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Multivoxel pattern analysis (MVPA) has become a standard tool for decoding mental

states from brain activity patterns. Recent studies have demonstrated that MVPA can

be applied to decode activity patterns of a certain region from those of the other regions.

By applying a similar region-to-region decoding technique, we examined whether the

information represented in the visual areas can be explained by those represented

in the other visual areas. We first predicted the brain activity patterns of an area

on the visual pathway from the others, then subtracted the predicted patterns from

their originals. Subsequently, the visual features were derived from these residuals.

During the visual perception task, the elimination of the top-down signals enhanced

the simple visual features represented in the early visual cortices. By contrast, the

elimination of the bottom-up signals enhanced the complex visual features represented

in the higher visual cortices. The directions of such modulation effects varied across

visual perception/imagery tasks, indicating that the information flow across the visual

cortices is dynamically altered, reflecting the contents of visual processing. These results

demonstrated that the distillation approach is a useful tool to estimate the hidden content

of information conveyed across brain regions.

Keywords: MVPA, decoding, machine learning, fMRI, visions

1. INTRODUCTION

Brain decoding has drawn interest from neuroscientists for decades. Decoding gives meaning to
the activity patterns inside the brain, thus providing a potential for reverse engineering in order to
understand how the brain organizes and stores information. Recent studies have broadly utilized
the multi-voxel pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) images
as a standard tool to decipher what people are seeing (Haxby et al., 2001; Kamitani and Tong, 2005;
Horikawa and Kamitani, 2017), hearing (Hoefle et al., 2018), imagining (Stokes et al., 2009; Reddy
et al., 2010; Cichy et al., 2012), and dreaming (Horikawa et al., 2013).

In terms of targeted perception, vision has been the preferred candidate due to its simplicity.
Visual processing, particularly visual object recognition, is a well-established hierarchical
organization in both anatomical and functional aspects (Felleman and Van Essen, 1991). A recent
study (Horikawa and Kamitani, 2017) presented a decoding approach for generic decoding of visual
features in both perception and imagery tasks. The authors suggested that the mental imagery is a
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type of top-down processing, whereas mental perception is a
bottom-up process. Interplay between top-down and bottom-
up processing helps sharpen the neural representation of stimuli
(Abdelhack and Kamitani, 2018). However, the top-down signals
also cause bias in the early visual-sensitive area (Kok et al.,
2012, 2013). Therefore, to unveil the “true pattern” reflecting
the received visual stimuli, one should eliminate the influence of
top-down signals.

In this study, MVPA of fMRI images was used to distill
the unsullied pattern of activity in a region of interest (ROI).
We assume the prediction of a low-level ROI based on the
activity of a high-level ROI to specifically represent its top-down
signals from that specific one, and the prediction of a high-level
ROI based on the activity of a low-level signals to represent
bottom-up signals. Using the open-access data obtained from
(Horikawa and Kamitani, 2017), we demonstrated a region-
to-region decoding technique in which the top-down/bottom-
up signals at an ROI (target) are linearly integrated from the
activity of the other regions (seeds). Thereafter, we examined
the prediction of visual features of observed stimuli before
and after eliminating the top-down/bottom-up signals during
the perception and imagery tasks. Finally, we compared the
magnitude of distillation effects between all possible seed–target
pairs associated with the visual processing.

2. MATERIALS AND METHODS

2.1. Data and Preprocessing
We used the preprocessed task fMRI data of 5 subjects in the
publicly accessible Generic Object Decoding dataset (https://
github.com/KamitaniLab/GenericObjectDecoding). This dataset
was used to replicate Horikawa et al.’ paper (Horikawa and
Kamitani, 2017). MRI data were collected using 3.0-Tesla
Siemens MAGNETOM Trio A Tim scanner from the ATR Brain
Activity Imaging Center. An interleaved T2∗-weighted gradient-
echo plannar imaging (EPI) scan was performed [repetition time
(TR), 3,000 ms; echo time (TE), 30 ms; flip angle, 80 deg; field
of view [FOV], 192 × 192 mm2]. T1-weighted magnetization-
prepared rapid acquisition gradient-echo fine-structural images
of the entire head were also acquired (TR, 2,250 ms; TE, 3.06 ms;
TI, 900 ms; flip angle, 9 deg, FOV, 256 × 256 mm2; voxel size,
1.0× 1.0× 1.0mm3.

