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In many experiments that investigate auditory and speech processing in the

brain using electroencephalography (EEG), the experimental paradigm is often

lengthy and tedious. Typically, the experimenter errs on the side of including

more data, more trials, and therefore conducting a longer task to ensure that

the data are robust and e�ects aremeasurable. Recent studies used naturalistic

stimuli to investigate the brain’s response to individual or a combination

of multiple speech features using system identification techniques, such as

multivariate temporal receptive field (mTRF) analyses. The neural data collected

from such experiments must be divided into a training set and a test set

to fit and validate the mTRF weights. While a good strategy is clearly to

collect as much data as is feasible, it is unclear how much data are needed

to achieve stable results. Furthermore, it is unclear whether the specific

stimulus used for mTRF fitting and the choice of feature representation a�ects

how much data would be required for robust and generalizable results.

Here, we used previously collected EEG data from our lab using sentence

stimuli and movie stimuli as well as EEG data from an open-source dataset

using audiobook stimuli to better understand how much data needs to be

collected for naturalistic speech experimentsmeasuring acoustic and phonetic

tuning. We found that the EEG receptive field structure tested here stabilizes

after collecting a training dataset of approximately 200 s of TIMIT sentences,

around 600 s of movie trailers training set data, and approximately 460 s of

audiobook training set data. Thus, we provide suggestions on the minimum

amount of data that would be necessary for fitting mTRFs from naturalistic

listening data. Our findings are motivated by highly practical concerns when

working with children, patient populations, or others who may not tolerate

long study sessions. These findings will aid future researchers who wish to

study naturalistic speech processing in healthy and clinical populations while

minimizing participant fatigue and retaining signal quality.
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1. Introduction

The use of naturalistic stimuli has become increasingly

popular when investigating speech tracking in the brain using

EEG. A benefit of using naturalistic stimuli is that it is possible

to fit linear regression models to map the relationship between

specific speech features and the brain data. These models are

commonly known as an “encoding model” or “forward model”

(Aertsen and Johannesma, 1981; Wu et al., 2006; Crosse et al.,

2016; Holdgraf et al., 2017). Such models allow researchers to

estimate a multivariate temporal receptive field [mTRF, also

called multivariate temporal response function (Crosse et al.,

2016)], which describes the brain’s time varying response to

combinations of acoustic or linguistic features of interest. To

fit these models, researchers have used audiobooks, speech

corpora such as the Texas Instruments Massachusetts Institute

of Technology (TIMIT) (Garofolo et al., 1993), and children’s

movie trailers (Desai et al., 2021) to predict neural responses to

the acoustic envelope, pitch, spectrogram, phonological features,

and semantic features (Mesgarani et al., 2014; Di Liberto et al.,

2015; Khalighinejad et al., 2017; Tang et al., 2017; Brodbeck

et al., 2018; Hamilton et al., 2018; Teoh et al., 2019; Desai et al.,

2021).

A major gap in the current literature is that the amount of

training and testing data needed for building robust encoding

models is unknown. Especially in cases where data collection

time may be limited or cut short, experimenters should

understand whether and how results will differ based on the

amount of available data. On the one hand, natural stimulus

paradigms differ from traditional event related potential (ERP)

analyses in that they do not require presentation of the

same stimulus many hundreds of times, but rather, rely on

repetition of acoustic or linguistic elements within the natural

stimulus itself (Luck, 2014; Crosse et al., 2016). Because of

this fundamental difference in the overall design of such

experiments, it can be unintuitive to understand the relative

data requirements for a study using forward modeling as

compared to an ERP study. Recent papers discuss the benefits

and methodology of using linear regression modeling to build

temporal receptive fields (TRFs) models and linear decoders,

in which a common suggestion is to use as much data as

possible (Crosse et al., 2016; Holdgraf et al., 2017). While this

may be true to a certain extent, the authors point out that

collecting human brain data is time restrictive. Conducting

pilot studies can present experimenters with a ballpark idea

to assess the optimal number of trials needed. From this,

one can calculate a learning curve to identify when adding

more training data no longer improves model performance

(Holdgraf et al., 2017). Ultimately, one could stop collecting

training data once the model is “stable” (Willmore and Smyth,

2003).

