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Impaired neurodevelopmental outcome, in particular cognitive impairment, after
neonatal hypoxic-ischemic encephalopathy is a major concern for parents, clinicians,
and society. This study aims to investigate the potential benefits of using advanced
quantitative electroencephalography analysis (qEEG) for early prediction of cognitive
outcomes, assessed here at 2 years of age. EEG data were recorded within the
first week after birth from a cohort of twenty infants with neonatal hypoxic-ischemic
encephalopathy (HIE). A proposed regression framework was based on two different
sets of features, namely graph-theoretical features derived from the weighted phase-
lag index (WPLI) and entropies metrics represented by sample entropy (SampEn),
permutation entropy (PEn), and spectral entropy (SpEn). Both sets of features were
calculated within the noise-assisted multivariate empirical mode decomposition (NA-
MEMD) domain. Correlation analysis showed a significant association in the delta band
between the proposed features, graph attributes (radius, transitivity, global efficiency,
and characteristic path length) and entropy features (Pen and SpEn) from the neonatal
EEG data and the cognitive development at age two years. These features were used to
train and test the tree ensemble (boosted and bagged) regression models. The highest
prediction performance was reached to 14.27 root mean square error (RMSE), 12.07
mean absolute error (MAE), and 0.45 R-squared using the entropy features with a
boosted tree regression model. Thus, the results demonstrate that the proposed qEEG
features show the state of brain function at an early stage; hence, they could serve
as predictive biomarkers of later cognitive impairment, which could facilitate identifying
those who might benefit from early targeted intervention.

Keywords: brain connectivity, cognitive scores, graph theory, electroencephalography (EEG), entropy analysis,
hypoxic-ischemic encephalopathy (HIE), noise-assisted multivariate empirical mode decomposition (NA-MEMD)
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INTRODUCTION

Hypoxic-ischemic encephalopathy (HIE) is one of the most
severe birth complications that causes neonatal brain damage.
The incidence of HIE is approximately 1–6 per 1000 live births
(Byeon et al., 2015). Moderate to severe encephalopathy often
leads to death, cerebral palsy, or severe neurodevelopmental
impairment. Neurodevelopmental impairment (NDI) is
a composite outcome that includes cognitive, behavioral,
educational, and motor impairments. Cognitive deficit is
considered one of the most expected outcomes associated with
NDI, featured by slow information processing speed, deficits in
working memory, attention, and executive function (Slaughter
et al., 2016). This substantially impacts the affected individual
and their families, including education, social participation,
employment, and quality of life.

Early identification of infants at high-risk can help to provide
targeted early intervention that aims to improve cognitive
outcomes by taking advantage of the neuroplasticity of the
developing brain in early infancy.

Recently, there has been increasing interest in exploring
methods for assessing brain function in early infancy and
using them as an aiding tool for the early prediction of
cognitive impairments. Neuroimaging techniques have been
used in several studies to identify infants at high-risk of
cognitive impairment (Slaughter et al., 2016; Moeskops et al.,
2017; He et al., 2018). Alongside neuroimaging methods,
electroencephalography (EEG) is suggested to be the current
gold standard technique for studying brain activity as it is
relatively inexpensive, portable, non-invasive, user-friendly, and
comparatively easy to use. Several studies have examined the
feasibility of using EEG analysis to predict the cognitive outcome.
Kong et al. (2018) conducted a systematic review highlighting the
two basic approaches currently adopted for the early prediction
of cognitive outcomes. One is the analysis of EEG features to
identify the biomarkers that could help binary classify the subject
as either cognitively impaired or normal. The second is the
analysis of EEG characteristics to estimate the specific scores
for a continuous cognitive measure that could predict cognitive
performance. Compared to binary classification, prediction of
cognitive development reflects the difference between individuals
in terms of brain function and the levels of cognitive impairment,
rather than determining the group membership as in the case of
classification, which could be more challenging (Sui et al., 2020).

Limited previous studies have shown that early quantitative
analysis of EEG can satisfactorily predict long-term cognitive
outcome. Lloyd et al. (2021) employed serial, multichannel
video EEG to predict outcome in preterm infants by finding
the association between grading of EEG background activity–
where EEG was recorded soon after birth and continued
over the first 3 days–and developmental scores, at 2 years of
age. Suppiej et al. (2017) compared spectral EEG values of
infants born near term with infants born at extremely low
gestational age, aiming to investigate whether spectral EEG
features were related to neurological outcomes. The EEG data
was recorded at 35 weeks post-conception, and the outcome
was evaluated at 1 year of age with the Griffiths’ scales.

Cainelli et al. (2021) carried out a longitudinal 6-year study to
evaluate the feasibility of neonatal spectral EEG in predicting
developmental delay in premature infants. The EEG data was
recorded at 35 weeks post-conception, and the outcome was
assessed at 6 years using Wechsler Pre-school and Primary Scale
of Intelligence III. West et al. (2005) conducted regression-
based analysis to predict outcomes at 18 months of 44 preterm
infants using the quantitative measure of EEG continuity
recording in the first 4 days after birth. Kühn-Popp et al.
(2016) investigated the relationship between brain maturation
processes and language skills (evaluated at 48 months) using EEG
coherence measured at 14 months.

Although these attempts have paved the way to using EEG
in early prediction of cognitive development, methodological
limitations hinder further progress. For example, EEG grading
systems are still subjective and dependent on interpretation
by an expert.

On the other hand, coherence-based measures quantitatively
estimate the linear similarity of relative amplitude and phase
between signals in a specific frequency range. Although
coherence analysis provides information on the degree of
synchrony of brain activity at different locations for each
frequency, it suffers from several limitations. First, it fails to
capture the intrinsic non-linearity of brain activity, is unsuitable
for tracking non-stationary dynamics as it partly depends on
the amplitudes of the signals and is susceptible to the volume
conduction issue (Sweeney-Reed and Nasuto, 2007). Moreover,
coherence relies on both the amplitude and phase in its
calculation, and there is increasing evidence that considering the
synchronization of phase alone and separating it from amplitude
information may allow capturing the synchrony of temporal
information between signals. This temporal locking of phases
between neural signals is considered essential for analyzing
the dynamic neural assemblies underlying cognitive processing
(Sweeney-Reed and Nasuto, 2007).

Spectral power can quantitatively capture EEG characteristics
that could objectively predict the associated cognitive outcomes.
However, the employed approaches are based on Fourier
transform, which requires linearity and stationarity of the
signals, which is not the case with EEG signals. Consequently,
such spectral analysis methods may give misleading amplitude-
frequency distribution for non-linear and non-stationary data. In
addition, the spectral analysis methods used in the literature are
based on a priori basis, often selected according to traditional
frequency bands, which are inconsistent among studies. For
example, alpha-band was chosen to be from 8 to 12 Hz in David
et al. (2004), from 8 to 13 Hz in Breakspear et al. (2004), from
8 to 14 in Babiloni et al. (2006), or subdivided into 6–10 Hz
and 10–14 Hz ranges in Stam et al. (2003). These small changes
in the frequency ranges of interest may result in potentially
informative brainwaves being missed, specifically in the case of
infants, due to the well-known variability between them and the
older individuals in the neural oscillations of interest (Saby and
Marshall, 2012). Furthermore, using a priori basis is critical for
both non-linear and non-stationary data, as one cannot expect a
predetermined basis to fit all the non-linear and non-stationary
dynamics (Huang et al., 1998).
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Thus, further work is required to employ quantification
and analysis methods that consider the non-linearity and non-
stationary characteristics of EEG, intending to find objective and
reliable biomarkers of the cognitive deficits.

