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As human life expectancy increases, cognitive decline and memory impairment
threaten independence and quality of life. Therefore, finding prevention and treatment
strategies for memory impairment is an important health concern. Moreover, a better
understanding of the mechanisms involved underlying memory preservation will enable
the development of appropriate pharmaceuticals drugs for those who are activity limited.
Exercise training as a non-pharmacological tool, has been known to increase the mean
lifespan by maintaining general body health and improving the cardiovascular and
nervous systems function. Among different exercise training protocols, aerobic exercise
has been reported to prevent the progression of memory decline, provided adequate
exertion level, duration, and frequency. Mechanisms underlying exercise training
effects on memory performance have not been understood yet. Convergent evidence
suggest several direct and indirect mechanisms at molecular and supramolecular
levels. The supramolecular level includes improvement in blood circulation, synaptic
plasticity and neurogenesis which are under controls of complex molecular signaling
of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among
these various factors, irisin/BDNF signaling seems to be one of the important mediators
of crosstalk between contracted skeletal muscles and the brain during exercise training.
This review provides an affordable and effective method to improve cognitive function in
old ages, particularly those who are most vulnerable to neurodegenerative disorders.
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HIGHLIGHTS

- Exercise training enhances memory performance via neuroplastic alterations.
- Long-lasting moderate aerobic exercise is a more efficient neuroprotective modality.
- Exercise-induced memory improvement might be mediated via neurotrophic factors, and

exerkines.
- Irisin/BDNF signaling is an important link between skeletal muscles and the brain.
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GRAPHICAL ABSTRACT | Exercise, neurotransmitters, growth factors, myokines, and potential effects on the brain.

INTRODUCTION

Epidemiological Overview
Cognitive function has been known to be negatively associated
with aging (Plassman et al., 2007), genetic predisposition,

cardiovascular disease, and type 2 diabetes (Grøntved and
Hu, 2011). Currently, 35.6 million people worldwide live
with dementia which is predicted to double to 75.6 million
by 2030, thus, soon cognitive deficit will be a major public
health priority (World Health Organization, 2020). The
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reasons responsible for the cognitive deficit are not yet well
established. However, some assumptions have arisen, and among
them, the reduction in the speed of information processing,
sensorial deficit, decline in learning, and memory capability
due to aging are more prominent (Ball and Birge, 2002;
Kramer and Willis, 2002).

On the other hand, exercise training as a healthy lifestyle factor
reduces the likelihood of developing dementia or slow down the
progress of cognitive decline both in normal aging and dementia
(Larson et al., 2006; Rolland et al., 2007; Chang et al., 2010, 2012;
Buchman et al., 2012; World Health Organization, 2019; Lewis
et al., 2020). It has been reported that engagement in exercise
training by 5% over 5 years, reduces the percentage of patients
with dementia by 11% (Grøntved and Hu, 2011).

Considering the remarkable evidence indicating positive
association between exercise training and cognitive function, the
American College of Sports Medicine (ACSM) and the American
Heart Association (AHA) recommended daily exercise for adult
individuals (Voss et al., 2010).

COGNITIVE FUNCTION

Cognitive function refers to higher-level functions of the brain
and includes different modalities such as acquiring knowledge,
perception, attention, judgment, decision making, processing
speed, executive function, cognitive flexibility, task switching,
comprehension, response inhibition, and memory performance
(Lezak et al., 2004; Diamond, 2013). Cognitive flexibility
is an ability associated with adjusting mental activity
and content, switching between different task rules and
corresponding behavioral responses, maintaining multiple
concepts simultaneously, and shifting internal attention between
them to make a better adaptation to a new context (Scott,
1962; Cooper-Kahn and Laurie, 2008). Also, the ability to
simultaneously consider two aspects of an object, idea, or
situation at one point in time refers to cognitive flexibility,
which requires aspects of inhibition, attention, working memory,
response selection, and goal maintenance (Miyake et al., 2000;
Sheet, 2005). Cognitive flexibility is mediated via a complex
network including the front parietal cortex, cingulate cortex,
mesolimbic, and striatum (ventral and dorsal parts) (Nowrangi
et al., 2014; Hall and Fong, 2015). Considering the complexity of
cognitive flexibility elements, the related neural networks, and
limitation in the existing literature, we decided to review the
effects of exercise training only on memory; as a vital component
of cognitive flexibility.

The memory is an exciting capability of brain which preserves
and stores acquired information and enables performing of
adequate behavior based on lifelong experience (Magila and
Xavier, 2012). Any deficits in memory retrieval might have
deleterious implications on individual routines and health
(Colcombe and Kramer, 2003).

Therefore, the arguments developed in this review focused
on exercise training’s effects on memory performance and is not
intended to cover all aspects of cognitive function.

