of h Ci =

2ti
ki(ki−1)

. bi =

1
(n−1)(n−2)

∑

h,j∈N,h6=j,h6=i,i6=j
ρhj(i)

ρhj
, where ρhj(i) is the weights of

shortest path between h and j that passes through i.

Statistical Analysis
We used different statistical methods as described below, and
for the multiple testing we relied on the Bonferroni correction
(Narum, 2006; White et al., 2019). Where applicable, the
thresholds were obtained by dividing 0.05 by the number of
independent tests. We stated the corrected threshold value and
the number of independent tests in the caption of each table in
the Results section.

Quantifying the Change in CDR and Connectivity

Metrics
To determine the longitudinal change in CDR, local and
global connectivity metrics, we calculated the absolute difference
between the first visit (the baseline visit) and the first visit after 12
months (the follow-up visit). Unless stated otherwise, this is the
primary way we used to quantifying the longitudinal change in
this analysis.

Estimation of Gene Expression From Multiple Probe

Sets
Different probe set expression values were present for each gene
in the data. To estimate a representative gene expression out
of the probe set expression, we conducted a non-parametric
Mann-Whitney U-test to evaluate whether the expression in
AD was different from those of healthy elderlies. For each
gene, we selected the probe set expression that has the lowest
Mann-Whitney U p-value. In this way, we selected the most
differentially expressed probe sets in our data and considered
those for the remaining analysis.

Spearman’s Rank Correlation Coefficient
To test the statistical significance of pair-wise undirected
relationships, we used the Spearman’s rank correlation coefficient
(ρ). The Spearman coefficient is a non-parametric method
which ranks pairs of measurements and assesses their monotonic
relationship. We report here the coefficient ρ along with
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FIGURE 1 | Box plots of the distribution of brain segregation and integration global connectivity metrics comparing the two time points. The plots compare the

baseline and follow-up distributions for AD and healthy elderly subjects for Louvain modularity (A), transitivity (B), characteristic path length (C) and global efficiency

(D). The asterisk denotes that there is a significant change from baseline to the follow-up visit.

FIGURE 2 | The figure shows three box plots, respectively, (A) for the AD and (B) control subjects. Each boxplot represents the correlation values between the degree

value of a node and the related local efficiency (LE), betweenness centrality (BC) and clustering coefficient (CC). Values close to 0 represent low correlation while those

close to 1 show a high correlation.
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the corresponding p-value to evaluate the significance of the
relationship. A ρ of±1 indicates a very strong relationship, while
ρ = 0 means there is no relationship.

Quantile Regression
To model the directed relationship between two variables, we
used the quantile regression model (Koenker and Hallock, 2001).
This model is used as an alternative to the linear regression
model when the linear regression assumptions are not met.
This fact allows the response and predictor variables to have
a non-symmetric distribution. The quantile regression model
estimates the conditional median of the dependent variable given
the independent variables. Besides, it can be used to estimate
any conditional quantile; and is therefore robust to outliers.
Accordingly, in this work we used the quantile regression to
model the directed relationship between two variables. As an
alternative to the linear regression, we chose the 50th percentile
(the median) as our quantile and estimated the conditional
median (rather than the conditional mean in case of the ordinary
linear regression) of the dependent variable across given values of
the independent variable.

Ridge Regression
For estimating the relationship between more than two variables,
we used ridge regression (Hoerl and Kennard, 1970). The basic
idea behind this model is that it solves the least square function
penalizing it using the l2 norm regularization. More specifically,
the ridge regression minimizes the following objective function:

||y − Xβ||22 + α||β||22, i.e.,β
Ridge = argmin

β∈R

||y − Xβ||22 +

α||β||22, where y is the dependent (or response) variable, X is the

TABLE 1 | Mann-Whitney U-test top results for the difference between AD and

controls in probe set expression.

Gene Top results

Chromosome Probe set id p-value

APBB2 4 11734823_a_at 0.02575

MPO 17 11727442_at 0.38631

APP 21 11762804_x_at 0.01396

ACE 17 11752871_a_at 0.24478

PLAU 10 11717154_a_at 0.01396

PAXIP1 7 11755176_a_at 0.45499

HFE 6 11736346_a_at 0.11881

SORL1 11 11743129_at 0.10912

A2M 12 11715363_a_at 0.28592

NOS3 7 11725467_a_at 0.04261

BLMH 17 11757556_s_at 0.09356

ADAM10 15 11751180_a_at 0.14278

PLD3 19 11715382_x_at 0.17304

ApoE 19 11744068_x_at 0.05962

PSEN1 14 11718678_a_at 0.29453

PSEN2 1 11723674_x_at 0.04862

ABCA7 19 11755091_a_at 0.45499

independent variable (feature, or predictor), β is the ordinary
least square coefficient (or, the slope), α is the regularization
parameter, βRidge is the ridge regression coefficient, argmin is
the argument of minimum and it is responsible for making
the function attain the minimum and is L2(v) = ||v||2 which
represents the L2 norm function (Strang, 1993). For example, the
CDR scores are the response variables; and brain connectivity
features or gene expressions are the predictor variables. We
normalized the predictors to get a more robust estimation
of our parameters.