This study, therefore, aims to investigate the effectiveness
of non-linear quantitative EEG (qEEG) features within the
regression-based framework for predicting the cognitive
outcomes in term-born infants with neonatal HIE. Specifically,
phase-based functional brain connectivity estimated by weighted
phase-lag index (WPLI) with graph metrics and complexity
analysis measured by sample entropy (SampEn), permutation
entropy (PEn), and spectral entropy (SpEn) are the two classes of
features used in this study. Both sets of features were previously
validated on earlier prediction of CP in at high-risk infants
with neonatal HIE (Bakheet et al., 2021). This study uses WPLI
and entropies features to find the association between neonatal
EEG and the individual cognitive performance (which were
completed in a follow-up visit at 24 months of age). These
features are chosen because both could capture the complex
characteristics of the EEG spectra, particularly non-linear
and non-stationary properties. While WPLI quantifies the
phase synchronization between distinct brain areas over time,
providing a global view of the whole-brain networks, the
entropies measure the complexity of each EEG independently,
providing an understanding of the dynamic process underlying
specific brain area.

In order to estimate such features, it is usually necessary
to decompose EEG signals into narrowband components. This
step is required since the calculation of WPLI and entropies
from a complex signal, as in EEG, composed of multiple
frequency oscillators, does not reveal the underlying non-
linear dynamics of the signals (Takahashi et al., 2010; Bruña
et al., 2018). Thus, noise-assisted multivariate empirical mode
decomposition (NA-MEMD) method is adopted to decompose
the EEG signals into intrinsic components. One advantage
of using NA-MEMD is that it is a fully adaptive method
and does not require a priori selection of the filter cut-offs.
Naturally, this is a valuable property because it can tackle
the well-known frequency range variability according to the
experimental condition. Another advantage of using NA-MEMD
is it capable of dealing with the non-stationary property of EEG

signals by demonstrating the temporal evolution of different
frequency components.

Correlation analysis is performed to ascertain the statistical
significance of graph-theoretical parameters of WPLI and
entropies features in finding the association with cognitive scores.
Then, the significant features are used to train and test the tree
ensemble regression models: boosting and bagging to evaluate
their predictability in later cognitive development.

The remainder of the article is organized as follows: the
materials and methods used in this study are described in
section “Materials and Methods.” Results are analyzed in section
“Results” and discussed in detail in section “Discussion.” Section
“Conclusion” concludes the article.

MATERIALS AND METHODS

This section describes the methodology of the proposed analysis
to predict cognitive development at 2 years of age. First, a
description of the study population and recruitment process is
given, followed by a description of the experimental setup. An
overview of the overall process of the proposed analysis including
the description of pre-processing techniques, the basic concept of
NA-MEMD, WPLI-based functional brain connectivity analysis,
graph theory, and complexity analysis, are also provided. Then,
the procedure of how these methods is employed to extract the
desired features will be demonstrated. Finally, the regression
models used in this study are presented. A schematic outline of
the proposed analysis is depicted in Figure 1.

Participants
Thirty term-born infants with HIE treated with hypothermia
were recruited in this study. EEG data was recorded on the
neonatal intensive care unit within the first week after birth.
Routine clinical neurodevelopmental follow-up assessment was
conducted at 24 months of age using the Bayley Scales of Infant
and Toddler Development III (BSITD-III). Of the 30 infants, 20
completed the follow-up assessment. The BSITD-III consists of
three scales; motor, language and cognitive, and for this study
we used the composite scores from the cognitive scales. The
BSITD-III cognitive scores from those twenty infants ranged
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FIGURE 1 | Schematic outline of proposed analysis for predicting cognitive outcomes at 2 years of age.
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from 74 to 145. The BSITD-III mean of the normal population
is 100, with a standard deviation (SD) of 1.5. Delay of cognitive
development was defined as cognitive scores > 1.5 SD below the
norm population mean. Ethical approval for secondary analysis
of anonymized clinical data was obtained by the HRA and Health
and Care Research Wales, HCRW (Reference ID 20/HRA/0260;
IRAS project ID 278072; University Hospital Southampton R&D
protocol number RHM CHI1047).

Data Acquisition
Electroencephalography data was recorded for 20 min during
resting-state condition with eyes closed by either a Nihon Kohden
(sampling frequency 1000 Hz, high-pass filter 0.016 Hz, the low-
pass filter 300 Hz) and XLTEK (sampling frequency 512 Hz,
high-pass filter 0.1 Hz, and the low-pass filter 70 Hz) clinical
video-EEG system. Nineteen electrodes (C3, C4, CZ, F3, F4, F7,
F8, FZ, FP1, FP2, O1, O2, P3, P4, PZ, T3, T4, T5, and T6)
placed according to the 10–20 international system were used,
as shown in Figure 2. Movement or electrode artifact affected
the EEG in a substantial proportion of the cases. The first period
in the EEG that was long enough without any clear significant
artifact was always selected (the average length of the clips is
approximately 2 min).

Data Pre-processing
The EEG data analysis was performed using MATLAB software
package R2018a and EEGLAB toolbox. In order to improve
the quality of the EEG signal, the remaining artifacts such
as eye movement, muscle, heart activities, line noise, and
signal discontinuity were eliminated using the following pre-
processing techniques.

The EEG signals were initially recorded from 19 channels
where the standard ground electrode was put close to Fz or
Cz. After filtering the data, the EEG signals were automatically
inspected to determine the set of bad channels. The procedure of
picking the bad channels is based on the two criteria: first, the

FIGURE 2 | The 10–20 international system of EEG electrodes placement.

flat channels, and second, the channels with a large amount of
noise determined based on their standard deviation. Any channel
marked as bad was eliminated and excluded from the further
analysis. As a result of bad channels detection, the total number
of removing channels were seven: C4, CZ, F4, F8, FP1, FP2,
and Pz. The set of remaining channels used in calculating the
common averaged reference (CAR) were 12: C3, F3, F7, Fz, O1,
O2, P3, P4, T3, T4, T5, and T6. Thus, the brain topography used
in this study included three brain regions: the central (C3, T3,
and T4), anterior (F3, F7 and Fz), and posterior (O1, O2, P3, P4,
T5, and T6) lobes.

A CAR was applied to re-reference the data to mitigate
the confounding effect of the reference. According to a typical
approach of EEG resting-state analysis, the EEG signal recorded
from each channel was divided into epochs (windows), each of 2 s
duration (Kułak and Sobaniec, 2003). This was chosen according
to the natural properties of EEG, which are non-stationary in
general and, however, it is quasi-stationary within only a short
interval (Sakkalis, 2011). Thus, 2 s length appears to be the most
appropriate length for capturing such EEG characteristics.

Epochs contaminated with ocular artifacts, particularly
eye movement, were automatically identified using EEGLAB.
A certain threshold of 55 µV was set and applied on each window;
any epoch above the threshold was rejected and not used in
further analysis (Apicella et al., 2013). Independent component
analysis (ICA) was then applied, using the runICA algorithm
implemented in EEGLAB, to remove the remaining artifacts from
the signals, such as muscle artifacts and cardiac activity. Thus, the
EEG signals from the 12 channels were separated into their 12
constituent independent components (ICs), as the general rule
of ICA is to find the N ICs from the N linearly mixed signal
(input channel data). These ICs are then projected back to the
EEGs using the estimated separating matrix after eliminating
the artifact-related ICs according to Chaumon et al. (2015). The
algorithm of ICA was briefly described as follow:

The ICA decomposition finds an unmixing matrix (W) that
decomposes the input channel data (x) into a sum of temporally
independent and spatially fixed components, u = Wx. The rows
of this output data matrix, u, called the component activations,
are time courses of activation of the ICA components, and the
columns of the inverse matrix W−1 give the projection strengths
of the respective components onto the scalp sensors. The scalp
topographies of the components provide information about the
location of the sources (e.g., eye activity should project mainly
to frontal sites, etc.). The classification of these components as
artifact or EEG signal was performed using visual inspection
based on the scalp topographies of the component. The artifact-
free EEG data x

′

was fully reconstructed by multiplying of the
inverse of W with u

′

, where u
′

is the matrix of component
activation, u, with rows representing artefactual components set
to zero.

x
′

= W−1u
′

(1)

The remaining epochs after the rejecting process were slightly
varied between subjects. Since the infant who yields the lowest
number of epochs upon rejection process gives 30 epochs, the first
30 epochs of each infant were considered. Thus, for each infant, a
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total of 12 channels, each with 30 artifact-free of 2 s EEG epochs,
were used in the next stage of analysis.