Exercise Effects on Memory
Performance
Exercise training is defined as planned, structured, and repetitive
exercise (Caspersen et al., 1985). There are remarkable pieces
of evidence indicating that regular exercise training slows down
the progress of cognitive decline (Erickson et al., 2011; World
Health Organization, 2019; Lewis et al., 2020), and maintain the
brain’s cognitive ability, particularly memory, however, there are
inconsistencies in the literature due to the variety in type and
timing of the cognitive tests, subjects characteristics (Sibley et al.,
2006; Lambourne and Tomporowski, 2010; Chang et al., 2012),
and exercise protocols (Loprinzi et al., 2019a).

Some researchers believe that working memory is improved by
chronic exercise, but not acute, in elderly individuals (Smith et al.,
2010; Rathore and Lom, 2017; Damirchi et al., 2018), elite soccer
players (Babaei et al., 2014); and in Alzheimer’s disease patients
(Vreugdenhil et al., 2012). Both animal study in aged rats with
the Parkinson’s disease (Tsai S.-F. et al., 2018; Tsai et al., 2019),
and human study in patients diagnosed with Alzheimer’s disease
(Jia et al., 2019) and also in healthy adults (Babaei et al., 2014),
recommended engaging in exercise training for 16–24 weeks, at
least up to 3 times per week with 30 min per session, in order to
achieve better outcomes on working memory. Liu et al. (2020),
in patients with dementia confirmed that both strength aerobic
and resistance training programs over 4 weeks can bring about
significant cognitive benefits. In contrast with chronic protocols,
Loprinzi et al. (2019a) reported that acute moderate-intensity
exercise prior to memory encoding is capable to enhance short
and long-term memories in healthy individuals (Loprinzi et al.,
2019a). The relationship between acute exercise and memory is
complex to conclude, and may vary based on the temporality,
intensity of exercise, and the memory type evaluated.

Taken altogether, regular chronic type of training is more
prominent for memory facilitation.

In the next section we discuss about the effect of intensity of
training on memory performance.

The Effect of Exercise Intensity on
Memory Performance
Besides the modalities of exercise training discussed above, the
intensity of exercise training in relation to memory tests is
important as well. Some studies suggest a dose-effect relationship
between aerobic activity and executive function (Masley et al.,
2009; Pyke et al., 2020), but, some believe in a reverse u
shape pattern, meaning that a moderate-intensity exercise would
improve memory, whereas high-intensity exercise would impair
memory performance (Brisswalter et al., 2002; Kashihara et al.,
2009; Ruscheweyh et al., 2011; Frith et al., 2017).

It should be noticed that, the timing of memory tests is
very important too. Loprinzi et al. (2019b) reported that acute
moderate-intensity exercise prior to memory encoding enhances
short and long-term memories in healthy participants (Loprinzi
et al., 2019a), however high-intensity acute exercise impairs
working and episodic memories (Loprinzi et al., 2019b).

In addition, a decline in cognitive performance of adults,
when measured during acute high-intensity physical exercise
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(Isaacs, 1991; McMorris and Keen, 1994), or immediately after
the exercise (Covassin et al., 2007; Bue-Estes et al., 2008; Moore
et al., 2012) have been found. Moreover, the declines in working
memory, verbal memory, and attention have been shown to be
transient following intense activity in adults (Covassin et al.,
2007; Bue-Estes et al., 2008; Moore et al., 2012), and children
(Samuel et al., 2017).

A recent study reported that a single bout of maximal intensity
exercise in children can transiently impair complex tasks such
as verbal learning, which resolves after a 1-h rest. On the other
hand, more simple cognitive tasks that apply short-term working
memory are not negatively affected by such an activity, and
may even be facilitated after adequate rest (Samuel et al., 2017).
Therefore, adequate recovery from intense exercise might result
in enhanced working memory abilities (Bue-Estes et al., 2008),
indicating both debilitating (Covassin et al., 2007; Bue-Estes et al.,
2008; Moore et al., 2012) and facilitating (Bue-Estes et al., 2008)
effects of physical activity.

Overall, when high-intensity acute exercise occurs before
or during the memory task, it may be less favorable for
working memory, and may not associate with long-term memory
function, as opposed to when it occurs shortly after memory
encoding (Hötting et al., 2016; Loprinzi, 2018).

Also, exercising shortly after memory encoding is slightly
less advantageous for both moderate (Labban and Etnier, 2011;
Sng et al., 2018) and high-intensity exercise (Frith et al., 2017)
compared to pre encoding.

Interestingly, in contrast with the negative relationship
between high-intensity exercise and memory performance which
discussed above, Wilke (2020) believes that high-intensity
functional training represents an appropriate method to acutely
improve working memory, in healthy middle-aged individuals.
One of the explanations for discrepancy in findings possibly
related to the fatigue which plays a more important role on the
cognitive responses to an exercise bout.