The fMRI data underwent three-dimensional motion
correction using the SPM5 software (http://www.fil.ion.ucl.
ac.uk/spm). Data were then coregistered with the whole-head
high-resolution anatomical images. The coregistered data were
then reinterpolated using 3×3×3mm3 voxels. After within-run
linear trend removal, voxel amplitudes were normalized relative
to the mean activity of the entire time course within each run.
To estimate the brain activity associated with each trial, the
normalized voxel activity was then averaged within each 9-s
stimulus block (image presentation experiment) or within each
15-s imagery period (imagery experiment), after shifting the
delay the data by 3 s to compensate for hemodynamic delays.

This dataset consists of 1,200 training, 1,750 test (perception),
and 500 test (imagery) trials for each subject. Visual images
were collected from the online image database ImageNet

(Deng et al., 2009). Two hundred representative object categories
were selected as stimuli in the visual presentation experiment. In
the training image session, a total of 1,200 images from 150 object
categories (eight images from each category) were presented only
once. In the test image session, a total of 50 images from 50
object categories (one image from each category) were presented
35 times each. Care was taken to avoid misuse of the categories
for the test session during the training session. In the imagery
experiment, the subjects were asked to visually imagine images
from one of the 50 categories that were presented in the test image
session of the image presentation experiment.

2.2. Region-to-Region Decoding
To estimate the information flow from a region to a region,
we calculated the fine-grained topographic connectivity between
regions (Heinzle et al., 2011). In this analysis, a single voxel
activity in the target region was modeled by a weighted
linear summation of all the voxel activities in the seed region.
Considering that the activity of voxels in the same ROI is highly
correlated, a ridge regression analysis was employed for weight
estimation, but not ordinary least squares analysis. The ridge
parameter was optimized such that the prediction performance
in the validation dataset is maximized. For this purpose, we
divided the training dataset into 600 training and 600 validation
trials. In test dataset, the voxel activity in the target region was
predicted through the estimated weights computed using the
optimal ridge parameter.

To evaluate the region-to-region decoding performance, the
average coefficients of determination (R2) among all the voxels
in the target ROI were calculated. For comparison, functional
connectivity was also calculated between regions. As the present
dataset reflects task-related activity, the method proposed by
Rissman et al. (2004) was used.

2.3. Bottom-Up/Top-Down Signal
Elimination
We hypothesize that the observed activity of visual cortices
reflects both bottom-up and top-down signals conveyed between
the visual pathways. The bottom-up/top-down signals can be
approximated using linear predictions through the observation
of other ROIs. Prediction of a targeted ROI derived from a seed
ROI can be expressed as follows.

Xseed→target ≈ a× X∗
seed + b

where a and b denote the parameters of the linear regression.
The X∗

seed
denotes the observed representation of a signal at the

seed ROI. Then, the representation of the signal at the target ROI
can be expressed as follows

X∗
target = Xseed→target + Xlatent_factor

where X∗
target denotes the observed representation of the

signal at the target ROI, and the Xlatent_factor represents “hidden”
content at the target ROI which was subsequently used for visual
feature prediction.
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These expressions suggest that the activity of the primary
visual cortex would directly reflect retinal input if the top-
down signal from the higher visual cortex (such as the fusiform
face area, FFA) could be appropriately eliminated. Considering
this, the activity explained by the seed region (e.g., FFA) was
eliminated from the target region (e.g., V1). The former activity
is estimated using the region-to-region decoding technique
described above.

2.4. Visual Feature Prediction
We tested 13 candidates of visual features, including a
convolutional neural network (CNN1–CNN8) (Krizhevsky et al.,
2012), HMAX model (HMAX1–HMAX3) (Riesenhuber and
Poggio, 1999; Serre et al., 2007; Mutch and Lowe, 2008), GIST
(Oliva and Torralba, 2001), and scale-invariant feature transform
(SIFT) (Lowe, 1999) in combination with the bag of features
(BOF) (Csurka et al., 2004). All visual features are continuous
data. Among these, the multi-layered models (CNN and HMAX)
represent the hierarchical processing of human visual systems.
GIST provides a low-dimensional representation of a scene,
specified for scene recognition. SIFT + BOF is similar to GIST
but is designed for object recognition.