Noise-Assisted Multivariate Empirical
Mode Decomposition
Noise-assisted multivariate empirical mode decomposition is a
data-driven time-frequency analysis capable to deal with non-
stationary data (ur Rehman and Mandic, 2011). It was employed
in this study to decompose the EEG signals into finite oscillation
scales at the time domain. The proposed set of features was then
calculated from each scale to characterize the time-frequency
integration of information.

Noise-assisted multivariate empirical mode decomposition
is a modified extension of empirical mode decomposition
(EMD), figuring out its mode-alignment and mode-mixing
problems (Huang et al., 1998). The mode-alignment refers to
the issue of getting non-identical numbers of components when
decomposing a multivariate signal, while the mode-mixing points
out the situation of having different frequency ranges in a single
scale. NA-MEMD solves the mode-mixing problem by adding
a subspace containing multivariate independent white noise
to the original multivariate signal, and then it processes the
resulting composite signal using the multivariant empirical mode
decomposition (MEMD) algorithm, which was proposed earlier
to settle the mode-alignment (ur Rehman et al., 2010).

Unlike other traditional decomposing methods such as short-
time Fourier (Gabor, 1946), wavelet transform (Mallat, 1989)
and band-pass filters, EMD-based methods do not require
a predefined basis of the signals. Instead, they decompose
the time-series adaptively, through the Sifting process, from
high to low-frequency components known as intrinsic mode
functions (IMFs).

Among the available decomposition methods, the well-
established wavelet analysis is known as one of the best non-
stationary data analysis methods (Huang et al., 1998). However,
the predefined basis of, for example, the Morlet wavelet (the
most commonly used wavelet in general and in EEG analysis)
leads to different issues (Sweeney-Reed and Nasuto, 2007). First,
one cannot guarantee that the predetermined window size of the
wavelet will coincide with a stationary period. Good localisation
of the low-frequency oscillations needs a long-time window
to identify them and thus a longer period of time for which
signal should be stationary. On the other hand, selecting a
small window may lead to missing potential biomarkers in
the lower frequency ranges. Such a situation is known as the
uncertainty principle, produced from the trade-off between
frequency and time. Second, the prior selection of wavelet
parameters cannot be expected to fit all the non-linear and non-
stationary phenomena. Thus, it could induce spurious harmonic
components to spectrally represent the signals, causing energy
spreading and leading to faulty results.

Empirical mode decomposition-based methods satisfy the
necessary conditions for the decomposition to represent a
non-linear and non-stationary time series, particularly locality
and adaptivity conditions. The locality is most crucial for
non-stationarity, in which all events have to be identified by

the time of their occurrences. Thus, both the amplitude (or
energy) and the frequency are required to be functions of time
(Huang et al., 1998). The adaptivity is important for both non-
linear and non-stationary data in which the decomposition is
adapted to the local variations of the data and hence can fully
account for the underlying dynamics of the signals (Huang et al.,
1998). Different studies proved that the local and adaptive nature
of the decomposition using EMD-based methods is shown to
improve time and frequency precision compared to the Morlet
wavelet (Huang et al., 1998; Sweeney-Reed and Nasuto, 2007).
A comparative summary of the Morlet wavelet and EMD-based
methods is given in Table 1.

The procedure of the sifting process of the NA-MEMD
method starts by considering a sequence of n-dimensional
vectors {v(t)}Tt=1 = {v1(t), v2(t), v3(t), ....., vn(t)} that represents
a multivariate signal with n components (including the original
signals and the added noise), and a set of direction vectors
XQk = {xk1, x

k
2, x

k
3, ......, x

k
n} along the directions given by angles

Qk
= {Qk

1,Q
k
2, ...,Q

k
(n−1)} on an (n−1)-sphere. Then the MEMD

algorithm is applied as follows:

1) Choose a suitable set of points for sampling on a (n− 1)
sphere.

2) Calculate a projection, denoted by {PQk(t)}Tt = 1, of the
input signal {v(t)}Tt = 1along the direction vector XQk ,
for all k (the whole set of direction vectors), giving
{PQk(t)}Kk = 1as the set of projections.

3) Find the time instants tQk
j corresponding to the maxima of

the set of projected signals {PQk(t)}Kk = 1.
4) Interpolate [tQk

j , v
(
tQk
j

)
] to get the multivariate envelope

curves {eQk(t)}Kk = 1.
5) For a set of K direction vectors, the mean m(t) of the

envelope curves is calculated as m (t) = 1
K
∑K

k = 1 e
Qk(t).

6) Extract the detail ci (t) using ci (t) = v (t)−m (t) (i is
an order of IMF). If the detail ci (t) satisfies the IMF
conditions, apply the above procedure to v (t)− ci (t),
otherwise apply it to ci (t) .

The sifting process can be stopped when the detail ci (t) is
monotonic and no more IMFs can be extracted from it.

Weighted Phase-Lag Index-Based
Functional Brain Connectivity Analysis
Functional brain connectivity is an established technique for
getting insight into the process of information propagation and

TABLE 1 | A comparative summary of the Morlet wavelet and
EMD-based methods.

Morlet wavelet EMD-based methods

Basis a priori adaptive

Time-frequency precision uncertainty certainty

Non-linear no yes

Non-stationary yes yes

Theoretical base yes no (empirical)
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relationship strength amongst the brain areas–the underpinning
mechanism of the working principle of the brain. WPLI is
the non-linear measure of functional brain connectivity that
quantifies the phase synchronization between two signals (Vinck
et al., 2011). It is an extended version of the phase-lag index
(PLI) providing a better estimation of connectivity than PLI that
is hindered by the discontinuity issue (Stam et al., 2007). This
problem occurs in the case of small phase perturbation that could
turn the phase lags into leads and vice versa (Vinck et al., 2011).
WPLI was proposed to alleviate the effect of discontinuity of
the connectivity index, volume conduction and other sorts of
noise. It gives a reliable estimation of connectivity because it
considers the magnitudes of the imaginary component of the
cross-spectrum for weighting the phase differences between two
sources of signals. Accordingly, the phase differences at high-
risk for changing their true signs under the effect of small
noise perturbations are assigned to small weight equivalent to
the magnitude of the imaginary component. Subsequently, they
would have a lower impact in quantifying connectivity.

Mathematically, WPLI can be defined as:

WPLI =
|〈|I(X)|sign(I(X))〉|

〈|I(X)|〉
(2)

where I(X)| is the imaginary component of the cross-spectrum
X for two real-valued signals Z1 and Z2. The cross-spectrum X is
computed as:

X = Z1 ∗ Z∗2 (3)

where Z∗2 is a complex conjugate of Z2. The value of WPLI
ranges between 0 and 1, with 0 referring to no coupling
between two signals, whereas one indicates that the two
signals are perfectly coupled. WPLI quantified the functional
brain connectivity between all twelve channels. Since a phase
estimation would be better if it was extracted from a narrow
frequency range in each source, in this study, the NA-MEMD
method was adopted to decompose EEG signals into the
intrinsic components. Then, these components were subjected to
instantaneous phase estimation.

Fundamental Graph Theory
Graph theory is often applied to functional brain connectivity to
describe the network architecture (Vecchio et al., 2017). In the
graph theory concept, the brain can be represented as a network
where the nodes correspond to distinct brain regions or EEG
electrodes in EEG-based functional brain connectivity derivation,
and the edges representing the functional connections between
them. It can adequately characterize the network’s topology and
provide quantitative information about its properties. The graph-
theoretical parameters measure these topological properties
on both local and global scale. Local attributes identify the
topological features of the single node, while the global metrics
reveal the information flow over the whole network as well as
any specialized local processing. There is increasing evidence that
pathological conditions are viewed as a dynamic process affecting
the entire brain.