Software
We used python 3.7.1 for this work; our code has been made
available under the MIT License https://choosealicense.com/
licenses/mit/, and is accessible at https://github.com/elssam/
RGLCG.

RESULTS

Descriptive Statistics
Initially, we used descriptive statistics plots to visualize the
data for the two populations; the AD and matched control
subjects. To facilitate the integrated analysis, we looked into the
different sets of data individually to have a better understanding
of the underlying statistical distribution, and chose the best
analysis methods accordingly. Firstly, we plotted the global
and local connectivity metrics in a way that illustrates the
longitudinal change between the two visits (i.e., baseline and
follow-up visits). The follow-up visit was 1 year after the
baseline screening. The global connectivity metric box plots
show the baseline and follow-up distributions for both AD and
healthy elderly for transitivity, Louvainmodularity, characteristic
path length and global efficiency (Figure 1). Figure 1 shows
that the global longitudinal changes in connectome metrics
are statistically significant among the AD subjects and not
mere artifacts, but not within the control population which
has non significant changes. In other words, comparing the
two groups (AD and healthy elderly) in terms of the change
in global connectivity metrics overtime, the only significant
differences found between baseline and follow-up were within
the AD group. These were found in the characteristic path
length (p-value 0.0057), global efficiency (p-value 0.0033), and
Louvain modularity (p-value 0.0086). The test used here was the
Wilcoxon signed rank test for paired samples with a threshold
of 0.05

4 = 0.0125, where the division by 4 is due to the multiple
hypothesis correction.

Supplementary Figures S1–S3 show the distribution
of the absolute differences between the two visits in local
efficiency, clustering coefficient and betweenness centrality
connectivity metrics, respectively, at each of the AAL
brain regions. These figures show that the amount of
change in local connectivity metrics varies across the
AAL regions. A list of the brain atlas region names and
abbreviations is available in Supplementary Table S1.
Moreover, in Supplementary Figure S4, we show
the scatter and violin plots of the six CDR scores,
at the baseline and follow-up. The CDR scores are
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TABLE 2 | Top results of spearman associations between AD gene expression and local connectivity metrics.

Gene Sorted by P-value. Threshold=
0.05

17×90×3 = 1.09e− 05

Region Region id Metric ρ P-value

APP Temporal_Mid_R 86 local_eff −0.5805 1.9e-05

BLMH Heschl_L 79 cluster_coef 0.5708 2.8e-05

PSEN1 Occipital_Mid_R 52 b_centrality −0.5598 4.3e-05

BLMH Heschl_L 79 local_eff 0.5591 4.4e-05

APP Temporal_Mid_R 86 cluster_coef −0.5197 0.000182

PAXIP1 Amygdala_L 41 cluster_coef 0.5064 0.000281

PLAU Angular_R 66 cluster_coef 0.484 0.000567

PLAU Angular_R 66 local_eff 0.4838 0.00057

ACE Postcentral_L 57 b_centrality 0.4648 0.000998

ADAM10 Postcentral_L 57 local_eff −0.4602 0.001133

PAXIP1 Parietal_Sup_L 59 b_centrality −0.4585 0.00119

PLAU Fusiform_L 55 b_centrality 0.4564 0.001262

SORL1 Putamen_R 74 local_eff −0.4528 0.001395

PSEN2 Frontal_Inf_Oper_R 12 local_eff 0.4457 0.001693

PLAU Frontal_Inf_Oper_L 11 b_centrality 0.4454 0.001704

ABCA7 Temporal_Inf_L 89 local_eff 0.442 0.001866

explained in the Materials and Methods section. As
such, both global and local connectivity metrics show
non-symmetric distribution in the baseline, follow-
up and absolute change between them (see Figure 1

and Supplementary Figures S1–S3). Therefore, we will
use non-parametric models and statistical tests in the
following analysis.

Comparing the three local connectivity features to each other
using Spearman correlation, as shown in Figure 3, we observe a
high redundancy between local efficiency and cluster coefficients,
assuming they are computed at the same time point. Moreover,
we analyzed the relationship between the above-mentioned
connectivity metrics and other related measures (e.g., degree
centrality). As shown in Figure 2, the correlation between nodal
degree and betweenness centrality appears to be low, whereas
there is a negligible correlation between degree centrality and
both local efficiency and clustering coefficient.

Gene Expression
We derived a list of 17 AD risk factor genes from BioMart, and
retrieved 56 related probes sets from ADNI data. We performed
a Mann-Whitney U-test which aims at testing whether a specific
probe set’s expression is different between AD and healthy
controls. For each gene, we chose the probe set that has the
lowest p-value. Table 1 reports the selected probe set (with
the minimum p-value) at each gene. It is worth mentioning
that we are using probe sets, rather than single probes. These
probe sets represent different parts of the transcripts rather
than representing single alternative splicing of the gene, and are
normalized across probes for each gene. Expression values were
normalized using the robust multi-chip average method in the
Affymetrix U219 array, which consists of a total number of 49,293
probe sets and 530,467 probes, as explained in the Genetic Data
Acquisition section.