Collectively, there is an intensity-specific effect of exercise
on memory, and results may differ based on the memory tests,
the temporality of memory assessment, the time elapsed from
completion of the exercise, and the method of estimating the
intensity of exercise training.

Additional works exploring the effects of a variety of
exercise types (e.g., continuous, intermittent, strength, aerobic,
combined-type) under different intensities and durations upon
memory storage and retrieval are needed.

Possible Mechanisms of
Exercise-Induced Memory Improvement
Although mechanisms underlying exercise training effects on
memory improvement have not been understood well, there
are both direct and indirect mechanisms at molecular and
supramolecular levels. The supramolecular level refers to the
alteration in the physiological functions or structural changes
in organs such as increase in blood circulation or hippocampal
volume (Colcombe and Kramer, 2003; Smith et al., 2010;
McAuley et al., 2011; Guiney and Machado, 2013). The
supramolecular alterations, per se are under the control of

complex molecular signaling pathways. For instance, increasing
gray matter integrity, and hippocampal volume (Colcombe and
Kramer, 2003; Smith et al., 2010; McAuley et al., 2011; Guiney
and Machado, 2013) are mostly related to neurogenesis (Sibley
et al., 2006; Chang et al., 2012; Foster, 2015) and elevation in
neurotrophic factors (Hötting et al., 2016).

Below, we discuss in more detail some of the selected
molecular mechanisms underlying exercise’s beneficial effects on
learning and memory.

Brain Circulation
Regular physical activity has been reported to improve brain
circulation (Erickson et al., 2012) particularly the hippocampus;
an area important for learning and memory (Pereira et al., 2007;
Burdette et al., 2010; Mandolesi et al., 2017). How exercise leads
in elevated circulation and further memory improvement, has
not been clarified yet. It is assumed that skeletal muscles induces
the secretion of lactate, during contraction, then, lactate is taken
up by the brain regions (Ide and Secher, 2000), and causes
excitability of the primary motor cortex (Coco et al., 2010),
increases brain vascular endothelial growth factor (Morland et al.,
2017) and density of cerebellar cortex vessels (Castellano et al.,
2017). Besides providing adequate pumping and oxygenation of
the blood, lactate increases brain metabolism by ketone uptake
and utilization.

Adequate circulation also provides clearance of the brain
waste products such as amyloid-beta; an important abnormal
protein in the frontal cortex and hippocampus of AD patients
(Jørgensen et al., 1992; Adlard et al., 2005; Jessen et al., 2015; von
Holstein-Rathlou et al., 2018; Li et al., 2019). Collectively, all these
mechanisms prevent neural damages, and potentially improve
the acquisition and retrieval of memory.

Neurogenesis
The higher cardiorespiratory fitness and physical activity in aged
subjects, have been found to be associated with greater brain
structures integrity, and better memory performance (Burzynska
et al., 2015). Previous studies confirmed that, exercise training
increases gray matter integrity in brain, and volume of brain
regions, particularly entorhinal cortex and hippocampus in both
human and animal studies (Voss et al., 2013; Ten Brinke et al.,
2015; Chieffi et al., 2017; Firth et al., 2018; Tsai S.-F. et al., 2018;
Clark et al., 2021), and also, brain white matter of memory-
related regions in people with mild cognitive impairment (Amjad
et al., 2019). In addition, reduced hippocampal atrophy together
with improved memory were reported following 6–12 weeks
of exercise training in early stage of Alzheimer’s disease with
this finding (Chirles et al., 2017; Ma et al., 2017; Morris et al.,
2017). Interestingly, it seems beneficial effects of exercise on
brain structures mostly are found in the regions sensitive to
neurodegeneration such as the hippocampus and the neocortex
in healthy elderly and also adults with Alzheimer’s disease or mild
cognitive impairment (Haeger et al., 2019).

How exercise leads in neurogenesis and memory
improvement has not been clarified yet. Some researchers
believe that intensive exercise training, produces lactate
(Scandella and Knobloch, 2019; Nicola and Okun, 2021), and
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then, lactate stimulates neurons and glia cells proliferation
(Steiner et al., 2004; Hirase and Shinohara, 2014; El Hayek et al.,
2019), particularly in the hippocampus (Ohia-Nwoko et al.,
2014; Elahi et al., 2016). Moreover, lactate induces brain derived
neurotropic factor (BDNF) expression in the hippocampus, and
then BDNF stimulates neurogenesis (El Hayek et al., 2019).