Crosse et al. (2016) briefly describes collecting aminimum of

10–20min of data for each condition, reiterating that collecting

as much data as possible is ideal. However, a caveat with human

data collection is participant fatigue, particularly when working

with clinical populations or children. Although not a major

focus here, working with intracranial EEG in patients with

epilepsy can be extremely time-limited, so planning of tasks

and understanding how much data is required for each task is

paramount (Miller et al., 2021). If, for example, a researcher

can acquire 10min of data (but no more) for a given task, are

the data usable? Additionally, the amount of data required may

depend on the feature representation used in the regression

model–how many features, how many samples of each feature

are available, covariance/autocorrelation within the features, and

more. Fitting a model using multivariate regression models may

require more data for features that are sparse (Crosse et al.,

2016; Mesik and Wojtczak, 2022). While several suggestions

exist, such as splitting up the trials into multiple recording

sessions, this still does not address the question of the minimal

amount of training data required when building an experiment

for pediatric or clinical populations. Collecting as much data as

when possible is the most ideal and preferable. However, there

may be situations when researchers are only able to collect a

minimal amount of data. Here, we provide methods to assess

whether such data may be usable and whether receptive field

results are stable.

In this paper, we use data from two previously reported

EEG experiments (Broderick et al., 2018; Desai et al., 2021) and

provide some suggestions on approximately how much data are

needed to fit robust receptive field models for different stimuli

and different feature sets. In our prior work (Desai et al., 2021),

we fit encoding models on individual auditory features (e.g.,

phonological features, the acoustic envelope, and pitch) and a

combination of these features using two contrasting datasets:

TIMIT and movie trailers. While TIMIT and movie trailers are

not widely used stimuli for typical natural speech experience

for EEG, audiobooks have shown to generate robust encoding

model performance. Thus, in addition to previously collected

natural speech stimuli from our laboratory, we also incorporated

an open EEG dataset from a different study to provide more

insight about generalizability to other datasets (Broderick et al.,

2018). Here, we provide suggestions in assessing the amount

of training data needed if one were to use a single feature

representation (such as phonological features or the acoustic

envelope or pitch) for specific stimuli vs. using a combination

of all features (phonological features plus the acoustic envelope

plus pitch). As a part of our broader goal, identifying the

amount of training data for natural speech experiments would

be immensely beneficial in minimizing participant fatigue for

both healthy participants (those without hearing impairments

or neurological issues), clinical populations, and children.
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2. Materials and methods

We incorporated EEG data from our own previous work

(Desai et al., 2021) as well as the work of Broderick et al.

(2018). For the first dataset, the data, experimental paradigm,

and participants are the same as the methods described

in Desai et al. (2021). Data collection and preprocessing

are described in detail in the aforementioned paper. All

procedures were approved by The University of Texas

at Austin Institutional Review Board. All participants

provided their written informed consent to participate in

this study.

In brief, 16 participants (8M, age 20–35) listened to

two sets of stimuli while scalp EEG was acquired. These

stimuli included sentences without noise, taken from the

Texas Instruments Massachusetts Institute of Technology

(TIMIT) corpus (Garofolo et al., 1993) and children’s

movie trailers, which were hand transcribed for word and

phoneme level boundaries by undergraduate research assistants

in the laboratory (Desai et al., 2021). We collected 64-

channel high density scalp EEG data (Brainvision actiChamp

System) at a sampling rate of 25 kHz. The stimuli were

delivered through insert ear buds (3M, E-A-Rtone Gold 10�,

Minnesota, USA) and were recorded through a StimTrak

system (BrainProducts), which directly synchronizes with

the recorded EEG signal in a separate audio channel.

Vertical and horizontal electrooculography electrodes

were placed to capture any ocular artifact from blinks and

saccades, respectively.