On this basis, neuroimaging results have suggested that
applying global attributes to quantify the global network

topological properties helps to reveal the disruptions in brain
network behind such pathological conditions. Accordingly, in
this study, the global parameters were chosen to investigate
the whole topological properties of an infant’s brain network.
Identifying an aberrant in this network characteristics is
expected to show the potential cognitive deficit emerging
later during the child’s lifespan. Mainly, transitivity, global
efficiency, radius, diameter, and characteristic path length were
used for this purpose. Global efficiency and characteristic
path length are the measures of network integration referring
to the ability of the network to transfer the information
concurrently over the network. Radius and diameter provide
insight into network eccentricity, while transitivity quantifies
the ability of the network to localize information processing
responsible for specific functions (Zhao et al., 2019). From
the information processing perspective, networks possessing
a high global efficiency and short characteristic path length
have high efficiency in global information transfer and a high
degree of network integration. On the other hand, networks
with either a low radius or diameter have a high ability
of information integration between brain areas. On another
hand, the networks possessing high transitivity have a high
local information transfer and these networks have a high
tendency to specialize processing certain functions within a
highly interconnected sub-network (Zhao et al., 2019). Even
though the modularity measures the strength of the tendency
of the network to divide into modules or groups, it is not
considered in this study. This is because it can explain the
capacity of a network of processing the local information rather
than providing a view about the global information transfer
within the network.

Those graph-theoretical parameters were computed using
brain connectivity toolbox (BCT) in a MATLAB environment
(Mika, 2010), and a brief description is illustrated in Table 2.

Complexity Analysis
Different studies in the literature report atypical EEG complexity
associated with various neurodevelopmental disorders
(Takahashi et al., 2010). Complexity analysis is utilized to
provide a non-linear estimation of the dynamical brain activity.
Entropy-based measures are commonly used to quantify time
series complexity (Takahashi et al., 2010). Brief descriptions
of the entropy measures employed in this study are given
in the following.

Sample Entropy
Sample entropy, proposed by Richman and Moorman, provides
an estimation of the irregularity or randomness of a time
series (Richman and Moorman, 2000). It is a modified version
of approximate entropy (ApEn) (Pincus, 1991), improving its
immunity to the noise in the data and sensitivity to the signal
length (Richman and Moorman, 2000). Both measures have been
widely employed for the analysis of physiological data. SampEn
measures the probability that two similar patterns for m point
remain similar at the next m+1 point within a tolerance r. Thus,
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TABLE 2 | List of graph parameters that used for characterizing a functional brain network.

Feature Description

Transitivity Reflecting connectivity of given region to its neighbors. The network with high transitivity implies it contains groups of regions that are
densely connected internally.

Global efficiency Representing the inverse of the shortest path between the regions. It measures the network efficiency in terms of how well the brain
network integrated and how easily the information transfer between distinct brain regions.

Radius Measuring the shape of network and it is the minimum of the network eccentricity.

Diameter Measuring the shape of the network and it is the maximum of network eccentricity.

Characteristic path length Representing the average distance between all pairs of brain regions in the network. It indicates how easily information transforms
across the network.

for the time series x(i) of length N, SampEn is given by:

SampEn (m, r,N) = − ln[Am(r)/Bm(r)], (4)

where

Am (r) = (N−m)−1
N−m∑
i = 1

Cm+1
i (r) , (5)

Bm (r) = (N−m)−1
N−m∑
i = 1

Cm
i (r) , (6)

Cm
i (r) = (N−m−1)−1Ci, i = 1, 2, ..,N−m, (7)

where m is the embedding dimension, Bm(r) is the likelihood
that Xm(i) and Xm(j) is matching for m points, while Am(r) is
the likelihood that Xm(i) and Xm(j) will match for m+1 points.
Ci

m(r) is the probability of a vector Xm(i) being similar to
Xm(j) within a tolerance r, Ci is the number that the distance
two vectors X(i) and X(j) is smaller than r, and a vector
Xm (i) (1 ≤ i ≤ N −m+ 1) reconstituted of this series, and
is given by: Xm (i) = {x (i) , x (i+ 1) , ..., x(i+m− 1)} . For
optimal estimation of SampEn, some studies have recommended
the embedding dimension m = 2 or 3, and the tolerance r = 0.1–
0.25 of the standard deviation of the signal (Bruhn et al., 2000;
Tudor et al., 2005). In this investigation, different parameter
settings in these recommended ranges have been explored to
check how robust the SampEn measures against these small
changes in parameters.

Permutation Entropy
Bandt and Pompe (2002) developed PEn to determine the
occurrence of ordinal patterns in time series data. The PEn is a
robust and straightforward measure that quantifies the regularity
of a time series by comparing neighboring values to estimate the
intrinsic structures in EEG data (Bandt and Pompe, 2002). Thus,
for the time series x(i) of lengthN, the normalized PEn is given by:

PEn = −
∑n

i = 1 pilogpi
ln(n)

(8)

where n is the order pattern, and pi is the probability of the ith
permutation occurring. The smaller the value of PEn, the more
regular the time series is.

The appropriate selection of embedding parameters, including
dimension m and time delay L, is necessary for proper PEn
estimation. For this purpose, Olofsen et al. (2008) suggested the

values of m = 3, and L = 1–2. In this exploration, the PEn
was computed using these recommended values to investigate
whether the small changes in these parameters could affect
the PEn estimation.

Spectral Entropy
Spectral entropy is another common EEG complexity measure
that computes the randomness of the power spectrum of a signal
(Li et al., 2008). Thus, unlike SampEn and PEn, SpEn measures
the signal irregularity in the frequency domain. For this end,
SpEn applies the Shannon entropy concept to the normalized
power spectral density (PSD) of the signal such that,

SpEn = −
N∑

i = 1

pilog pi, (9)

where pi is the probability distribution of PSD at each frequency
points and N is the total frequency points. SpEn was calculated
using the frequency range 0.5–45 Hz. The frequency range
was selected to focus on the range of interest with respect to
traditional brain waves.

Spectral entropy is an efficient method to reflect the degree
of skewness in the frequency distribution. A high value of
SpEn indicates a flat, uniform spectrum with a broad spectral
content, and a low value of SpEn describes a spectrum
with all the power condensed into a single frequency point
(Cui et al., 2015).

Features Extraction Procedure
The features extraction stage in the proposed analysis was divided
into two parts. The first phase focused on decomposing EEG
signals into their intrinsic components by using NA-MEMD.
The second part involved extracting the two fundamentally
different classes of features, namely graph-theoretical attributes
and entropies features.

Step 1: Noise-Assisted Multivariate Empirical Mode
Decomposition Analysis

1. A multivariate signal was constructed by combining the
data points from all infants for each channel separately.
The idea of combining signals from different sources
decomposing them using NA-MEMD to acquire aligned
IMFs was previously conducted in the literature (Zahra
et al., 2010). This yielded twelve different matrices (i.e., one
matrix per channel); each of them has the dimensionality of
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Ns × Nt × Ne,where Ns denotes the number of subjects
(which is 20), Nt indicates the number of temporal samples
(which is 1024), and Ne is the number of epochs of each
subject (which is 30).

2. Before decomposing the twelve multivariate signals
by the NA-MEMD algorithm, each matrix was set up
in a two-dimensional time series of the dimensions
[Ns × Ne] × Nt . Therefore, the alignment among all
IMFs across infants and over epochs was ascertained.
A similar approach has been used previously by
Hu and Liang (2011). Figure 3 illustrates the
decomposition process.

3. The resulting IMFs components after the decomposition
process were slightly varied between channels. Since the
EEG channel that yields the lowest number of IMFs upon
decomposition gives ten modes, the first ten IMFs of each
channel were considered for feature extraction. Figure 4
depicts the sample of extracted IMFs from a channel
that gave ten IMFs.