After estimating the expression of the 17 genes, as explained
in the Materials and Methods, we plotted a heatmap of the
gene expression profiles shown in Supplementary Figure S5.
Some of the genes appear to be highly expressed (e.g., SORL1
and PSEN1), while others show very low expression (e.g.,
HFE and ACE). To avoid double-dipping in estimating the
effect size of gene expression, the subsequent analysis will not
depend on disease status (i.e., AD and control), but rather, on
quantitative measurements (e.g., local and global connectivity
metrics) derived from the whole sample.

Association Analysis
We studied the undirected associations of the 17 gene expression
values with the longitudinal change in global and local brain
connectivity, as well as the associations with longitudinal
CDR and connectivity changes. Firstly, we performed an
association analysis of gene expression with the connectivity
changes locally, at each AAL brain region. In Table 2 we
show the top results reported along with the Spearman
correlation co-efficient. The APP gene (ρ = −0.58, p-
value = 1.9e-05) and BLMH (ρ = 0.57, p = 2.8e-05) are
the top genes in the list, and although they both did not
hit the significance threshold, they show potential association
with the change in local efficiency at the right middle
temporal gyrus (Temporal_Mid_R AAL region) and clustering
coefficient at the left Heschl gyrus (Heschl_L), respectively.
Supplementary Figure S6 shows the scatter plots related to these
significant associations.

In Table 2, there is a similar pattern observed in association
results between the regional clustering coefficient and local
efficiency, e.g., both metrics are associated with BLMH
at the left Heschl gyrus (Heschl_L), APP at the right
middle temporal gyrus (Temporal_Mid_R) and PLAU at the
right angular gyrus (Angular_R). We interpret this by the
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FIGURE 3 | Spearman correlations between the three local connectivity metrics; local efficiency, clustering coefficient and betweenness centrality, at baseline (suffix:

_baseline), follow-up (suffix:_followup) and the absolute difference between them (no suffix). The calculation of Spearman’s coefficient combines all 90 brain regions,

and both AD and controls. The plot illustrates the very strong relationship between the clustering coefficient and local efficiency at baseline, follow-up and the absolute

difference between the two visits.

strong correlation that exists between the local efficiency
and clustering coefficient at the baseline, follow-up and also,
the absolute change (see Figure 3). On the other hand,
Table 3 reports the top results of the association between
gene expression and the change in brain global connectivity.
In this case, all observed associations were not statistically
significant after correcting for multiple hypotheses (threshold is
stated in Table 3).

Regression Analysis: The Change in Local
and Global Brain Connectivity With Gene
Expression
We analyzed the directed association through regressing the

change in local connectivity (as a dependant variable), at each

AAL region, on gene expression using (as an independent

variable or predictor) a quantile regression model. Table 4
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TABLE 3 | Top 20 spearman association results of the change in global network

metrics with targeted AD gene expressions.

Gene Threshold =
0.05
17×4 = 7.35e− 04

ρ P-value Global feature

PAXIP1 0.3889 0.0069 Transitivity

PLAU −0.3824 0.008 global_eff

ACE −0.3696 0.0106 Transitivity

PLAU −0.3523 0.0151 char_path_len

ABCA7 −0.3492 0.0161 char_path_len

PSEN1 −0.299 0.0412 Transitivity

APP −0.2602 0.0774 char_path_len

PLAU −0.2542 0.0847 Louvain

ApoE −0.2506 0.0893 char_path_len

ADAM10 −0.2365 0.1095 Louvain

ACE 0.2291 0.1213 Louvain

NOS3 −0.2207 0.1359 char_path_len

NOS3 −0.2202 0.1369 global_eff

ABCA7 −0.2164 0.1441 global_eff

HFE −0.2012 0.1752 char_path_len

reports the top results, along with the regression coefficient, p-
values and t-test statistic. PLAU was the only significant gene,
affecting the absolute change in betweenness centrality at left
Fusiform gyrus (Fusiform_L) with an increase of 487.13 at each
unit increase in PLAU expression (p= 3e − 06). This was
followed by the expression of HFE with an effect size of 0.1277
on the change in local efficiency at the right anterior cingulate
and paracingulate gyri (Cingulum_Ant_R). Those observed
associations are illustrated in Figure 4, and, the protein-protein
interaction (Szklarczyk et al., 2016) of the aforementioned genes
are shown in Figure 5. More specifically, the protein to protein
interaction is the results of the query to the STRING database by
using themultiple protein tools for homo sapiens, by querying for
direct and 1 additional indirect interactions. Those interactions
are the results of several results from past literature.