Visual feature vectors of seen objects were predicted from
the activity patterns of each ROI, based on a linear regression
function. To build the prediction model, we used the code
available on Horikawa et al.’s website (https://github.com/
KamitaniLab/GenericObjectDecoding). The sparse linear
regression (SLR; http://www.cns.atr.jp/cbi/sparse_estimation/
index.html) (Bishop, 2006) was used for automatically selecting
the important features for prediction. The regression function
can be expressed as follows:

y(x) =

d∑

i=1

wixi + w0

where xi denotes the scalar value of the voxel i, wi denotes the
weight of voxel i, w0 denotes the bias, and d denotes the number
of voxels in an fMRI sample x. For weight estimation, we adopted
the variational Bayesian automatic relevance determination
model (Sato, 2001; Tipping, 2001; Horikawa et al., 2013).

Hence, the weights of the regression function can be estimated
by evaluating the following joint posterior probability of w:

P(w,α,β|X, tl) =
P(tl|X,w,β)P0(w|α)P0(α)P0(β)∫

dwdαdβP(tl,w,α,β|X)

where tl denotes the target variable of the lth component of
a visual feature explained by the y(x) with additive Gaussian
noise; w, the weight vector of regression function; α, the weight
precision parameters; and β , the noise precision parameter. The
learning algorithm involves the maximization of the product of
the marginal likelihood and the prior probabilities ofw, α, and β .

We trained linear regression models that predicted the feature
vectors of the individual feature types/layers for seen objects of
the fMRI samples during the training session. For the test dataset,

fMRI samples corresponding to the same categories (35 samples
in the test image session and 10 samples in the imagery session)
were averaged across trials to increase the signal-to-noise ratio
of the fMRI signals. Using the trained models, feature vectors
of seen/imagined objects from averaged fMRI samples were
predicted to construct one predicted feature vector for each test
category. Model fitting and prediction were conducted for each
feature unit. A total of 100 feature units were randomly selected
for each visual feature. As a metric of decoding accuracy, we
calculated the correlation coefficient between true and predicted
feature values of the 50 test images.

Correlation coefficients of 100 units from five participants
were calculated, providing 100 × 5 correlation coefficients in

FIGURE 1 | Depiction of the procedures for the proposed distillation analysis.

(A) Voxel activity in the target region is predicted by a weighted linear

summation of all the voxel activities in the seed region. By repeating this

procedure for all the voxels in the target region, the whole activity pattern of

the target region is predicted. (B) The dataset is divided into four subsets:

training, validation, perception, and imagery tests. The training data set is used

to estimate weights for region-to-region decoding. The validation data set is

used for the optimization of hyperparameters (ridge parameter). The weights

estimated by the optimization of hyperparameters was used to predict the

target region activity in perception and imagery test datasets. (C) The

representative actual/predicted/distilled activity of a voxel in the perception

test data.
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each feature type/layer for each ROI. To evaluate the effect
of the bottom-up/top-down signal elimination, the prediction
modes were built before and after the signal elimination. The
significance of the signal elimination effect was examined using
a paired t-test. The correlation coefficient was preferred because
we focused on feature decoding where the pattern across feature
units is more important than the absolute value of a single unit.
The mean absolute error (MAE) and mean squared error (MSE)
were additionally measured for validating the findings derived
from correlation analysis.

Figure 1 shows the overall procedure of our analysis.
There are three steps in total: region-to-region prediction,
top-down/bottom-up signal elimination, and visual
feature predictions.

3. RESULTS

3.1. Region-to-Region Decoding
First, we calculated the functional connectivity between ROIs
associated with the visual processing. Figure 2A shows the
connectivity matrix between the ROIs associated with visual
object recognition, including the lower visual cortices (V1-V4),
the lateral occipital complex (LOC), fusiform face area (FFA),
and parahippocampal place area (PPA). The nearby regions, for
instance, V1 and V2, exhibited a strong connectivity (Pearson’s
correlation, mean r = 0.96) whereas that between the distant
regions such as V1 and PPA, was weaker (r = 0.66).

Using each ROI as a seed, a linear ridge regression was
performed to predict the activity of all the other ROIs. Figure 1C
shows an example of the predicted activity at V1 based on the
activity of V2 and its actual activity. We employed the optimal
ridge parameter which best predicted the activity in the validation
dataset of each seed–target combination for each subject. Similar
to the connectivity, the R2 was high between nearby regions and
low between distant regions (Figures 2B,C). Particularly, the R2

in imagery test was relatively lower than those in perception test,
suggesting that the effectiveness of region-to-region decoding
may differed according to behavioral task.