Mitochondrial Biogenesis
An important aspect of exercise training, is the contraction
of skeletal muscles, which is associated with enhanced
mitochondrial function. There is a bidirectional relationship
between the brain and skeletal muscles in a way that both
organs benefit from exercise, in order to get adaptation,
and in this scenario, mitochondria play pivotal roles in cells
survival, metabolism, and oxidative stress (Hood et al., 2019;
Burtscher et al., 2021). Studies showed that the number of
mitochondria are decreased with aging in healthy adults
(Flockhart et al., 2021), and are increased by exercise training
(Damirchi et al., 2012; Hood et al., 2019; Huertas et al., 2019;
Granata et al., 2021). Exercise training increases antioxidant
capacities and the affinity of mitochondria for oxygen (Sun
et al., 2016; Hood et al., 2019), also increases proteins involved
in energy production and ATP (Bishop et al., 2019; Hood
et al., 2019), and finally stimulates mitophagy in skeletal
muscles (Bishop et al., 2019; Burtscher et al., 2021), and brain
(Navarro et al., 2004; Steiner et al., 2011; Li et al., 2019).
Mitochondrial biogenesis after exercise training, is mediated by
5′ adenosine monophosphate-activated protein kinase (AMPK)
and peroxisome-proliferator-activated receptor γ coactivator-1α

(Short et al., 2005).
On the other hand, mitochondria produce reactive oxygen

species (ROS) (Clark and Simon, 2009), in response to
intensive acute exercise (Holloway, 2017), which implicates
the pathogenesis of several brain disorders (Pesta and Roden,
2017; Zorova et al., 2018). It should be noticed that, exercise-
induced ROS levels, can affect redox regulation in brain (Aguiar
et al., 2008), and endogenous antioxidant capacities (Quan
et al., 2020). In other words, mitochondria are double-edged
swords with both beneficial and detrimental effects on memory
performance. They not only produce antioxidants molecules,
but also increase Ca++ and ROS in cytoplasm. Recently, we
showed that blocking mitochondrial calcium uniporter, inhibits
Ca++ neurotoxicity and alleviates cognitive decline in AD model
of rats (Nikseresht et al., 2021). There is not clear yet, how
it could be possible to keep a balance between antioxidants
and ROS in mitochondria (mithohormesis) by exercise training.
According to the theory of “Hormesis,” response to exercise
might be biphasic, depending on the baseline physical fitness
status of individuals (Seifi-Skishahr et al., 2016), and the
amounts of ROS (Quan et al., 2020). In other word, exercise
might be protective at moderate levels, but, detrimental at
high levels in healthy adults (Flockhart et al., 2021). Therefore,
regular exercise may prevent the aging-related decline of
mitochondrial function.

Taken all together, a lifestyle with moderate regular exercise
training, appears to be more useful to improve health by making
the balance between oxide and redox state in cells.

Neurotrophic Factors
As we mentioned earlier, the relationship between contracted
muscles and the brain has been questionable for years. It has
been assumed that the number of dendritic connections and
neural plasticity is related to the neuroendocrine and humoral
alterations promoted by exercise (Isaacs et al., 1992; Santos,
1994). Currently, it has been proposed that, when skeletal muscles
are contracted, they start to secrete various proteins, known as
myokines into the circulation (Pedersen and Febbraio, 2012).
Then, these molecules might elevate neurotrophic factors such
as irisin, brain-derived neurotrophic factor (BDNF), and insulin-
like growth factor (IGF-1) (Delezie and Handschin, 2018), which
all are involved in hippocampal plasticity and long term memory
(Lynch et al., 2008; Tanaka et al., 2008; Duzel et al., 2016)
following exercise in both animals (Gobbo and O’Mara, 2005;
Babaei et al., 2017) and human subjects (Belviranli et al., 2016;
Damirchi et al., 2018).

In the next section, we discuss the mechanisms by which,
BDNF and irisin might impact on memory and learning.

Brain Derived Neurotropic Factor
Exercise training has been known to increase serum BDNF
levels, parallel with memory improvement in healthy individuals
(Babaei et al., 2013, 2014; Damirchi et al., 2014; Szuhany et al.,
2015; Belviranli et al., 2016; Marinus et al., 2019) and roddents
(Erickson et al., 2010; Babaei et al., 2017; El Hayek et al., 2019).
These findings support the pivotal role for exercise—induced
BDNF in brain (Numakawa et al., 2018; Di Liegro et al., 2019).
However, there are differences in the baseline level of BDNF
considering the subjects’ characteristics. For example, Babaei
et al. (2014) showed that long-term habitual exercise in elite
athletes is associated with a lower resting level of serum BDNF
and better memory. In contrast to elite athletes, a higher level of
serum BDNF was detected in subjects diagnosed with metabolic
syndrome (MetS) (Damirchi et al., 2014), which might reflect the
compensatory role for BDNF.