4. The frequencies of each IMF were then acquired by
fast Fourier transform (FFT), and it was found that
IMF1 to IMF3 are noisy and contain different oscillatory
components. Thus, these modes were excluded from
further analysis. IMF10 was also ignored as it represented
the residue mode of some EEG channels, which might
give unreal information about the signal. The scales of
the remaining IMFs were localized approximately around
the following ranges: IMF4 (15–26 Hz), IMF5 (10–13 Hz),
IMF6 (6–8 Hz), IMF7 (3–4 Hz), IMF8 (1.5–3 Hz), and

IMF9 (0.5–1.5 Hz). Compared to five standard brain waves
(Sanei and Chambers, 2007): IMF4 to IMF6 belong to beta,
alpha, and theta bands, respectively; IMF7 to IMF9 all
correspond to the delta band.

5. After selecting the IMFs, a dataset of the following
dimensionality for each subject was achieved:
Nc × Ni × Ne × Nt ,where Nc is the number of channels
which is 12, Ni is the selected number of IMFs which is
6 (IMF4–IMF9), Ne is the number of epochs which is 30,
and Nt is the number of the samples which is 1024.

Step 2: Feature Extraction
Weighted Phase-Lag Index
Before extracting the five graph-theoretical features, each
IMF frequency scale alignment among channels was checked.
Following that, the WPLI connectivity matrix was calculated
between twelve channels for each IMF and each epoch. The
generating WPLI matrices were averaged over the epochs,
yielding one averaged connectivity matrix for each IMF.
Then, each connectivity matrix was transformed into a
complex connectivity network, and the graph-theoretical
parameters were estimated to quantify its properties. The
extracted graph parameters were then used to train and
test the models.

Entropy Features
For each channel and each IMF, the proposed entropy measures
were computed for each epoch. The calculated features were
then averaged among the epochs to get one SampEn, one PEn,

FIGURE 3 | Proposed simultaneous decomposition method of the EEG signals. The data points of all infants (including all epochs) are stacked on top of each other.
This process is done for each channel separately, ending up with 12 multivariate signals; each of them has the dimensionality of [Ns × Ne] × Nt, where Ns

denotes the number of infants (which is 20), Ne is the number of epochs of each infant (which is 30), and Nt indicates the number of temporal samples (which is
1024). The NA-MEMD is then applied for each of the 12 multivariate signals separately.
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FIGURE 4 | An example of a set of IMFs resulted from the NA-MEMD decomposition of the 2 s EEG signal. IMF1 to IMF3 considered noisy, and IMF10 represented
the residue mode. IMF4 to IMF6 were localized in the beta, alpha, and theta bands, respectively, while IMF7 to IMF9 belonged to the delta band.

and one SpEn for each IMF signal. Thus, for each subject and
each IMF signal, we ended up with 36 features (3 features × 12
channels). These features were then used to train and test the
regression models.

Statistical Analysis: Correlation
Coefficient
Correlation analysis was used to statistically measure the strength
of the relationship between two random variables. There are
several types of correlation methods, such as Pearson, Spearman,
and Kendall. Pearson’s correlation coefficient was adopted herein
to evaluate whether there is a linear relationship between the
proposed qEEG features and the cognitive scores. Although it is
sensitive to outliers, Pearson’s coefficient is chosen as it is the most
widely used technique to measure the linear relationship between
two variables, easy to compute and simple to interpret.

Pearson correlation coefficient, denoted by r, was adopted
herein for this purpose. Theoretically, the value of r falls in
the interval between +1 and −1, with 0 indicates no linear
relationship,+1 refers to a perfect positive correlation, i.e., when
one variable increases, the other increases too, while−1 indicates
a perfect negative correlation, i.e., when one variable increases,
the other decreases.

The significant test was conducted through the hypothesis
test to evaluate the significance of the correlation coefficient.
P-value assesses the null hypothesis that stated that there is no
relationship between qEEG features and cognitive scores. The
null hypothesis is successfully rejected when the p-value is below
the significant level, which usually equals 0.05, indicating that the
correlation coefficient result is statistically significant.

P-value is generally calculated based on t-statistic using the
following equation:

t =
r ×
√
n−2

√
1−r2

, (10)

where r is the correlation coefficient, and n is the size of the
dataset. Then the p-value is calculated from the t-distribution.

The correlation analysis was performed using MATLAB’s
statistics toolbox.

Thus, for the graph-theoretical of WPLI, the correlation
coefficient was utilized to determine the correlation strength
between the five graph-theoretical features and the cognitive
scores in each IMF. The p-value was also calculated to identify
the high influence predictors (qEEG features).

For entropy analysis, the correlation coefficient was performed
to determine the linear dependency between each entropy feature
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(SampEn, PEn, and SpEn) computed from each channel and the
cognitive scores. The p-value was also computed to evaluate the
statistically significant predictors. This process was repeated for
each IMF separately.

Regression Model
A regression model was used to predict the later cognitive scores
of the infants. The model tries to fit the relationship between the
two proposed sets of EEG features (graph metrics and entropies)
and the cognitive scores with the least possible error. The tree
ensemble regression models were adopted in this study in order
to reduce bias and variance in the imbalanced distribution of
our dataset–as the distribution of the cognitive scores ranged
between 74 and 145, such that most of the scores clustered
above 95.

The basic idea of tree ensemble regression is using several
combined models to obtain improved predictive performance
(Moniz et al., 2017). Boosted trees regression and bagged trees
regression were the two ensembles’ models adopted in this study.
Bagged tree regression randomly sampled the original dataset
into different subsets with replacement. Several homogeneous
models run independently on each subset in parallel, and the final
predictive performance is obtained by combining the estimations
of several models. In contrast, the boosted tree is a sequential
ensemble method in which several homogenous models train
adaptively. Each example in the dataset is assigned with weight.
The examples that are incorrectly classified carry more weight
than the examples that are correctly classified. Thus, the successor
classifier focuses more on the example with the high weight
that the predecessor classifier failed to classify correctly. A more
detailed description of these models is available in Moniz et al.
(2017) and MathWorks (2021).

Tree ensembles regression models were trained with both
proposed sets of features separately. Regression learner apps
within the statistics and machine learning toolbox in MATLAB
was used to train the selected models.

Leave-one-subject-out cross-validation (LOSOCV) was used
to assess the model performance in order to avoid the biased
estimation of the prediction performance. This method works by
splitting the dataset into two parts: one used for training and the
other for testing. The training set containsN-1 individuals (where
N = 20), and the remaining individual is turned into the testing
set. Each individual is left out once in an iterative framework (N
iterations), and then model statistics are evaluated by averaging
the N independent regression outcomes.

The performance of regression models was evaluated by the
traditional measures known as root mean square error (RMSE),
mean absolute error (MAE), and R-squared. RMSE is the most
frequently used metric. It refers to the square root of the average
squared difference between the predicted score resulting from
the regression model and the actual one. Lower RMSE indicates
the better model’s performance. MAE is the absolute difference
between the predicted value and the target one, and as in the case
of RMSE, the lowest value refers to the best model’s performance.
R-squared is another metric used to evaluate the performance of
the regression model. It determines how well the model predicts
the specific score by comparing the learned model with the
constant baseline model. The constant baseline model is built by
taking the mean of training data and drawing the line on the
mean. The value of R-squared is usually less than or equal to 1
where the higher value refers to a better fit between predicted
and actual values.

RESULTS

Weighted Phase-Lag Index-Based
Functional Brain Connectivity Results
Table 3 shows the p-value results of the correlation analyses
between graph-theoretical features and cognitive scores in each
IMF component. In Table 3, features with the smallest p-value
are shown with boldface, indicating the statistically significant
correlation with the cognitive scores. These features were radius
calculated from IMF7 (3–4 Hz) and transitivity, global efficiency,
and characteristic path length computed from IMF8 (1.5–
3 Hz). Correlation plots in Figure 5 reveal that the radius
and characteristic path length exhibit a significant negative
correlation (r = −0.46, p = 0.04) and (r = −0.45, p = 0.04),
respectively. Transitivity and global efficiency show a high
positive correlation (r = 0.48, p = 0.03) and (r = 0.49, p = 0.02),
respectively.