3.2. Distillation Analysis
The brain activity at a specific region (target region) was
subtracted from its predicted activity based on the seed region.

Here, the two poles of the visual object recognition were selected,
i.e., V1 and FFA. A decoder (Horikawa and Kamitani, 2017) was
used to predict the value of the visual features using the multi-
voxel fMRI signals of these ROIs. Subsequently, the quality of the
prediction was evaluated based on its correlation with the original
visual feature.

In the image perception task, the correlation between the
GIST descriptors predicted by the V1 activity and the original
signal significantly increased after eliminating the top-down
signals from the FFA [Figure 3A; two-sided t-test after Fisher’s
z-transform, t(499) = 3.01, p < 0.05 [uncorrected]]. Interestingly,
a similar increment was also observed in the correlation between
the GIST predicted by the FFA and the original after subtracting
the bottom-up signals [t(499) = 22.67, p < 0.001 [uncorrected]].
However, an opposite effect (negative effect) in the imagery
task. The correlation between the predicted GIST descriptors
and the original one declined at both V1 [t(499) = −5.22,
p < 0.001 [uncorrected]] and FFA [t(499) = −6.52, p <

0.001 [uncorrected]] after distillation (Figure 3B). These results
indicated that during the imagery task, the visual features at these
cortices was similar, whereas they were dissimilar during the
image perception task.

3.3. Effects of Distillation According to the
Regional Seed–Target Pair
To investigate the effect of distillation in general, all possible
seed–target pairs were analyzed. Subsequently, the difference
in the correlation coefficient before and after distillation were
arranged into a 7 × 7 matrix for every visual feature (Figure 4).
The diagonals were omitted since they represent the self-
distillation, which is the scope of the current analysis. In this
matrix, the upper triangle represents the effect of the top-
down signals whereas the lower triangle represents the effect
of the bottom-up signals. The positive values indicate that the
representations of a visual feature were enhanced by eliminating
the modulation of the seed region, and vice versa.

Enhancement of visual feature representations in V1 were
observed after eliminating the modulation from FFA for CNN2,
HMAX1–HMAX3, and GIST in the image-based perception
task (Figure 4). Conversely, the negative effects indicate that
the representations of a visual feature were diminished by
eliminating the modulation of the seed regions. Such effects were

FIGURE 2 | Region-to-region decoding. (A) Connectivity matrix between visual object recognition related regions. (B) Coefficient of determination in the perception

test. (C) Coefficient of determination in the imagery test.
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FIGURE 3 | Distillation analysis between V1 and FFA. (A) An example of V1 and FFA after distillation in predicting the GIST descriptors. Correlation between predicted

and original GIST descriptors in the image-based perception task. (B) Correlation between predicted and original GIST descriptors in the class-based imagery task.

Error bars represent standard error of measurement (SEM). * uncorrected p < 0.05, ** uncorrected p < 0.001; two-sided paired t-test after Fisher’s

z-transform; n = 500.

FIGURE 4 | The effect of distillation according to each seed–target pair for image-based perception task and class-based imagery tasks across all groups of visual

features. (A) CNN visual features, (B) HMAX visual features, (C) SIFT + BOF, and (D) GIST. The difference of the correlation coefficients before and after distillation is

arranged into a 7× 7 matrix for every visual feature. For each group, the matrices are arranged as their complexity increased (from left to right). The diagonals are

omitted since they represent the self-distillation which is not within the scope of this study. The horizontal axis represents the seed ROIs, whereas the vertical axis

represents the target ROIs. The color bar indicates the t-value of the difference between the corresponding seed–target pair. *p < 0.05 after Bonferroni correction for

multiple comparisons (FWE < 5%); two-sided paired t-test after Fisher’s z-transform.
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expected to be observed in the combination of brain regions
that share the common information. Accordingly, the distillation
for the nearby regional pairs caused a negative effect (the blue
area) as the nearby regions express strong connectivity as shown
in Figure 2A. Interestingly, for complex visual features such
as CNN6–8, the negative effects were observed in the pairs of
higher visual cortices, such as V4, LOC, FFA, and PPA. These
negative effects suggest mutual dependence across the higher
visual cortices during the processing of complex visual features.