Collectively, recent studies confirm that, exercise training
increases circulatory BDNF levels, regardless of their type,
intensity, duration, and subject’s health status (Feter et al., 2019;
Marinus et al., 2019). Babaei et al. (2014) showed an increase in
serum BDNF level after an acute aerobic/anaerobic exercise in
both elite athletes and sedentary subjects. Although Feter et al.,
2019 reported that interventions lasting at least 12 weeks with a
session duration of 40 min would be the most prominent strategy
for increasing BDNF levels in healthy or unhealthy adults (Feter
et al., 2019). In contrast, overtraining seems to reduce BDNF
level, but upregulates its receptors of “p75” and tropomyosin
receptor kinase B (TRKB), in intact mice (Xu et al., 2020).
Therefore, BDNF releasing system keeps enough sensitivity to be
elevated, whenever encountering the different forms of exercise
training, although acute exercising is more prominent.

The cellular and molecular mechanisms of exercise-induced
BDNF have not been understood yet. El Hayek et al. (2019)
suggested that lactate released during exercise by skeletal muscles,
crosses the BBB and induces BDNF expression, and activates
TRKB signaling in the hippocampus. The function of lactate is
dependent on the activation of the transcriptional coactivator;
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PGC-1 α, and the secreted molecule fibronectin type III domain-
containing protein 5 (FNDC5), which both are involved in the
upregulation of BDNF expression. Wrann et al. (2013) in an
interesting study in mice demonstrated that, aerobic exercise
causes production of PGC-1α in muscles, and then PGC-1α

induces FNDC5. Then irisin is released by the cleavage of FNDC5
(Lee et al., 2012; Miyamoto-Mikami et al., 2015; Lourenco
et al., 2019) and induces BDNF expression through inhibition
of histone deacetylase-1, both in human and animal studies
(Erickson et al., 2009; Koppel and Timmusk, 2013).

Finally, sustained BDNF levels during exercise, have
important roles in cognition through stimulating long-term
potentiation, protein phosphorylation, synaptic regeneration (Ji
et al., 2005; Tapia-Arancibia et al., 2008), and finally memory
improvement in healthy and AD model of rats (Wu et al., 2008;
Griffin et al., 2009; Babaei, 2021).

Besides neurotrophic effects which have been discussed above,
BDNF also exerts metabotropic roles, and indirectly could
influence memory and learning ability, via alleviating systemic
insulin resistance in men with MetS (Damirchi et al., 2014),
and mitochondrial biogenesis in cultured murine hippocampal
neurons (Cheng et al., 2012).

Given the importance of BDNF levels on neuroplasticity
and memory, these results support that exercise should be
considered as part of rehabilitation programs in different
neurodegenerative disorders.

Insulin-Like Growth Factor-1
Insulin-like growth factor (IGF-I), is a peptide which is secreted
by liver and some other tissues, and stimulates bone growth,
and decreases blood glucose levels (Utiger, 2011). Alteration in
IGF-I levels, in response to exercise training has inconsistent
results in old adults, with or without mild cognitive impairment
(Baker et al., 2010; Anderson-Hanley et al., 2017; Tsai C.-L. et al.,
2018; Liu et al., 2020; Arazi et al., 2021). Inconsistent results,
probably related to various protocols of biochemical assessments,
or subjects characteristics. For example, no significant change was
found after neither strength nor aerobic exercise in demented
patients (Liu et al., 2020). Also a negative correlation was found
between endurance exercise and cognitive prognosis when serum
IGF-I levels were above 74 ng/ml by Vardy et al. (2007) and
Anderson-Hanley et al. (2017). These authors concluded that
the higher IGF-I levels, might indicate disease progression,
potentially as a compensatory response similar to the higher
BDNF levels in metabolic syndrome (Damirchi et al., 2014).
Therefore, participants with higher IGF-I levels, may be less
likely to benefit from the exercise intervention in either healthy
adults or adults with Alzheimer’s disease (Vardy et al., 2007;
Anderson-Hanley et al., 2017).

Also increase in both central and peripheral IGF-1 levels
following exercise training in rodents (Carro et al., 2000; Trejo
et al., 2001; Nakajima et al., 2010; Kim et al., 2019) have been
reported. Finally, IGF-1 increases the expression of BDNF (Carro
et al., 2000), synaptic plasticity markers such as synaptophysin
and postsynaptic density protein-95 in the hippocampus, and
represents positive effects on the spatial and aversive memories
in healthy rats (Segabinazi et al., 2020).

Neurotransmitters (Adrenaline)
Circulatory catecholamines levels have been shown to be
increased during exercise training (Kraemer et al., 1999; Sutoo
and Akiyama, 2003), and their levels are related to better
intermediate and long-term retentions of memory (Winter
et al., 2007). Adrenaline is released from the adrenal gland in
response to exercise (Kjær, 1998), and has been studied more
than other bioamines. Since adrenaline does not cross the BBB
(Bradbury, 1993); therefore, it might indirectly affect the brain via
activating the vagal nerve (McGaugh et al., 1996), then stimulates
noradrenergic inputs of the amygdala (Williams et al., 2000;
Miyashita and Williams, 2006), hippocampus (Miyashita and
Williams, 2004), and locus coeruleus (Miyashita and Williams,
2006); the main source of brain noradrenaline (McMorris,
2016). Noradrenaline released by locus coeruleus, modulates
memory and learning following exercise training both in human
(Atzori et al., 2016; Chandler, 2016; Feinstein et al., 2016),
and animal studies (Mello-Carpes and Izquierdo, 2013; da Silva
de Vargas et al., 2017). Together, these findings suggest an
exercise-induced increase of noradrenaline potentiating role on
learning and memory.