Supplementary Figures S7–S9 show the Manhattan plots
for the -log10 of the p-values corresponding to the quantile
regression models of the change in local efficiency, clustering
coefficient and betweenness centrality, respectively.

Similarly, we regressed the absolute change of global
connectivity measures on gene expression values and the top
results are shown in Table 5.

Additive Genetic Effect on Brain Regions
To visualize the overall contribution of AD gene risk factors used
in this work on distinct brain areas, we added up the -log10 p-
values for the gene expression coefficients at each of the 90 AAL
regions. The p-values were obtained from the quantile regression
analysis between the gene expression values and each of the three
connectivity metrics—those are the absolute difference between
baseline and follow-up of local efficiency, clustering coefficient
and betweenness. Figure 6 summarizes this by 1) representing
the brain connectome without edges for each of the connectivity

metrics, 2) each node represents a distinct AAL region and
is annotated with the name of the region, 3) the size of each
node is the sum -log10 of the regression coefficient associated
p-values for all the genes. It is clear from Figure 6 that local
efficiency and clustering coefficient show more similar patterns
of association with genes compared to betweenness centrality.
Thismeans that the gene expression has stronger association with
local structure of the brain when using clustering measures (e.g.,
clustering coefficients), while the pattern of association tends to
be weaker when using measures expressing the state of a region
being between two others (e.g., betweenness centrality).

The colors are assigned automatically by the BrainNet Viewer.
Overall, although the gene contributions to the absolute

change in local efficiency have a similar pattern to that of
clustering coefficient, the contribution to betweenness centrality
change is relatively small.

Regression Analysis: The Difference in
CDR With the Difference in Global and
Local Connectivity
To asses the directed and undirected association of
the longitudinal measures of global connectivity and
CDR scores, we calculated the difference between
baseline and follow-up visits for both CDR and global
connectivity metrics, i.e., CDRbaseline − CDRfollow−up and
metricbaseline − metricfollow−up, respectively. The Spearman
and quantile regression results are both shown in Table 6.
We observed a correlation between the increase of the
transitivity score (global brain segregation) and the CDR
memory score over time (β = −6.14e − 06, p= 0.0034).
On the other hand, there is a positive correlation between
global efficiency (global brain integration) and the CDR
“home and hobbies” score.

Similarly, in Supplementary Table S2 we looked at the
monotonic effect of local connectivity metrics on the seven CDR
scores, both represented as the subtraction of the follow-up visit
from the baseline visit. The increase in betweenness centrality was
shown to have different effects on the CDR score over the 1-year
time period. For example, as the betweenness centrality decreases
over time, the judgement and problem solving increases in
severity by 1.06e-08 over time (p = 1.32e-17), in the frontal lobe
(Frontal_Inf_Oper_L).

Multivariate Analysis: Ridge Regression
We regressed the difference in CDR visits (response variable;
Y), one score at a time, on both the difference in global
brain connectivity (predictor; X1), one connectivity metric at
a time and all gene expression values (predictor; X2), using
the ridge regression model. Supplementary Table S3 reports
the mean squared error (the score column) and shows the
top hits in the multiple ridge regression. It shows that the α

(alpha column) could not converge, using the cross-validation,
when the response variables were judgment or personal care.
However, the CDR score results show that genes and connectivity
metrics have a small effect (β) on the response variables (the
change in CDR scores over time), and the larger effects were

Frontiers in Human Neuroscience | www.frontiersin.org 9 December 2021 | Volume 15 | Article 761424

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Elsheikh et al. Genetics of Brain Connectivity in Alzheimer’s Disease

TABLE 4 | Top 50 quantile regression results of the change in local network metrics (y) and targeted AD gene expression (x).