Considering that these features have highly significant
correlation coefficients, they could greatly influence
predicting the cognitive outcome. Thus, these four features
were selected to be used in training and testing the
regression models.

LOOCV was used to evaluate the models’ performance
to prevent potential bias from occurring due to overfitting.
Table 4 depicts the performance of tree ensemble regression
models of the four selected features and their combinations.

TABLE 3 | P-values of the correlation analysis of the graph-theoretical features.

IMF4 (15–26 Hz) IMF5 (10–13 Hz) IMF6 (6–8 Hz) IMF7 (3–4 Hz) IMF8 (1.5–3 Hz) IMF9 (0.5–1.5 Hz)

Transitivity 0.12 0.93 0.33 0.62 0.03 0.99

Global efficiency 0.11 0.96 0.28 0.66 0.02 0.99

Radius 0.65 0.67 0.89 0.04 0.16 0.21

Diameter 0.26 0.63 0.4 0.76 0.76 0.9

Characteristic path length 0.18 0.87 0.43 0.54 0.04 0.9

Significant features are shown in boldface.
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FIGURE 5 | Scatter plots representing the correlation between the graph-theoretical features calculated from each IMF and cognitive scores.

It is apparent from Table 4 that the best performance–in
terms of lowest RMSE, MSA, MAE, and highest R-squared–was
achieved using radius network property from IMF7 (3–4 Hz).
The visualization corresponding to this result represented by
the difference between predicted scores and the actual scores is

shown in Figure 6. The error rate between the predicted values
and actual ones of majorities of the individual was acceptable as
depicted in Figure 6. Other features such as transitivity, global
efficiency and characteristic path length calculated from IMF8
(1.5–3 Hz) also give comparable results. This result implies that
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TABLE 4 | Performance of the tree ensembles regression models using the significant graph-theoretical features.

Scale Feature RMSE MAE R-squared Regression algorithm

IMF7 (3–4 Hz) Radius 16.775 12.7 0.24 Bagged trees

18.945 14.2 0.03 Boosted trees

IMF8 (1.5–3 Hz) Transitivity 17.317 13.64 0.19 Bagged trees

17.802 13.86 0.15 Boosted trees

Global efficiency 17.26 13.64 0.2 Bagged trees

17.71 13.82 0.15 Boosted trees

Characteristic path length 16.98 13.28 0.22 Bagged trees

17.78 13.85 0.15 Boosted trees

Combination of transitivity, global efficiency, and characteristic path length 17.11 13.23 0.21 Bagged trees

17.842 13.897 0.14 Boosted trees

The best model performance is shown in boldface.

FIGURE 6 | Response plot of predicted cognitive scores versus the actual one. Regression based prediction using radius graph feature to predict the cognitive
scores.

the network attributes–mainly radius–could provide valuable
information regarding cognitive outcomes.

Entropy Analysis Results
Correlation analyses were carried out between the entropy
measures, computed from each IMF and each channel, and
the cognitive scores of all participants. Different embedding
dimensions m, tolerances r, and time delay L were explored
for SampEn and PEn estimations as suggested by Bruhn et al.
(2000); Tudor et al. (2005); Olofsen et al. (2008). The correlation
results indicate the robustness of SampEn and PEn with the
small changes of the embedding parameters. Table 5 presents
the p-values of the correlation analyses using m = 3, r = 1, and
L = 1 for SampEn computation, and m = 3 and L = 1 for PEn

calculation. The detailed correlation values of other embedding
parameters are presented in the Supplementary Table.

The results presented in Table 5 show that the significant
p-values generally realize in the IMF9 (0.5–1.5 Hz) component of
the left cerebral hemisphere. Particularly, the PEn calculated from
channel C3 and SpEn computed from channels T3 and T5 exhibit
significant correlations with the vector of the cognitive scores.

According to the correlation plots in Figure 7, the PEn feature
of channel C3 and SpEn feature of channel T3 are shown to
exhibit a significant negative correlation of (r = −0.53, p = 0.01)
and (r =−0.43, p = 0.05), respectively. In addition, a high positive
correlation is demonstrated by the SpEn of channel T5 (r = 0.48,
p = 0.03). Thus, these features were selected to be used in the
regression stage.
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TABLE 5 | P-values of the correlation analysis of the complexity features.

Channel
index

IMF4
(15–

26 Hz)

IMF5
(10–

13 Hz)

IMF6
(6–8 Hz)

IMF7
(3–4 Hz)

IMF8
(1.5–
3 Hz)

IMF9
(0.5–

1.5 Hz)

SampEn C3 0.79 0.97 0.95 0.56 0.51 0.19

F3 0.42 0.86 0.77 0.28 0.40 0.66

F7 0.86 0.41 0.95 0.99 0.83 0.50

Fz 0.38 0.61 0.07 0.13 0.71 0.27

O1 0.61 0.45 0.41 0.93 0.32 0.43

O2 0.27 0.52 0.97 0.50 0.07 0.81

P3 0.33 0.75 0.33 0.68 0.42 0.71

P4 0.33 0.92 0.68 0.46 0.86 0.18

T3 0.59 0.42 0.82 0.18 0.98 0.84

T4 0.73 0.77 0.66 0.51 0.79 0.48

T5 0.28 0.65 0.60 0.74 0.68 0.27

T6 0.50 0.71 0.48 0.32 0.95 0.07

PEn C3 0.68 0.80 0.30 0.79 0.27 0.01

F3 0.32 0.52 0.69 0.24 0.54 0.27

F7 0.27 0.48 0.42 0.56 0.63 0.12

Fz 0.39 0.47 0.37 0.32 0.81 0.89

O1 0.49 0.39 0.09 0.98 0.85 0.95

O2 0.18 0.98 0.66 0.80 0.62 0.27

P3 0.31 0.84 0.86 0.26 0.76 0.73

P4 0.12 0.42 0.93 0.47 0.65 0.37

T3 0.49 0.33 0.51 0.15 0.40 0.28

T4 0.88 0.33 0.52 0.24 0.99 0.28

T5 0.13 0.92 0.44 0.56 0.61 0.24

T6 0.59 0.89 0.48 0.73 0.43 0.40

SpEn C3 0.49 0.49 0.99 0.42 0.44 0.74

F3 0.55 0.55 0.90 0.08 0.12 0.93

F7 0.83 0.83 0.10 0.99 0.21 0.55

Fz 0.56 0.56 0.30 0.42 0.85 0.69

O1 0.56 0.56 0.39 0.90 0.56 0.57

O2 0.96 0.96 0.94 0.16 0.14 0.85

P3 0.40 0.40 0.69 0.53 0.89 0.12

P4 0.72 0.72 0.57 0.69 0.55 0.47

T3 0.60 0.60 0.74 0.26 0.62 0.05

T4 0.65 0.65 0.78 0.88 0.24 0.73

T5 0.69 0.69 0.75 0.14 0.26 0.03

T6 0.78 0.78 0.68 0.96 0.73 0.11

Significant features are shown in boldface.

Table 6 illustrates the performance of LOSOCV when
the models were trained and tested on the combination
of the selected entropies. It can be noticed from the table
that the boosted tree regression model achieved the best
performance. Figure 8 gives the visualization corresponding
to this result. The figure reveals acceptable error rates, for
most individuals, between the predicted values and the
actual ones. This result indicates a reasonable prediction
value for the cognitive scores using PEn and SpEn extracted
from the IMF9 (0.5–1.5 Hz) component corresponding
to the delta band. Further, we can infer that a good
predictive value of the cognitive outcome is observed
from the deterioration of EEG complexity produced by the
left hemisphere.