Endocannabinoid
The endocannabinoid system (ECS) is a system of biological
lipids, that essentially modulates the functions of the immune,
endocrine, and nervous systems (Lu and Mackie, 2016; Zou
and Kumar, 2018). In the brain, ECS is involved in various
neurophysiological processes including neurogenesis, synaptic
plasticity, as well as memory, and emotions (Bisogno and Di
Marzo, 2008; Silvestri and Di Marzo, 2013).

Several studies showed that, both acute physical activity
(Brellenthin et al., 2017) and regular aerobic exercise, raise
endocannabinoid (EC) levels in healthy adults and animal
models (Alkadhi, 2018), and elevated plasma levels of EC
are potentially associated with long-term beneficial effects
on memory and neural plasticity in healthy or adults with
major depressive disorders (Coccaro et al., 2018; Stone et al.,
2018; Meyer et al., 2019). Moreover, EC reduce anxiety,
neuroinflammation, oxidative stress, and brain amyloid-beta
deposition (Charytoniuk et al., 2020).

Not only the intensity of physical activity determines the
alteration of EC in healthy adults (Feuerecker et al., 2012),
but also the duration and subjects characteristics are important
as well (Charytoniuk et al., 2020). Some studies showed that
chronic exercises might be associated with the upregulation of
EC receptor (CB1R) in the hippocampus of mice (Ferreira-
Vieira et al., 2014; Brellenthin and Koltyn, 2016). Interestingly,
a recent study revealed that isometric handgrip exercise for 3
min, led to major alterations in the EC and its receptor type 1
(Crombie et al., 2017).

Importantly, EC have been known to express BDNF (Sleiman
et al., 2016), and then, BDNF regulates the expression of
CB1 receptor as well (Maison et al., 2009). In fact, CB1
receptor signaling in glutamatergic neurons increases the BDNF
production, and dendritic spine density in the hippocampus
and leads to long-term memory in CB1R deficient mice
(Wang and Han, 2020).
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Consequently, exercise-increased EC and BNDF levels,
synergistically improve memory recall and storage in healthy men
(Marin Bosch et al., 2021).

Wu et al. (2020) provide new insights into the BDNF/EC-
associated modulation of neurotransmission, in the physiological
and pathologic processes. They stated that BDNF inhibits
the excitatory postsynaptic current (EPSC), presynaptic
calcium influx, and exocytosis/endocytosis via activation of
the presynaptic CB1 receptors. They also found that BDNF
induces the release of endocannabinoids and also retrogradely
activates presynaptic CB1Rs via postsynaptic TrkB receptors
(Wu et al., 2020).

In this regard, Ferreira et al. (2018) demonstrated that
endogenous BDNF is crucial for the cannabinoid-mediated
effects on the subventricular zone and dentate gyrus
neurogenesis. On the other hand, cannabinoid receptor signaling
is also determinant for BDNF actions upon neurogenesis
(Ferreira et al., 2018).

Moreover, BDNF attenuates inhibitory transmission by
inducing the postsynaptic release of EC, that retrogradely
suppress GABA release in the somatosensory cortex (Yeh et al.,
2017; Selvam et al., 2018).

Nevertheless, the mutual relationship between physical
activity, the endocannabinoid system, and memory performance
remains not well discovered and needs proper fulfillment.

Myokines
Contracted skeletal muscles following exercise leads to the
secretion of various paracrine factors, which are named
myokines. Myokines include irisin, myonectin, angiopoietin-like
protein (ANGPTL), β-aminoisobutyric acid, fibroblast growth
factor 21 (FGF21) (Ingerslev et al., 2017; Cinkajzlová et al.,
2018). Myokines are linked with other physiological systems and
might impact on their functionality/(Pedersen, 2013; Whitham
and Febbraio, 2016). For instance, irisin is a peptide secreted
by skeletal muscles, particularly after intermittent high-intensity
exercise, and is correlated with glucose and lipids metabolism
in skeletal muscles in healthy adults (Huh et al., 2014). Besides
metabolic roles, irisin might coordinate locomotion following
exercising in healthy rat model (Zhang et al., 2015). Moreover,
irisin elevation has been known to be associated with secretion
of BDNF, metabolic alterations in human subjects (Huang L.
et al., 2019; Arazi et al., 2021), and also facilitation of memory
retrieval in male rats (Ding et al., 2006; Babaei et al., 2019).
In contrast, finding no correlation between irisin, BDNF, and
memory in metabolic syndrome model of rats, indicates that
irisin might not be the only mediator for exercise on learning and
memory in pathologic conditions such as metabolic syndrome
(Babaei et al., 2017).