Region Sorted by p-value. Dashed line: threshold=
0.05

17×90×3 = 1.09e− 05

Region Region id Beta Statistic P-value Metric

PLAU Fusiform_L 55 487.1319 5.3836 3e-06 b_centrality

HFE Cingulum_Ant_R 32 0.1277 4.8139 1.7e-05 local_eff

PAXIP1 Parietal_Sup_L 59 −147.3175 −4.5608 3.9e-05 b_centrality

HFE Cingulum_Ant_R 32 0.1662 3.9835 0.000246 cluster_coef

APP Amygdala_R 42 −0.1349 −3.8548 0.000365 local_eff

PLAU Hippocampus_L 37 0.1073 3.4801 0.001125 local_eff

ADAM10 Postcentral_L 57 −0.0871 −3.4376 0.001275 cluster_coef

ApoE Frontal_Inf_Orb_L 15 153.3117 3.3627 0.001584 b_centrality

APBB2 Amygdala_L 41 0.2054 3.3517 0.001635 cluster_coef

ApoE Frontal_Sup_Medial_L 23 0.1912 3.2788 0.002015 cluster_coef

MPO Cingulum_Mid_L 33 0.0293 3.2465 0.00221 cluster_coef

MPO Cingulum_Mid_L 33 0.0281 3.2143 0.00242 local_eff

PLAU Cingulum_Ant_R 32 0.1428 3.1969 0.002543 local_eff

ADAM10 Postcentral_L 57 −0.0517 −3.1541 0.002867 local_eff

ApoE Postcentral_L 57 0.0806 3.0931 0.003398 local_eff

PLD3 Olfactory_R 22 −0.1268 −3.0463 0.003867 cluster_coef

ABCA7 Frontal_Inf_Orb_R 16 34.9538 2.9489 0.005043 b_centrality

A2M Putamen_R 74 −0.0543 −2.9171 0.005495 local_eff

PLAU Hippocampus_L 37 0.1472 2.9023 0.005717 cluster_coef

HFE Frontal_Inf_Tri_R 14 0.1852 2.8813 0.006047 cluster_coef

HFE Frontal_Inf_Tri_R 14 0.0926 2.8594 0.006411 local_eff

APP Amygdala_R 42 −0.1753 −2.8288 0.006953 cluster_coef

ApoE Occipital_Mid_R 52 44.0624 2.7995 0.007512 b_centrality

HFE Calcarine_R 44 0.1403 2.7916 0.007669 cluster_coef

APP Temporal_Mid_R 86 −0.0692 −2.7396 0.008787 cluster_coef

APP Temporal_Mid_R 86 −0.0386 −2.7297 0.009016 local_eff

PLD3 Olfactory_R 22 −0.0987 −2.713 0.009413 local_eff

A2M Olfactory_R 22 −30.9342 −2.6919 0.009941 b_centrality

APP Cuneus_R 46 0.1443 2.6845 0.010131 cluster_coef

PSEN1 Frontal_Inf_Tri_L 13 −0.1344 −2.6492 0.01109 local_eff

PSEN2 Temporal_Mid_L 85 0.0528 2.6465 0.011168 local_eff

PSEN1 Frontal_Inf_Tri_L 13 −0.2431 −2.6432 0.011262 cluster_coef

PLAU Frontal_Mid_R 8 0.0854 2.6384 0.011401 local_eff

ApoE Putamen_L 73 372.8291 2.638 0.011411 b_centrality

A2M Occipital_Mid_R 52 0.0535 2.6213 0.011907 cluster_coef

APP Cuneus_R 46 0.0798 2.6189 0.011979 local_eff

ADAM10 Temporal_Sup_L 81 −0.1123 −2.6134 0.012147 cluster_coef

ApoE SupraMarginal_L 63 0.1158 2.5663 0.013677 local_eff

HFE Calcarine_R 44 0.0755 2.533 0.014866 local_eff

PLAU Occipital_Mid_L 51 0.1268 2.5193 0.01538 cluster_coef

MPO Pallidum_R 76 0.024 2.5101 0.015732 local_eff

ABCA7 Temporal_Inf_L 89 0.0249 2.5083 0.015804 local_eff

A2M Occipital_Mid_R 52 0.0268 2.5023 0.01604 local_eff

PLAU Hippocampus_R 38 182.0756 2.5007 0.016105 b_centrality

APP Frontal_Med_Orb_L 25 0.1167 2.4968 0.01626 cluster_coef

HFE Cingulum_Post_R 36 28.3207 2.4708 0.017334 b_centrality

ACE Occipital_Mid_R 52 0.0433 2.4632 0.017659 local_eff

NOS3 Olfactory_L 21 −0.1615 −2.4596 0.017815 cluster_coef

ABCA7 Temporal_Inf_L 89 0.0429 2.4374 0.018808 cluster_coef

SORL1 Paracentral_Lobule_L 69 91.7443 2.4364 0.018855 b_centrality
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FIGURE 4 | Subfigure (A) higlights regions in the brain where significant associations—between gene expression and longitudinal change in local connectivity metrics

were found, using quantile regression (HFE and PLAU) and Spearman associations (APP and BLMH). Each gene is plotted at the AAL brain region where the

association was significant; APP at Temporal_Mid_R, BLMH at Heschl_L, PLAU at Fusiform_L and HFE at Cingulum_Ant_R. (B,C) are scatter plots to visualize the

association between PLAU gene expression and betweenness centrality in the left fusiform gyrus (A), and between the expression of HFE gene with local efficiency in

right anterior cingulate gyrus (B). The red line on the plots represents the median (quantile) regression line, while the blue line represents the ordinary least square line.

It is important to bear in mind that after the multiple hypothesis testing only the PLAU gene association was still significant.

FIGURE 5 | Protein-protein interactions between the genes with significant correlation to brain connectivity metrics. It is evident that the genes interact either directly

with APP or via one intermediate node/gene. In this sub-network extracted from STRING (Szklarczyk et al., 2016), the different color lines represents different types of

interaction: Cyan edges are interactions from curated databases, purple are experimentally determined, yellow are from text mining, and black are from

co-expression data.

observed when using the total CDR score (CDR_diff) as a
response variable. The connectivity metrics and expression
of genes have both negative and positive effects on CDR
change. The expression of ApoE, for example, has a negative
effect (β) of −0.24 on the change in memory score, i.e.,
the memory rating decreases by 0.24 as the ApoE expression
increases. While when the expression of ApoE increases one
unit, the home and hobbies score increases, over time, by
0.12.