For the second dataset, we included freely available

natural speech listening EEG data from Broderick et al.

(2018) (available at https://datadryad.org/stash/dataset/10.5061/

dryad.070jc, “Natural Speech” dataset). In that study, 19

native English-speaking participants (13M, age 19–38 years)

listened to ∼60min of the audiobook “The Old Man and

the Sea” while 128-channel scalp EEG was recorded. For

all 19 subjects, preprocessing was similar to the steps

conducted from Desai et al. (2021). Neural data were

notch filtered at 50Hz and then filtered between 1 and

15Hz. Data segments were manually inspected for motion

artifact and the respective time segments were subsequently

rejection. ICA was finally conducted to identify and remove

ocular artifacts.

2.1. Stimuli

A total of 380 TIMIT sentences were presented to all

of our EEG participants. Out of the 380 sentences, 10 of

the sentences were repeated 10 times and the average neural

response of these 10 sentences was used as the test set. The

remaining 370 TIMIT sentences were used in the training

set. A total of 23 movie trailers (Supplementary Figure 1) were

presented. In all except three subjects, two of the trailers

that were heard twice (Inside Out and Paddington 2) were

used as the test set. In the case where one of the test set

stimuli was not heard for three of the subjects, the test set

consisted of just one of the trailers heard (either Inside Out or

Paddington 2).

In addition to the TIMIT and movie trailer EEG data we

collected in our laboratory, we included an analysis of a separate

128-channel EEG dataset from Broderick et al. (2018). In this

study, the authors presented audiobooks to EEG subjects and

fit linear encoding models to understand the neural tracking of

semantic information and how such higher-order information

relates to lower-level feature representations.

2.2. EEG preprocessing

For the TIMIT and movie trailer data, EEG data were

downsampled to 128Hz and bandpass filtered between 1 and

15Hz using a zero-phase, non-causal bandpass finite impulse

response filter (Hamming window, 0.0194; passband ripple with

53 dB stopband attenuation, −6 dB falloff). Data were notch

filtered at 60Hz and manual artifact rejection was performed to

remove any non-biological artifacts which may have occurred

during recording (e.g., movement, electromyography). Ocular

artifacts were removed using independent component analysis

(ICA) and correcting for components with clear blink or

saccade-like topography. Audio stimuli were synchronized

with the EEG data using a customized match filter script

(Turin, 1960) in which the audio signal was convolved with

the stimuli presented to detect the onset and offset of each

stimulus. Aligned neural responses for each of the 64 scalp

electrodes and stimulus matrices with acoustic envelope, pitch,

and phonological features were used as inputs to the model.

We included 14 phonological features that encompassed both

place and manner of articulation features (sonorant, obstruent,

voiced, back, front, low, high, dorsal, coronal, labial, syllabic,

plosive, fricative, nasal) and have been used in prior work

(Mesgarani et al., 2014; Hamilton et al., 2018; Desai et al.,

2021). The onset of each of these features was coded as a binary

stimulus matrix. The acoustic envelope of each speech stimulus

was extracted using the Hilbert transform followed by a lowpass

filter (3rd order Butterworth filter, cut off frequency 25Hz). The

pitch was calculated as the fundamental frequency (f0) of each

stimulus using the PraatIO package in python (Jadoul et al.,

2018).

For the audiobook data, preprocessing was the same as

the methods described above for EEG data collected in our

laboratory. To complement the lower-level acoustic feature

encoding described in the analysis section of this manuscript,

we used the acoustic envelope information stored in the dataset

alongside the raw EEG data.
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2.3. Analysis

As in prior work, we fit encoding models using a linear

regression approach, which we refer to as a multivariate

temporal receptive function (mTRF) (Theunissen et al., 2001;

Mesgarani et al., 2014; Hamilton et al., 2018; Desai et al., 2021).