Another myokine that is elevated after exercise is myonectin.
Myonektin is secreted by skeletal muscles and adipose tissue,
and induces uptake and oxidation of glucose and fatty acid in
healthy adults (Toloza et al., 2018), in response to exercise (Seldin
et al., 2012; Toloza et al., 2018). The extent of muscle mass loss
and elevated level of myonectin is associated with the severity
of cognitive deficits in the Alzheimer’s disease model of mice
(Lin et al., 2019).

Since the direct effects of myokines on memory have not been
understood yet, here we consider their indirect effects on memory
via insulin sensitivity.

Improving Insulin Sensitivity
Metabolic syndrome is a complex condition characterized by
insulin resistance, hyperglycemia, dyslipidemia, and obesity
(Alonso-Gómez et al., 2019), and stands as a risk factor for
cognitive decline and Alzheimer’s disease (Razay et al., 2007;
Farooqui et al., 2012; Neergaard et al., 2017; Kong et al.,
2018). One of the features of metabolic syndrome, is the excess
visceral fats producing inflammatory cytokines which are named
adipokines. Adipokines are categorized into two groups of
pro and anti-inflammatory. Pro-inflammatory adipokines cause
oxidative stress and increase inflammation, which consequently
leads to memory impairment (Santilli et al., 2017; Funcke and
Scherer, 2019). On the other hand, exercise has been known
to reduce pro-inflammatory, but increase anti-inflammatory
adipokines and prevents the progression of metabolic syndrome
toward type II diabetes (Babaei et al., 2015). In addition,
besides alteration in adipokine levels, exercise alleviates cognitive
decline in middle-aged men with metabolic syndrome (Damirchi
et al., 2014), by epigenetic modulation in cell metabolism
(Sjøberg et al., 2017). For instance, the first beneficial effect of
exercise or lipolytic action involves the phosphorylation and
activation of AMPK in healthy mice (Huang J. et al., 2019;
Yoon et al., 2019). AMPK is a fuel-sensing enzyme, which
is activated after the increase in the cellular ratio of AMP
relative to ATP. Animal studies on healthy mice revealed that
AMPK also mediates mitochondrial biogenesis (Jørgensen et al.,
2007), angiogenesis (Ouchi et al., 2005), BDNF production,
and therefore reverse memory deficits (Kim and Leem, 2016).
Moreover, exercise directly activates the autophagy through
up-regulating the AMPK-SIRT1 signaling pathway (Huang J.
et al., 2019), and remove abnormal proteins responsible for
neurodegenerative diseases in mouse (Osellame and Duchen,
2014; Lin et al., 2020). Elevated AMPK exerts insulin sensitivity in
healthy rats (Zhang et al., 2011), thus attenuates the progression
of neurodegeneration in human and animal models with AD
(Watson and Craft, 2004).

The second beneficial effect of exercise, takes place via
activating phosphoinositide 3-kinase and translocating the
glucose transporter type 4 into the skeletal muscles (Vega et al.,
2017), and the third mechanism mediated by adipokines (Beavers
et al., 2010). One of the pro-inflammatory adipokines, is TNF-
α which leads to insulin resistance, and induces a chronic
state of local inflammation in rats with diabetes or metabolic
syndrome (Samarghandian et al., 2016; Kouhestani et al., 2018).
TNF-α also contributes to cognitive decline in AD patients
by elevating oxidative stress and apoptosis (Perry et al., 2007;
Janelsins et al., 2008). Both aerobic and exercise training have
been demonstrated to be efficient in reducing TNF-α in young
adults and suppressing neuroinflammation (Flynn et al., 2003;
Forti et al., 2017; Monteiro-Junior et al., 2018).

On the other hand, reduction in anti-inflammatory
adipokines, more notably, adiponectin is associated with
metabolic syndrome in a rat model (Damirchi et al., 2010),
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coronary heart disease in adult patients (Lindberg et al., 2017),
and cognitive decline in adults with AD (Teixeira et al., 2013).
Adiponectin receptor-1 knockdown mice exhibited spatial
learning and memory impairment (Kim et al., 2017), however
exercise training exerts anti-inflammatory and insulin-sensitizing
effects via elevating adiponectin and inhibiting TNFα and IL-6
(Tore et al., 2007; Rizzo et al., 2020). Administration of exogen
adiponectin improves learning and memory (Tore et al., 2007),
similar to the exercise-induced elevated adiponectin level
(Martinez-Huenchullan et al., 2018; Pousti et al., 2018; Diniz
et al., 2019; Parastesh et al., 2019) in animal studies.