DISCUSSION

In this paper we aimed to analyse the longitudinal change
of local and global brain connectivity metrics in Alzheimer’s
Disease, using a dataset fromADNI.We evaluated the association
between the most commonly used connectivity metrics and
the expression of known AD risk genes. Finally, we studied
the multivariate association between connectivity metrics, gene
expression and dementia clinical ratings. It is worth mentioning
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TABLE 5 | Top quantile regression results of the change in global network metrics

and targeted AD gene expressions.

Gene Threshold 0.05
17×4 = 7.35e− 04

Beta Statistic P-value Metric

PAXIP1 0.0155 2.1179 0.039738 Transitivity

PSEN1 −0.0366 −2.0821 0.04305 Transitivity

A2M 0.0178 1.9728 0.054679 Louvain

PLAU −0.0157 −1.9288 0.06008 global_eff

APBB2 0.0166 1.7579 0.085573 Louvain

ABCA7 0.0077 1.5185 0.135881 Transitivity

BLMH 0.0101 1.3476 0.184529 Transitivity

ACE −0.0162 −1.2618 0.213524 Transitivity

ADAM10 −0.0147 −1.2538 0.21638 Louvain

ApoE −0.0555 −1.1673 0.249246 char_path_len

PLD3 −0.0096 −1.1433 0.258978 Transitivity

ABCA7 −0.0156 −1.1367 0.261684 char_path_len

SORL1 0.0147 1.1278 0.265372 Transitivity

ApoE −0.0099 −1.1048 0.275101 global_eff

HFE −0.0161 −1.0436 0.302239 Louvain

Threshold= 0.05
17×4 = 7.35e− 04.

that it is not practical to do expression analysis on brain tissues,
thus, we had to use a proxy for what is generally happening in the
body by using the blood samples. This is the closest proxy that
is feasible when working with both patients and controls, also
in the view of using the proposed biomarkers in daily practice.
Moreover, we verified that the found genes were expressed in
the brain parenchyma by using the ISH Allen Atlas (Sunkin
et al., 2012) and the Protein Atlas (Sjöstedt et al., 2020), which
confirmed positively their expression.

Our results show that Alzheimer’s risk genes can manipulate
the amount of change observed in the structural connectome,
measured as the absolute difference of longitudinal connectivity
metrics. We also show that longitudinal regional connectivity
metrics, global brain segregation and integration have effects on
the CDR scores. More specifically, as the disease progresses, we
observe a correlation between brain segregation and cognitive
decline, the latter is measured as the memory CDR score.We also
noticed a correlation between the global efficiency and the home
and hobbies CDR scores (seeTable 6). Furthermore, we observe a
consistent decrease, over time (though did not hit the significance
threshold), in the local efficiency (a network connectivity metric
of a node is defined as the inverse of the shortest average path
between any pair of that node’s neighbors Rubinov and Sporns,
2010) at the right middle temporal gyrus (Temporal_Mid_R; see
Table 2) in response to an increase in APP expression. The same
connectivity metric showed another potential increase over time
at the right anterior cingulate and paracingulate gyri (seeTable 4)
as the expression of HFE increases.

Prescott et al. (2014) have investigated the differences in
the structural connectome at the three clinical stages of AD
using a cross-sectional study design. They targeted regional brain
areas that are known to have increased amyloid plaque. Their

work suggested that connectome damage might occur at an
earlier preclinical stage toward developing AD. Here, we further
adapted a longitudinal study design and incorporated known
AD risk genes in analyzing the changes in the connectome.
We specifically focus on how the damage in the connectome
is associated with gene expression and how is that change in
connectome affects dementia symptoms, globally and locally
at distinct brain regions. Aside from our previous work
which examined the ApoE associations with longitudinal global
connectivity in AD using longitudinal global connectivitymetrics
(Elsheikh et al., 2020b), this study, to our knowledge, is the first of
its type to include gene expression data in a longitudinal analysis
of global and local brain connectivity. However, similar work
has been done in schizophrenia where the association between
longitudinal magnetic resonance imaging features, derived from
the DWI, and higher genetic risk for schizophrenia were
investigated using structural brain connectivity (Alloza et al.,
2018).

The expression in the regional areas of the brain where
we found significant (i.e., PLAU) or potential (i.e., HFE, APP,
and BLMH) association with local connectivity are highlighted
in Figure 4. Those are mostly in line with previous findings
of the regional molecular properties in the brain (e.g., Grothe
et al., 2018). In this study we found that the Plasminogen
activator, urokinase (PLAU) expression affects the betweenness
centrality (a measure of the node’s contribution to the flow of
information in a network Rubinov and Sporns, 2010) in the left
fusiform gyrus, over time (see Figure 4 and Table 4). Although
the functionality of this region is not fully understood, its
relationship with cognition and semantic memory was previously
reported (Galton et al., 2001). PLAU, on the other hand, was
shown to be a risk factor in the development of late-onset AD
as a result of its involvement in the conversion of plasminogen
to plasmin—a contributor to the processing of APP by the
urokinase-type plasminogen activator (Finckh et al., 2003).