The fundamental goal is to quantify the relationship between

the auditory feature (input) and the predicted EEG response

at a specific time for a given feature (output). We fit separate

models for all 64 EEG channels. This allowed us to evaluate how

the brain tracks specific speech features while investigating how

much training data was needed to achieve maximal prediction

performance from the linear model. The equation for our

encoding model is as follows:

EEG (t, n) =
∑

f

∑

τ

w
(

f , τ , n
)

s(f , t−τ )+ ε (t, n)

EEG (t,n) represents the measured bandpass filtered EEG at

time t for electrode n, w
(

f , τ , n
)

is a matrix of fitted weights

for each feature f at time delay τ , and s(f , t − τ ) represents the

stimulus features at each time delay relative to the neural activity,

and ε (t, n) is the residual error. For all models, we fit mTRFs

using time delays from 0 to 600ms, based on speech encoding

models from previous work (Hamilton et al., 2018; Desai et al.,

2021). We performed these analyses using customized scripts

in Python that implemented cross-validated ridge regression.

The weights (w) were calculated by first choosing a random

subset of the training data, then fitting an encoding model on

that subset of data. The size of the data subset started with 10

random sentences for TIMIT, or 10 2-s chunks of movie trailers

or audiobook stimuli. This chunk size was chosen as it is similar

to the average TIMIT sentence length. The test set for the movie

trailers was the average neural response of two movie trailers

each played twice. In contrast, for the audiobook data we used

80% of the data as the training set and 20% of the data as the

test set. The performance of the model was tested using a held-

out validation set, which was kept the same regardless of training

set size. After fitting the models on a subset of data, the size of

the training set was gradually increased (by 1 random TIMIT

sentence at a time or a random 2-s chunk of movie trailers or

a random 2-s chunk of audiobooks). For each training set size,

we used a 10-fold bootstrapping procedure so that the particular

2-s chunks included in the training set were sampled randomly

from the original training dataset. For all regression analyses, the

ridge regularization parameters (alphas) on models previously

fit on all data for the stimulus type (TIMIT or movie trailers)

and the specific feature representations on a subject-by-subject

basis. Since no previous models were fit in our laboratory using

the audiobooks, we tested 15 alpha values between 102 and 108

based off the regularization parameterization from Desai et al.

(2021).

We then assessed the model performance (correlation

between predicted and actual held out data) as a function

of amount of training data. The correlation value was

averaged after calculating the correlation of each EEG electrode

separately. Results were then plotted on a per-subject basis to

demonstrate how the average correlation value changes as a

result of adding increasing amounts of training set data. To

determine the amount of data at which this performance starts

to plateau, we calculated a knee point (Satopää et al., 2011) for

each individual auditory feature or combination of features. This

was performed separately for models trained on TIMIT, movie

trailer, or audiobook data. The knee point was calculated for each

subject and averaged together to represent a grand average knee

point. A knee point calculation was found for all subjects except

for one (MT0001) for the movie trailer, three subjects (MT0013,

MT0014, and MT0017) for the TIMIT stimuli, and one subject

(Subject11) for the audiobooks. We used the following equation

to define the curvature of the correlation f (x) vs. the number of

training samples (x) (Satopää et al., 2011).

Kf (x) =
f ′′(x)

(1+ f
′
(x)2)

1.5

From this equation, we took the value of x for which the

curvature K is maximized as the “knee point.”

To compare whether the knee point of this correlation

curve was significantly influenced by the model type, we used

linear mixed effects models (LME) implemented in R using the

library lmerTest (Kuznetsova et al., 2017) and emMeans (Searle

et al., 1980) to calculate the estimated marginal means. We used

the knee point calculation for each model type (phonological

features only, envelope only, pitch only, or full model with

all features) as a fixed effect, and participant intercept as

a random effect. This took the form of the following LME

equation (Yu et al., 2021): knee point ∼ model + (1|subject).

P-values and degrees of freedom (df ) were estimated using

Satterthwaite’s method.