Considering more than 800 adipokines, it needs more studies
to clarify the exact roles of these molecules on memory following
exercise training.

Epigenetic Mechanisms
Acute and regular exercise training induces both short and long-
term epigenetic regulations, creating a “functional genome” that
consequently leads to adaptation during the active life span of
individuals. For example, memory-boosting effects of exercise
training could be partly mediated by DNA methylation (Deibel
et al., 2015; Kim and Kaang, 2017), histone acetylation (Barrett
and Wood, 2008; Fernandes et al., 2017), as well as up and
downregulation of microRNA (Fernandes et al., 2017; Grazioli
et al., 2017). Recently, an increase in histone acetylation of the
BDNF and the expression of immediate early genes of c-fos
and Arc, parallel with improvement in plasticity and memory
consolidation, storage, and retrieval in senescence-accelerated
mice following aerobic exercise have been reported (Maejima
et al., 2018, 2021).

In contrast with regular exercise training, an acute exercise had
no significant epigenetic change in basal levels of plasma BDNF
considering histone acetylation in healthy amateur runners
(da Silveira et al., 2017).

Taken altogether, epigenetic modification of exercise is
incomplete, and needs to be evaluated considering different
protocols timing and new candidate genes.

MicroRNAs
MicroRNAs (miRNAs) are small, single-strand non-coding RNAs
that play pivotal roles in the post-transcriptional regulation of
genes responsible for various physiological functions (Baek et al.,
2008). A growing body of evidence in human and animal studies
has shown that exercise alters blood levels of several miRNAs
(Flowers et al., 2015; Gomes et al., 2015; Xu et al., 2015), and these
small molecules modulate communication between the brain
and muscles. However, the patterns of miRNAs regulation in
response to exercise training is very complicated. Some of them
are upregulated in response to acute exercise (miR-146a, miR-
222), but some are increased in response to sustained training
(miRNA-20), and other remain non-responsive (miR-133a, miR-
210, and miR-328) (Baggish et al., 2011). One of the broadly
studied miRNA in response to exercise is miR-132. This mi
RNA is involved in memory formation and synaptic plasticity
(Scott et al., 2012; Hansen et al., 2013; Wang et al., 2013). For
instance, Radom-Aizik et al. (2012) reported a rapid elevation
in circulating levels of miR-132 in healthy men in response to

an acute intermittent exercise, but a reduction in trained human
subjects (de Gonzalo-Calvo et al., 2015, 2018). Meanwhile, an
animal study carried out by Dong et al. (2018) showed increased
miR-132 level in the hippocampus of the mouse model of
AD after aerobic exercise, parallel with memory improvement.
In contradictory, Smith et al. (2015) and Hernandez-Rapp
et al. (2016) reported a reduction in the expression of miR-
132 in the transgenic mice model of AD. The inconsistency
in literature, might be related to the model and stages of AD
development, and also the sensitivity of biochemical assessments
used for mi RNA.

In conclusion, exercise training could mitigate the aging-
induced memory decline by regulating the hippocampal
expression of miR-132 in the AD mice model (Dong et al., 2018),
miR-21 in mice with traumatic brain injury (Hu et al., 2015), miR-
34a and miR-124 in rats with cognitive impairment (Pan-Vazquez
et al., 2015; Kou et al., 2017).

Taken all together, it seems the bioinformatic analysis is
required to summarize the panel of various miRNA in response
to exercise training, rather than a single molecule.

CONCLUSION

In conclusion, this review provides an affordable and effective
method to improve cognitive function in all ages, particularly
the elderly who are most vulnerable to neurodegenerative
disorders. In spite of the limitations of this review, it is
suggested that frequent moderate aerobic activity is associated
with improved neurocognitive performance for elderly
people. Improved brain circulation, neurotrophic factors,
mitochondrial biogenesis, and the release of numerous signaling
molecules, including myokines and adipokines in response
to regular exercise might be involved in the neuroprotective
mechanisms of exercise training. Currently, among various
mechanisms, irisin/BDNF signaling seems to stand at the
core of exercise facilitatory effects on learning and memory.
These molecular signalings anticipate better understanding of
mechanisms that will enable the development of pharmaceuticals,
particularly for those who are activity limited (coma, spinal cord
injury, etc.).

The strengths of this review is describing updated findings
on various exercise modalities and memory performance which
uncovers molecular and cellular linkages critical in studies
of aging and neurodegeneration. However, the limitations of
the present review are focusing only on the selected possible
mechanisms including some of the important mediators and
signaling pathways.

Future studies need to find standard protocol for exercise
intensity, and also adequate follow-ups to consider the
maintenance of neurocognitive effects of exercise.
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