As expected in the imagery task, almost all pairs had a
negative effect, suggesting the existence of a close interaction
between the visual cortices during this task (Figure 4B).
Specifically, a negative effect was prominent in the upper
triangle, indicating that top-downmodulation is crucial for visual
feature representations during the imagery task. Furthermore,
an opposite effect in the imagery task compared to that in the
image-based perception task was prominent in CNN8 and GIST.

Since the correlation coefficient is not sensitive to the
scaling of data and may be biased under some circumstance
(Poldrack et al., 2020), the distillation effect was validated
by measuring the MAE (Supplementary Figure 1) and MSE
(Supplementary Figure 2). The matrices are arranged in
a manner similarly to that of Figure 4. A similar effect of

top-down/bottom-up distillation was observed between the
MAE/MSE analysis and the correlation analysis. Several
exceptions include HMAX3 and GIST visual features in the
imagery task. The difference may be due to the fact that the
region-to-region decoding in imagery tasks was more difficult,
as the coefficient of determinations were lower than those in
perception task (Figure 2C).

To quantitatively measure the effect of top-down and bottom-
up distillation, the mean of the 3 × 3 squares at the upper right
and lower left of the effect matrices were measured, respectively
(Figure 5A). As the complexity of the features increased, the
effect of top-down distillation decreased (Figure 5B), even
becoming reversed effect after CNN6. In contrast, the effect of
bottom-up distillation slowly increased. This phenomenon was
prominent in the case of the image-based perception task. In the
case of the class-based imagery task, the predicted features after
top-down distillation worsened as the complexity increased.

4. DISCUSSION

We have demonstrated a region-to-region decoding technique
capable of predicting the neural activity at one region based on

FIGURE 5 | The difference between the top-down distillation and bottom-up distillation. (A) An example of the CNN3 ’s effect matrix illustrating the measured regions.

The mean of the 3× 3 squares at the upper right and lower left of the effect matrices were measured. (B) The variance of the two kinds of distillation as the feature

complexity increases (from CNN2 to CNN8) in case of image-based perception task (upper) and class-based imagery task (lower). Error bars represent SEM.

*p < 0.05 after Bonferroni correction for multiple comparisons (FWE < 5%); two sided one sample t-test after Fisher’s z-transform.
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the neural activity of another (Figure 2). By eliminating the top-
down/bottom-up signals from the original signals (distillation
approach), a significant change in the prediction of visual features
from brain activity was found. Further analysis revealed three
characteristics of the distillation approach.

First, the effectiveness of the distillation approach depends
on the connectivity between the regional seed–target pairs. The
seed–target pairs that exhibited weak connectivity were more
suitable for distillation due to their distinct representations
of information. The representations of information were alike
between those with strong connectivity, hence, the distillation
of top-down/bottom-up signals eliminated their original signals.
Second, the distillation approach is also dependent on the
type of task, as the imagery task evoked an effect opposed to
that of the image-based perception task. Finally, the distillation
approach specifies the direction and content of the conveyed
information. For example, during an image-based perception
task, representations of relatively simpler visual features such
as CNN2–5, in V1 were enhanced by eliminating top-down
modulations from FFA or PPA, whereas such effects were not
observed for CNN6–8. Taken together, the distillation approach
is a novel tool for estimating the direction and content of
information conveyed across brain regions.

The difference between the visual feature matrices in
Figure 4 is expected since the complexity of visual features
were found to increase in deeper layers. Previous studies
(Horikawa and Kamitani, 2017) synthesized preferred images
for each layer using the activation maximization technique, and
found the increasing complexity, from simple edge detector
representations to complex shapes and textures such as object
parts. Conservely, the HMAX model was originally built to
mimic the hierarchical processing of the ventral visual pathway.
As mentioned in the original paper (Riesenhuber and Poggio,
1999), the HMAX model alternates layers of units by combining
simple filters into more complex ones. Finally, SIFT + BoF
and GIST are usually considered low-level features designed
for object and scene recognition, respectively, as introduced
in section 2.