3. Results

3.1. How much training data are needed
for a combination of auditory features for
both TIMIT and movie trailers?

We first assessed how much training data were needed

for encoding models across all subjects for both the TIMIT

and movie trailer stimuli. We fit an encoding model using

a combination of all three auditory features (phonological

features, acoustic envelope, and pitch; henceforth called the “full

model”) to predict the neural activity at each iteration of adding

training data. In addition, we fit an encoding model using just

the acoustic envelope for the audiobook data as this was the

only low-level feature representation included with the dataset.
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This analysis was performed for each individual subject, and a

correlation (r-value) was computed for each iteration based on

the predicted versus actual brain response from the encoding

model with a subset of the training data for TIMIT movie

trailers, and audiobooks (Figure 1). Individual participants are

shown in gray, with the average correlation vs. the data size curve

shown in blue. While the amount of training data needed in the

model plateaus as evidenced by this average, some individual

participants show a clear increase in performance as data are

added, while others do not improve with added data.

The knee point was calculated for each individual subject

and then averaged together (dashed line). This knee point shows

the time at which performance begins to plateau; however,

it does not show whether the receptive field structure itself

changes substantially as data are added. To visualize this process,

we plotted the weights for the subject with the best model

performance (MT0008) for both TIMIT andmovie trailers at the

first repetition, the knee point, and at the last repetition (linear

regression correlation values (See Supplementary Video 1). In

the case of both TIMIT and movie trailers, the receptive field

weights at the first repetition are relatively weak and lack

structure, suggesting that additional training data are needed

to achieve robust model performance. For TIMIT, the weight

magnitude at the knee point was slightly lower than at the last

repetition, but the structure of the weights themselves were

largely similar. In contrast, the knee point and last repetition

for the movie trailers were visually similar, suggesting that the

weights for MT0008 are relatively stable even with increasing

amounts of training data up until the final repetition. An average

of 96 sentences of TIMIT data (192 s) were needed to reach stable

performance when using a combination of all phonological

features, envelope, and pitch (Figure 1A).

For the movie trailers, we found that an average of 565.75 s

(or 9.43min) were needed for to reach stable performance

(Figure 1B). Of note, the overall correlation values for movie

trailers are much smaller compared to TIMIT, which is

consistent with results from our previous work (Desai et al.,

2021). As we have previously described, models using the movie

trailers as the stimuli can still provide generalizable receptive

field results (Desai et al., 2021). However, a reason for the

lower correlation values between the actual and predicted EEG

response is likely attributed to the overlapping sound sources of

multiple talkers, background noise, and music compared to the

sentences present in isolation during the TIMIT condition.

For the audiobooks, we found that an average of 495.47 s

or (8.23min) were needed to reach stable performance across

the 19 EEG subjects (Supplementary Figure 2). The correlation

values were much smaller compared to TIMIT and movie

trailers. A possibility for these lower correlation values may

be that single trials were used rather than trial averages in

the test set. Nonetheless, the knee point performance and

correlation values demonstrate a similar time course to our own

EEG data.

Finally, to investigate the effect of rank based on the EEG

channels for all stimuli, we calculated the rank using a method

which takes into account biological systems because recording

human data from sensors has variability in the signal-to-noise

ratio (Litwin-Kumar et al., 2017). Traditional rank calculation

methods do not account for varying underlying noise and may

overestimate data rank. We found that the relationship between

rank and knee point was not correlated for either the movie

trailer or TIMIT stimuli. For 3 subjects who listened to the

TIMIT sentences and for 1 subject who listened tomovie trailers,

we were unable to calculate a knee point.

3.2. How much training data are needed
based on stimulus type and feature
representation?

Our prior analysis showed that 96 sentences from TIMIT

(192 s) or 565.76 s of movie trailers was where prediction

performance for our full acoustic-phonetic model plateaued.