Among further results—including those not surviving the
multiple hypothesis testing—potentially align with findings in
the literature of genetics and neuroimaging. Robson et al. (2004)
studied the interaction of the C282Y allele HFE—the common
basis of hemochromatosis—and found that carriers of ApoE-4,
the C2 variant in TF and C282Y are at higher risk of developing
AD. The HFE gene is also known for regulating iron absorption,
which results in recessive genetic disorders, such as hereditary
haemochromatosis also related to AD (Pilling et al., 2019).
These studies align with our findings where we show that HFE
expression (though it did not service the significance threshold
after multiple testing correction) can potentially affect the local
efficiency at the right anterior cingulate gyrus (see Figure 4

and Table 4), which might indicate a possible effect of HFE
expression on the personality of AD patients or those at risk of
developing the disease. When examining the linear associations
between gene expression and local connectivity (see Table 2 and
Supplementary Figure S6), we found that the local efficiency
in the right middle temporal gyrus (nearly hit the significance
threshold), known for its involvement in cognitive processes
including comprehension of language, negatively associates with
APP expression. We also found a potential correlation between
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FIGURE 6 | Connectome representations showing the metric additive genetic effect at each AAL node. The subfigures show the axial (top; A–C), coronal (middle;

D–F), and sagittal (bottom; G–I) planes of the brain, the node size represents the local efficiency (left; A,D,G), clustering coefficient (middle; B,E,H) and betweenness

centrality (right; C,F,I). Colors of the nodes are automatically assigned by the BrainNet Viewer. The acronyms of the brain regions are explained in

Supplementary Table S1.

the left Heschl gyrus’s clustering coefficient and the bleomycin
hydrolase (BLMH) expression. In the human brain, the BLMH
protein is expressed in the neocortical neurons and associated
to misfolded proteins related to AD. Some studies (Farrer et al.,
1998; Papassotiropoulos et al., 2000) have found that a variant in
the BLMH gene, which leads to the Ile443→Val in the BLMH

protein, increases the risk of AD; this was strongly marked in
ApoE-4 carriers. The BLMH protein can process the Aβ protein
precursor, and is involved in the production of Aβ peptide
(Kajiya et al., 2006).

The regional expression of the APP gene has been shown
to be positively correlated with the severity of regional amyloid
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TABLE 6 | Quantile regression results of the difference in CDR (y) with the difference in global connectivity (x).

Global metric Threshold=
0.05
6×4 = 2.08e− 3. * represents significant p-value

CDMEMORY CDORIENT CDJUDGE CDCOMMUN CDHOME CDCARE

Q. Regression: β (p-value)

Transitivity −6.14e-06 (0.0034∗) −1.8e-06 (nan) −3.2e-07 (nan) 8.4e-07 (0.9249) 4.13e-06 (0.7324) -3.1e-07 (nan)

global_eff 1.3e-06 (0.8572) 3.36e-06 (0.9944) 3.5e-07 (0.9826) 3.09e-06 (0.3131) 9.5e-06 (0.1613) −2.5e-07 (nan)

Louvain −2.64e-06 (0.1683) -6.84e-06 (0.0352) 1.21e-06 (0.0012) −1.01e-06 (0.8125) −2.16e-06 (0.9424) −6.3e-07 (0.1787)

char_path_len −5.8e-07 (0.8562) −8.3e-07 (0.8791) -8e-08 (0.8637) −8.3e-07 (0.0361) −2.14e-06 (0.0442) −2e-08 (nan)

Spearman: ρ (p-value)

transitivity −0.3395 (0.021) −0.0763 (0.6142) −0.0618 (0.6835) 0.0661 (0.6623) 0.161 (0.2851) −0.0081 (0.9574)

global_eff 0.0483 (0.7497) 0.0056 (0.9707) 0.0505 (0.7388) 0.2685 (0.0712) 0.4145 (0.0042*) −0.0263 (0.8625)