DISCUSSION

The objective of the present investigation is to explore the
effectiveness of employing qEEG analysis in the early prediction
of cognitive outcome, assessed at 2 years of age following
neonatal HIE. The early phase of a child’s life is considered a
critical stage for cognition, motor, language and social-emotional
development owing to brain development and maturation
of cortical architecture that are most rapidly established in
this period (Ouyang et al., 2020). Early identification of the
infants who have the cognitive impairment could help to
provide a tailored intervention seeking to improve the outcome
by utilization of this property of the brain which is called
brain plasticity.

Two sets of features have been adopted for early identification
of high-risk infants to develop cognitive impairment at 2 years of
age, which were graph attributes of WPLI and complexity features
extracted from EEG signals of twenty infants with neonatal HIE
during their first week after birth.

The most significant challenge encountered in this study was
that the distribution of the dataset was biased, with most cognitive
scores clustered above 95, within 1 SD from the population mean.
Most of the efforts in the machine learning community have
been devoted to eliminating current challenges by designing an
algorithm that can deal with bias and variance in the dataset. Tree
ensembles regression, employed herein, is one of the efficient
algorithms developed to handle this problem. It is designed to
train multiple models and then combine their results to improve
the performance of the final model. Furthermore, the subjective
nature of the employed pre-processing techniques may also be
considered as some artifacts still need to be removed using visual
inspection. Hence, a fully automated process is of great interest to
avoid subjective biases.

To the best of our knowledge, this research constitutes the
first analysis on the impact of both proposed qEEG features
calculated in the NA-MEMD domain for predicting cognitive
outcome. Graph-theoretical metrics of WPLI were the first
class of features adopted in this study. Statistical analysis
shows a a significant correlation between the graph-theoretical
features and the cognitive scores in the delta band connectivity
corresponding to IMF7 (3–4 Hz) and IMF8 (1.5–3 Hz)
components using radius, characteristic path length, transitivity,
and global efficiency attributes. A strong negative relationship
between radius and cognitive profiles is observed, indicating that
the trend of the higher radius is correlated with poorer cognitive
outcomes. This result suggests that the weak connections in
brain networks (represented by increase in the radius) is
negatively related to cognitive performance, i.e., increase in
radius of the brain network is associated with poorer cognitive
development.

On the other hand, a negative correlation is revealed in
characteristic path length (a measure of network efficiency) with
cognitive scores, displaying that an increase in characteristic path
length is inversely associated with cognitive scores. This result
indicates that a less efficient brain network in terms of global
information transfer (measured by increase in characteristic path
length) is negatively correlated with the cognitive level, i.e.,
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FIGURE 7 | Scatter plots representing correlation between the significant entropy features and cognitive scores.

increase in characteristic path length conducive to a reduction in
the cognitive performance.

Moreover, the correlation analysis demonstrates a positive
relationship between transitivity and global efficiency, and
cognitive outcome, i.e., high transitivity and global efficiency,
yielding higher cognitive scores. These results indicate that
network efficiency in terms of information transfer between
different brain regions is positively associated with cognitive
outcome, i.e., increase in transitivity and global efficiency leads
to better cognitive outcomes.

To sum up, the global graph-theoretical metrics (except
diameter) appear promising to act as biomarkers for early
prediction of cognitive outcome. This finding is consistent with
existing studies other conditions. For example, the study by
Peters et al. (2013) showed study showed increased characteristic
path length and decreased global efficiency in brain networks of
children with Autistic Spectrum Disorder (ASD).

The second class of features employed in this study were
entropy measures, which are traditionally used to estimate
the degree of EEG complexity. The existing entropy measures
quantify the regularity of a time series represented on a single
scale (Takahashi et al., 2010), Multiscale entropy (Costa et al.,
2002) which measures the complexity considering different
scales inherent in the signal. Though powerful, the multiscale
entropy method is not well suited for studying non-linear

TABLE 6 | Performance of the tree ensemble regression models using the
significant entropies features computed from IMF9 (0.5–1.5 Hz).

Features RMSE MAE R-squared Regression algorithm

PEn (C3) 17.069 14.025 0.21 Bagged tree

16.856 14.151 0.23 Boosted tree

SpEn (T3) 17.993 15.116 0.13 Bagged tree

17.876 13.823 0.14 Boosted tree

SpEn (T5) 18.789 14.26 0.05 Bagged tree

19.957 15.058 0.07 Boosted tree

Combination of PEn
(C3), SpEn (T3) and (T5)

16.283 12.655 0.29 Bagged tree

14.271 12.067 0.45 Boosted tree

The best model performance is shown in boldface.

and non-stationary signals due to its linear extraction of
scale (Peng et al., 2009). Subband wavelet entropy (SWE)
(Al-Nashash et al., 2003) was also proposed to measure Shannon
entropy from multiscale components. However, SWE is based on
the wavelet method, which relies on predefined frequency ranges
for the decomposition process. In the present work, we addressed
these issues by computing the proposed entropies over different
signal scales/IMFs extracted by NA-MEMD, which decomposes
the signals adaptively and considering the non-linear and non-
stationary nature of EEGs (Hu and Liang, 2011; Looney et al.,
2015). The correlation analysis revealed a significant association
in the delta band component, corresponding to IMF9, between
entropies and the cognitive scores. Particularly, a significant
positive correlation is observed between the SpEn extracted
from the posterior brain area and the cognitive scores. This
correlation indicates that the lower SpEn in this region was
associated with a higher potential of cognitive impairments
and vice versa. This result follows the general assumption of
the physiological complexity reduction being related to various
pathological processes (Catarino et al., 2011; Chu et al., 2017).
A positive positive correlation between complexity measures and
several cognitive functions at multiple brain regions was reported
in different studies in older adults (Hu et al., 2016).

The analysis also demonstrates a negative correlation between
the Pen, SpEn computed from the central brain region and
the cognitive outcome. This result shows that the randomness
behavior of the brain is negatively related to the level of cognitive
function, i.e., an increase in the complexity of EEG signals
leads to a reduction in the cognitive performance. This finding
contradicts the general assumption of decreased complexity in
a damaged brain. Li et al. (2010) reported a similar increase in
the ApEn neurologically abnormal neonates with HIE or epilepsy
compared to normal term neonates. Sajedi et al. (2013) also
showed higher complexity in individuals with CP and reported
that the CP neuronal networks functions are more random than
in a normal brain. They indicated that this increase in complexity
might result from reduced coordination among the neuronal
regions in the disordered brain. This interpretation could be
traced back to the non-linear dynamical theory, where it is
known that non-linear coupled oscillations exhibit enhancement
of complexity by the emergence of a chaotic state while reducing
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FIGURE 8 | Response plot of predicted cognitive scores versus the actual one. Regression based prediction used the combination of the selected entropies features
to predict the cognitive scores.

the coupled strength for the state of complete synchronization
(Pikovsky et al., 2001). Thus, during decreasing coupled strength,
the synchronization reduces, and the complexity enhances.
Following this hypothesis, the decrease of entropy measures at
the central region could be explained by the changes in the
interactions of that brain area and other areas.

Nevertheless, the clinical significance of such inconsistent
results remains unclear. Still, the findings indicate that the
complexity measures of EEG could, at least, be useful in
identifying abnormal brain function.

The correlational analyses also suggest that cognitive
development of infants at the age of 2 years is associated
with EEG complexity of the left hemisphere. Although several
studies claimed that the right hemisphere is dominant in infants
(Chiron, 1997; Adibpour et al., 2018), Chiron (1997) reported
that the right hemisphere sustains the visuospatial abilities
while the left hemisphere dominance for language function.
Moreover, socio-cognitive function has also been linked by
different studies to the neurophysiological processes of the
left-brain. For example, there is ample evidence that relatively
higher left than right frontal activity is related to social behavior
(Harmon-Jones et al., 2010). Paulus et al. (2013) showed that
prosocial understanding is associated with relatively stronger
left frontal cortical activation in 2 years old infants. The study
by Kühn-Popp et al. (2016) supported the socio-cognitive
function of left-hemispheric brain maturation processes, which
proved to be the prominent independent predictor of social
communication abilities at 48 months.