However, what if an experimenter only wants to model neural

responses to a specific feature or set of features, for example,

the acoustic envelope? The structure of the stimulus itself is

important in predicting responses to specific features, as certain

features may require more training examples (Crosse et al.,

2016). For example, models may require more training data for

multivariate features, such as the spectrogram, but they may

require less data for single features like word onsets. Still, even

for single features, sampling the input space appropriately is

important for building a robustmodel that will predict responses

to unseen data. Having a diversity of voices with different pitch

ranges would provide more robust model performance for a

pitch-based model than including only a few sentences all from

the same talker. To determine whether the amount of data

needed varies depending on the stimulus feature of interest, we

assessed the amount of training data needed for each individual

auditory feature. As calculated from the grand average knee

point, models predicting EEG from only the acoustic envelope

required ∼81 sentences (or 162 s of sentences based on the

average length of each TIMIT sentence of 2 s) (Figure 2, gray

shaded trace). However, models using phonological features and

pitch required the same amount of data as the full auditory

model (100 sentences or 200 seconds for pitch and 95 sentences

or 190 seconds for phonological features) (Figure 2, red and

blue traces). Additionally, when using the audiobooks from

Broderick et al. (2018), predicting EEG data from just the

acoustic envelope required 228 2-s-long audiobook chunks

(or 456.92 s) of training set data. Despite a small numerical

difference between the amount of data needed for the envelope

model and other models (in comparing TIMIT and movie

trailers only), these differences were not significant. Table 1

shows the fixed effects from the LME model for both TIMIT
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FIGURE 1

Individual and average correlation values with increasing training data. (A) For TIMIT, each gray line shows how the correlation values change for

an individual subject when adding each additional TIMIT sentence to the training data. The average increasing correlation value of all subjects is

shown in blue with standard error. The dashed vertical line at 96 sentences indicates the average knee point across all subjects (gray shading

shows standard error of the mean). Finally, the weights for the full model for a single subject with the highest correlation values (MT0008) is

shown at the first repetition (e.g., when there is only one TIMIT sentence to train on), the knee point, and the final repetition (e.g., after adding all

TIMIT sentences specified in the training set). The structure of the receptive field at the knee point and at the last repetition is qualitatively

similar. (B) Same as TIMIT but for movie trailers. Again, the receptive field at the knee point (with only 565.75 s of training data) is qualitatively

similar to the receptive field at the last repetition (2,554 s).

and movie trailers. In a linear mixed effects model with the knee

point from eachmodel type as amain effect and subject intercept

as a random factor, the effect of model type on knee point was

not significant for TIMIT nor movie trailers, suggesting that

variable amounts of data based on feature type are not needed,

at least for the features tested here (p > 0.05). Of note, the

audiobooks only included the acoustic envelope as the low-level

speech feature, so that is what was tested here.

Lastly, the number of EEG channels varied between the

datasets used in this study. For the movie trailer and TIMIT

datasets, we used 64 channels, while the audiobook dataset

from Broderick et al. (2018) used 128 channels. We conducted

an independent sample Wilcoxon rank sum test to compare

the knee point calculations between 32 versus 64 channels

(TIMIT and movie trailers) as well as 64 versus 128 channels

(audiobooks). We found that the number of EEG channels used

for assessing the minimum amount of data for each stimulus

set was not statistically significant (audiobooks: W = 0.146,

p= 0.88, TIMIT:W = 0.283, p= 0.77, movie trailers:W = 0.13,

p= 0.90).

3.3. How do receptive fields stabilize over
time?

Our previous analyses assessed the correlation between

actual and predicted EEG from the encoding models with

increasing numbers of training set stimuli. Although this can

show a qualitative stability of model weights, it does not show

whether the fitted weights themselves are similar and stable

when using more or less training data. Such an analysis is critical

for researchers who wish to interpret receptive field tuning

or structure. Thus, we assessed how the weights stabilize over

time when adding more training data. From previous work,

the assumption when building a model is that the relationship

between the neural response and the stimulus feature will

stabilize over time (Holdgraf et al., 2017). However, such an

assumption may not always be the case because of varying

signal-to-noise ratios for certain subjects or even factors such

as participant attention or adaptation to the stimuli (Gibson

et al., 2022). Calculating the stability of the model performance

by observing changes in the weights can provide a metric
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FIGURE 2

Average increasing correlation values based on acoustic or linguistic feature selectivity. (A) TIMIT average correlation values with standard error

across all 16 EEG subjects for individual speech features (phonological features, envelope, and pitch) are shown as an average across all subjects

when TIMIT training set sentences are iteratively added into the model. Dashed vertical lines and shading indicate the knee point and

corresponding error bar for each individual model type. Despite di�erent numbers of features and di�ering model complexity, a similar amount

of data was required for each of these models. (B) Same as TIMIT but for movie trailers. Again, the knee point values did not di�er significantly

across models. (C) Audiobook average correlation across n = 19 EEG subjects using only the acoustic envelope as the feature representation

(the pitch and phonological features were not provided in the dataset).