Louvain −0.1955 (0.1928) −0.3119 (0.0349) 0.2077 (0.166) −0.0968 (0.522) −0.11 (0.4666) −0.0628 (0.6784)

char_path_len -0.1183 (0.4337) −0.0516 (0.7333) −0.0281 (0.8531) −0.2909 (0.0498) −0.3811 (0.009) −0.0065 (0.9658)

deposition observed in PET studies. The temporal medial
region and the fusiform gyrus of the brain are two of the
most affected regions by amyloid deposition and have high
levels of APP expression (Grothe et al., 2018). Recent findings
from tau-sensitive positron emission tomography data have also
confirmed the spatial correspondence between accumulation of
tau pathology and neurodegeneration in AD patients, within
the same regions, though only correlations with the ApoE genes
were investigated (Cho et al., 2016). The BLMH protein alters
the processing of APP and significantly increases the release of
its proteolytic fragment. It has been previously reported to be
expressed and have an impact on the hippocampal tissues, but
not investigated in other brain regions (Suszyńska-Zajczyk et al.,
2014). To our knowledge, apart from the general expression
in the brain parenchyma reported in the Allen brain atlas
(Hawrylycz et al., 2012) and Protein Atlas Sjöstedt et al. (2020), no
study has shown spatial expression of the PLAU and HFE genes
among AD patients. Nevertheless, we hypothesize that there is a
potential correlation of these gene expression in specific nodes of
the brain connectome, and that it is related to their interaction
with the APP gene which is particularly expressed in the nodes
highlighted in Figure 4. This hypothesis is also supported by the
protein-protein interaction shown in Figure 5.

Even though none of the AD risk genes showed a significant
effect on the longitudinal change in global connectivity (see
Tables 3, 5), some of these genes showed significant effects on
local connectivity changes at specific brain areas (see Tables 2, 4).
The global connectivity metrics of the brain, on the other hand,
have shown promising results in affecting the change observed in
CDR scores, including memory, judgement and problem solving,
as well as home and hobbies, as shown in Table 6. Previous
work studied the association between genome-wide variants and
global connectivity in AD, represented as brain integration and
segregation, and found that some genes affect the amount of
change observed in global connectivity measures (Elsheikh et al.,
2020b). This suggests that a generalization of the current study at
a gene-wide level might warrant further analysis.

Considering the possible redundancy of brain connectivity
metrics (Rubinov, 2016) studied here, we looked for correlations
with the nodal degrees and other features, and observed a relative
correlation with betweenness centrality (see Figure 2). When
we compared all the metrics to each other, we only found
a correlation between local efficiency and cluster coefficient
metrics. Therefore, we hypothesize that the degree is a simpler
representation than betweenness centrality that could be used
as a substitute. However, this was not the case with other
metrics.We suggest either clustering coefficient or local efficiency
should also be investigated in similar studies. More generally,
when correcting our threshold, we did not consider the
number of metrics, because of the high co-linearity. Therefore,
we believe that reporting all, or only one, did not affect
the results.

Our work provides new insights into the progression of
Alzheimer’s Disease, though replication on a larger sample size
is required. Indeed, one limitation here was the small sample
size available, as we needed to narrow down our selection of
participants to those who 1) attended both the baseline and
follow-up visits, 2) have their CDR scores measured, 3) have their
genetic and imaging information available. Another limitation is
the use of only two time points, the baseline and the first follow-
up visits. Other datasets do not offer all those data, and indeed
even recent studies have been published with similar sample sizes
(Kim et al., 2020). Moreover, the limited availability of samples
does not allow capturing the effects of connectivity changes
over a longer-term or studying the survival probabilities in AD.
Extending to more time points would have been useful, but it
would have reduced the dataset further. We foresee future work
in using a more complex unified multi-scale model to facilitate
studying the multivariate effect of clinical and genetic factors
on brain diseases, besides considering the complex interplay
of genetic factors (Elsheikh et al., 2020a). Moreover, previous
studies with similar sample sizes have been able to provide
relevant insights for the gene and brain interaction networks
showing the validity of the approach (Richiardi et al., 2015).
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This analysis was conducted for AD, using a longitudinal
study design, and highlighted the role of PLAU, HFE, APP
and BLMH in affecting the pattern information propagated
in particular regions of the brain, which might have a direct
effect on a person’s recognition and cognitive abilities. The
four genes were previously shown to be expressed in both
the temporal and visual cortex in AD, according to the
Allen Human Brain Atlas https://human.brain-map.org/ish/
search and in the whole brain with low regional specificity
according to the Protein Atlas https://www.proteinatlas.org.
Furthermore, the results illustrated the effect of brain structural
connections on memory and cognitive process, especially the
capacity for reaching a decision or drawing conclusions.
The findings presented here might provide better in-vivo
estimation of local neurodegneration and related treatments.
The Braak staging hypothesis is still controversial, and other
in-vivo studies have shown regional effects using positron
emission tomography (PET) imaging (temporal lobe, the anterior
cingulate gyrus, and the parietal operculum) (Grothe et al.,
2018). These studies have also shown an impact on the default
mode network connectivity (Palmqvist et al., 2017). Therefore,
further investigation of regional patterns is relevant. Very
recent results on treatments in mice showed that drug based
modulated neuronal activity can reduce amyloid plaques in
specific locations and circuitry (Canter et al., 2019). In view
of future treatments based on specific spatial location and
genetic influences, our study provides some initial insights
into connectivity outcomes, and to some extent, enhances
our understanding of the regions/circuits that show amyloid
aggregation or neurodegeneration.
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