Given our prior knowledge of vision, the FFA is expected
to encode the information of facial expressions, and the
PPA is expected to encode scene information. Such essential
information is undoubtedly delivered from the lower visual
cortex (such as V1) via the hierarchical bottom-up processing in
the ventral stream. Therefore, they vanished after the bottom-up
signals from V1 were distilled (Figures 3, 4). Given a particular
case of PPA, the scene information might be removed after
distillation of the bottom-up signal, decreasing the decoding
performance of the GIST in the PPA. Similarly, in the case of
the FFA, the decoding performance of the SIFT + BoF which
is related to encoding of facial expressions, decreased. Other
information available at FFA and PPA but not directly related
to the bottom-up signals, would be maintained. The decoding
performance of other information such as GIST, HMAX1–3,
and CNN8 increased at FFA. Thus, this result is in line with
those of several previous studies in which FFAs were shown to
hold information about non-face objects (Haxby et al., 2001;
Kanwisher, 2017).

4.1. Forward-Backward Interaction
Between the Low and High Visual Cortices
During Imagery Task
Interestingly, our results show that the information of the
visual features was lost after the distillation in the imagery
task, suggesting a similarity between the representations of
the low-level/high-level regions and their corresponding top-
down/bottom-up signals. Due to the lack of concrete “actual”
features from visual stimuli, the neural representation of the
lower visual cortex aggressively employed the top-down signals.
Neural representations at the high-level cortex were reinforced
via bottom-up feedback. The quality of such reconstruction
depends on the vividness of the imagined object or scene and on
the available time for imagery.

Our results are in line with several previous studies (Stokes
et al., 2009; Horikawa and Kamitani, 2017; Abdelhack and
Kamitani, 2018), which depicts the mental imagery as a type
of top-down processing. Previous studies reported the common
neural representations during both perception and mental
imagery (Albers et al., 2009, 2013; Stokes et al., 2009; Reddy
et al., 2010; Cichy et al., 2012; Xing et al., 2013; Johnson and
Johnson, 2014; Naselaris et al., 2015; Horikawa and Kamitani,
2017). Our analysis revealed the different compositions of
these neural representations concerning their utilization of top-
down/bottom-up signals.

4.2. Significance and Limitations of the
Distillation Analysis
Whereas the functional connectivity and effective connectivity
analyses focus on estimating the strength of regional
connectivity, the distillation approach specifies the content
of the conveyed information between regions as well as
interregional connectivity. Figure 5 demonstrates that the
top-down modulation during the visual perception task could
diminish the simpler visual features (i.e., CNN2–5) represented
in the early visual cortices (i.e., V1–V3). With the distillation
approach, the effect of top-down modulation can be analytically
eliminated, resulting in the enhancement of simpler visual
feature representations in the early visual cortices. It should
be noted that the effects of distillation were not observed for
any visual features. Rather, these effects were specific to the
visual features of interest as well as the combination of the seed
and target.

The current approach has two limitations. First, the
distillation results can be artificial if the actual connectivity
between the seed and target does not exist. Hence, results of the
distillation analysis should be interpreted with caution to avoid
misinterpretation. In this study, both the correlation coefficient
and the additional MAE/MSE were used as the metrics to evaluate
the distillation results. A result was considered reliable if it was
consistent across these metrics, i.e., the effect of distillation in
perception task, and across CNN visual feature in imagery task.
The current results were derived from our prior assumptions,
wherein the prediction of a low-level ROI based on the activity
of a high-level region represents its top-down signals from
that specific region, and vice versa. Second, the recurrent effect
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was not considered (i.e., the effect caused by the circulation of
information, from FFA to V1 to FFA), because its complexity
may cause artifacts. Furthermore, we assume that the recurrent
effect would be relatively smaller than the direct modulation
at the moment of observation and, thus, could be negligible.
To specify the precise modulatory effect between regions (e.g.,
from V1 to FFA), the recurrent effect should be included in the
future model.

4.3. Potential Uses of the Distillation
Analysis
The development of brain-computer interfaces (BCIs) will
benefit from our distillation approach for precise decoding.
Incorporating with the now mature image reconstruction by
deep learning (Shen et al., 2019), our approach may reconstruct
what people see even though it is not visually recognizable.
One could also consider repeating the distillation analysis
to obtain a better representation of the information at an
ROI. Furthermore, the distillation analysis is applicable to the
decoding of other sensory modalities, such as auditory and
haptics feedback. Cross-distillation between different modalities
would help us to gain better insights into their intervention in
future work.
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