TABLE 1 Fixed e�ects for each stimulus from LME.

Estimate Std. error df t-value Pr (>|t|)

TIMIT

(Intercept) 96.125 10.481 45.909 9.172 6.02e-12∗∗∗

Envelope −15.062 12.224 45.000 −1.232 0.224

Phn. features −1.625 12.224 45.000 −0.133 0.895

Pitch 3.563 12.224 45.000 0.291 0.772

Movie trailers

(Intercept) 282.875 30.884 42.188 9.159 1.38e-11∗∗∗

Envelope 22.188 34.525 45.000 0.643 0.524

Phn. features 4.688 34.525 45.000 0.136 0.893

Pitch 45.875 34.525 45.000 1.329 0.191

The intercept represents the effect of the combined model, whereas the relative effects of the envelope, phonological features, and pitch are shown. None of the individual models

significantly differed in terms of knee point when controlling for subjects as a random factor. The ∗∗∗ symbol indicates the statistical significance at p < 0.001.

for how robust the model performance is and determine

how much training data is proven useful on an individual

subject basis.

Here, we demonstrate the weight stability for three subjects

with varying levels of model performance as defined by the

linear correlation between predicted and actual EEG data for

each iteration of adding training data. Participant MT0008

(Figure 3A) had the best performance, MT0016 (Figure 3C)

had middle model performance, and MT0017 (Figure 3E) had

the worst model performance. The performance value was

determined by using the full model (combination phonological

features, the acoustic envelope, and pitch) to obtain the overall

average correlation value. As such, the overall correlation

(r-value) for TIMIT between predicted and actual EEG data

for the best subject, average subject, and worst subject model

performance are as follows: MT0008 (r = 0.23), MT0016 (r

= 0.11), MT0017 (r = 0.002). The structure of the receptive

fields emerged as training data were added, starting with

a relatively unrefined, low magnitude weight matrix with

only one repetition of training data (Figures 3A, C, E). As

more training data were added into the model, spanning

from knee point until the final repetition, the receptive fields

become more prominent, showing more feature selectivity

across time delays. In the case of subjects with average

model performance (MT0016 in Figure 3C, middle panel),

the receptive field weights demonstrate sparse selectivity

of acoustic and linguistic features across time delays in

comparing the first repetition of training data compared
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FIGURE 3

Weight stabilization for three subjects with varying model performance using TIMIT. Subjects MT0008 (A), MT0016 (C), MT0017 (E) are shown as

examples of the best, average, and poor encoding models based on the correlation between predicted and actual EEG for held out data. The

model performance correlation values are reported above the corresponding receptive field. Weights are shown from the encoding model

based on the first repetition (left), knee point value for that participant (middle), and last repetition (right panel). For all subjects, the weights are

plotted for all auditory features across time delays: 0–0.6 s. In the best and average participant, the model weights between the knee point and

the last repetition appear similar with clear structure. On the other hand, the poorly fit participant (MT0017) has no discernable structure in the

receptive field at any repetition. (B, D, F) Adjacent weights for the full auditory model for each subject were correlated with each other and

plotted across the number of repetitions. This curve shows a general trend toward stabilization of receptive field structure as repetitions are

added to the training dataset.

to the knee point. Finally, subjects that had poor model

performance had relatively noisy receptive fields across all

iterations of adding training data (Figure 3E, bottom panels).

Thus, varying signal-to-noise ratio may play a role in

investigating how the weights change with increasing amounts

of training data.