Both proposed methods (WPLI and complexity analysis)
reveal correlations between neonatal EEG characteristics and
cognitive outcome in the delta band. This finding is consistent
with Suppiej et al. (2017), where the authors concluded that
the high value of the delta power spectral correlated with
poor outcomes in preterm infants during the first year of
age. Increased delta activity in EEG of children suffering from
learning disorders was also confirmed by Martínez-Briones et al.
(2020) and further support by Barttfeld et al. (2011) who reported
the difference in delta band coherence between children having
ASD and a control group. However, some studies have found
the alterations in theta band waves in infants is a predictive
biomarker for later cognitive impairment during the presenting
of a specific stimulus. These studies suggested change in theta
waves in infants when the subject tried to respond to an
external stimulus. Jones et al. (2020) reported that EEG theta
change in infancy during the presentation of dynamic movies of
people and objects is a predictive biomarker for later cognitive
deficits, particularly in high-risk populations. Braithwaite et al.
(2020) also found increases in the theta wave recorded at 6-
month-old infants at low-risk while presenting the non-social
video. These changes in theta significantly predicted non-verbal
cognitive ability measured at age 9-months. Begus et al. (2015)
found that increases in frontal theta oscillations during object
exploration correlated with subsequent recognition of that object
in infants aged 11 months. The heterogeneity of the brain waves
that play essential roles in the cognitive development of the
infants can be attributed to the differences in the experimental
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conditions. While most studies that found correlations between
brain characteristics and cognitive functions in the delta band
used resting-state EEG, the research that reported associations
between EEG features and their corresponding cognitive profile
in the theta wave have employed task-related EEG analysis.

Two tree ensembles regression models were explored to
handle the bias distribution of our dataset. The significant graph-
theoretical features (transitivity, global efficiency, radius and
characteristic path length) and complexity features (SpEn and
PEn) calculated from IMF components corresponding to the
delta band were used to train and test the regression models.
The best performance has been observed using boosted tree
regression with a combination of Pen and SpEn features from
left-brain regions (root mean square error score (RMSE) = 14.27,
MAE = 12.07, and R-squared = 0.45). A comparable result was

also observed using bagged tree regression with radius as a feature
(RMSE = 16.78, MAE = 12.07, and R-squared = 0.24).

A key strength of this research was recognized when compared
with the state-of-the-art of qEEG studies, shown in Table 7. To
the best of our knowledge, our study is the first prospective
study to date performed in neonates (in the first week of birth)
investigating early non-linear qEEG characteristics (WPLI and
complexity measures) and their prognostic value for cognitive
outcome at 24 months of age. Furthermore, all studies existing
in literature have used the linear qEEG such as coherence
(Kühn-Popp et al., 2016), EEG continuity (West et al., 2005), and
spectral power (Suppiej et al., 2017; Cainelli et al., 2021), which
may not be optimal to capture the complex characteristics of the
EEG spectra. Non-linear methods adopted in this study provided
deep insight into the underlying brain functions and dynamics.

TABLE 7 | Comparison of the qEEG state-of-the-art methods employed for predicting cognitive outcomes.

Author Dataset Features Evaluation methods Outcome
assessment

Findings

Lloyd et al., 2021 57 preterm infants EEG grading Spearman’s correlation
coefficient

BSITD-III Moderate to large negative correlation
between EEG grade and Bayley-III
subscale

Suppiej et al., 2017 21 preterm infants Power spectral analysis Spearman’s correlation
coefficient

Griffiths Scale of Mental
Development

Negative correlation between the delta
spectral power and Griffiths scores
developmental quotients (r = −0.68,
p = 0.015).
Positive correlation between alpha and
beta power spectral and Griffiths
developmental quotients (r = 0.61,
p = 0.032).

Cainelli et al., 2021 26 preterm infants Power spectral analysis Bayesian correlation Wechsler Pre-school
and Primary Scale of
Intelligence III
(WPPSI-III) test

Significant association between
spectral frequency bands and visual
and auditory attention tests.

West et al., 2005 44 preterm infants EEG continuity Linear regression BSITD-II Significant correlation between mental
developmental indices and continuity
feature of EEG at different amplitude
setting: 10 and 25 µV thresholds
(R-squared = 0.19, P = 0.0032 and
R-squared = 0.10, p = 0.04,
respectively).

Kühn-Popp et al.,
2016

32 infants EEG coherence
measures

Linear regression Coding-scheme for
mental state terms

Significant correlation between left
hemisphere coherence and epistemic
language at 48 months (r = 0.59,
p = 0.003).
Regression analyses showed,
left-coherence scores are the most
important predictor of epistemic state
talk at 48 months

Current study 20 infants born with HIE • Graph-theoretical
features derived from
WPLI
• Entropy features

• Pearson linear
correlation coefficient
• Set of regression
models

BSITD-III Connectivity: significant correlation
between transitivity, global efficiency,
radius, and characteristic path length
and cognitive outcomes.
Reasonable regression performance
with radius feature: RMSE (16.775),
MAE (12.702), and R-square (0.24).
Complexity: significant correlation
between PEn and SpEn measured from
left regions of brain and cognitive
profile.
Good regression performance with
combination of PEn from C3 and SpEn
T3 and T5: RMSE (14.27), MAE (12.07),
and R-square (0.45).
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Several studies investigated the frequency activity underlying
EEG by spectrally analyzing the signal using methods that rely on
the predefined frequency of traditional brainwaves, as in Kühn-
Popp et al. (2016), Suppiej et al. (2017), and Cainelli et al. (2021).
Prior selection of frequency ranges may result in potentially
informative brain waves being missed, specifically in the case of
infants, due to the well-known variability between them and older
individuals in the neural oscillations of interest. Moreover, the
predefined basis may not be able to fit all the non-linear and
non-stationary phenomena (Huang et al., 1998). This constraint
has been settled in our proposed approach using the NA-MEMD
method, which decomposes the signals adaptively. Thus, with
this method, we ascertained that all meaningful brain dynamics
are included in the analysis, and no misleading energy-frequency
distribution will result from analyzing the non-stationary and
non-linear signals. Nevertheless, the advantages of the EMD-
based methods have a price of being empirically, not theoretically,
defined. In addition, the NA-MEMD method has a very high
computational complexity having a subspace of multivariate
independent white noise equal to the original multivariate signal.

In summary, this study provided a regression-based machine
learning framework to objectively predict cognitive outcome at
toddler age, and a good performance was achieved. We found
that the global network attributes and entropy features could
serve as early markers for cognitive development. Further, the
experimental results found a association between neonate’s left-
brain region and cognitive deficit emerging at 2 years. Due to the
limited dataset size, this study can only be considered a proof of
concept work. It is provided the initial proof of that employing
the qEEG features within regression-based machine learning
frameworks could capture the individual variability inherited in
infants’ developing brains. This study lays the groundwork for
future investigations into using these features as the potential
biomarkers for predicting cognitive development in a number of
populations who are at risk for long term cognitive impairment
or intellectual disability. This could assist in establishing tailored
intervention programmes at an early stage to improve outcomes.
Nevertheless, a further refinement of the proposed analysis with
larger sample sizes is required to validate the findings.

CONCLUSION

In this investigation, the analysis of qEEG successfully predicted
the cognitive outcome at 2 years of age in infants with
neonatal HIE. Complexity analysis (SampEn, PEn, and SpEn) and
functional brain connectivity (WPLI) measures were evaluated
by correlation analysis and regression-based machine learning
framework. Pearson linear correlation analysis showed a strong
correlation between graph-theoretical features of WPLI, PEn,

SpEn, and cognitive scores. The tree ensembles regression models
have achieved comparable performance in both methods, with
relative superiority of complexity measures using combination
between PEn and SpEn; RMSE (14.27), MAE (12.07), and
R-square (0.45). Therefore, the findings of this study have
provided insight into the possibility of using graph-theoretical
features and entropy measures derived from the delta band as
biomarkers for early prediction of cognitive development.
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