Finally, to quantify how the weights stabilized with

increasing amounts of training data, we performed a correlation

analysis between weights from subsequent additions to the

training set (e.g., when including 100 sentences vs. 101, or 101

sentences vs. 102) (Figures 3B, D, F). If the receptive field has

similar structure as data are added to the model, we should see
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that reflected in a stabilization of the correlation between the

weight matrices on subsequent iterations of model fitting with

added training data. We found that the correlation value (r-

value) greatly fluctuates when fewer training set sentences are

included, but eventually stabilizes, generating high correlation

values between subsequent weight matrices with additional

training data. These findings complement the receptive field

data shown in Figure 3A, C, E in which the correlation plots

between each adjacent weight increases until finally hovering

close to the 1.0 correlation value. The higher the correlation

values between adjacent weights (comparing each repetition to

the next), the more correlated and more stable the weights are.

These correlation plots also showcase how noisy the receptive

field structure may be from one training iteration to the next.

Participants with better model performance showed stronger

and more stable feature selectivity in the receptive field with

increasing amounts of training data, as shown both by visually

similar weight matrices and stabilizing pairwise correlations.

We find that the results using movie trailer data are

comparable to those from TIMIT. When adding more training

data into the encoding model between the first repetition

to the knee point, and to the final repetition, the receptive

fields show more selectivity in subjects with better model

performance (Figures 4A, C, E). The best, average, and worst

model performance from the movie trailer stimuli is also the

same: MT0008 (r = 0.05), MT0016 (r = 0.04), MT0017 (r =

0.03). In subjects where the model performance was average or

weak, the receptive fields (Figures 4A, C, E) are relatively noisier

due to the possibility of varying SNR levels between subject

recordings. Similar to the TIMIT analysis, we also quantified

how the weights stabilized between subsequent chunks of

adding 2-s-long training set data (Figures 4B, D, F). We find

that computing the correlation between adjacent weights for the

movie trailers asymptotically rises when adding more training

set data until the correlation value approaches 1.0.

4. Discussion and conclusion

Encoding models are widely utilized to understand how

the brain processes continuous and naturalistic stimuli (Crosse

et al., 2016; Holdgraf et al., 2017). Here, we expanded upon

an analysis from previously collected data in our laboratory

(Desai et al., 2021) and a publicly available dataset (Broderick

et al., 2018). A frequent question that is posed when building

these sorts of models is “how much data is enough?” Ultimately,

this question is dependent on the type of stimuli used and the

types of feature selectivity one is interested in investigating.

Thisanalysis highlights the use of several different naturalistic

stimuli: continuous speech sentences from the TIMIT speech

corpus (Garofolo et al., 1993), audiovisual children’s movie

trailers, and audiobooks. We show that the stability of models

can be assessed for each of these stimulus types, and that for low-

level acoustic models the data requirements are fairly similar.

This paper provides a necessary comparison by investigating

how the choice of stimulus and stimulus features ultimately

impacts the amount of data needed to build a robust encoding

model to understand if the data collected are usable given a

minimal amount of training data. Our results suggest that, at

least for the models tested, the effect of stimulus representation

(phonological features, envelope, or pitch) is weaker than the

effect of using a different stimulus altogether. Still, with each

stimulus set we were able to show a convergence of receptive

field structure and model performance in significantly less time

than a typical neuroscience experiment.

4.1. Caveats and limitations

Overall, the results from this study can only provide a

suggestion as to how much data is needed for EEG encoding

models, and absolute timing requirements should always be

inspected and validated before assuming a specific amount of

time is sufficient for a given purpose. First, the amount of data

required to acquire robust results and stable receptive fields is

specific to the stimuli (TIMIT and movie trailers) we used in our

previously published work (Desai et al., 2021) and audiobooks

from an open EEG data set (Broderick et al., 2018). Researchers

using other natural speech stimuli should consider collecting

pilot data and then assessing the minimum amount of data

required for their specific experiment.

While the current study assesses the amount of data

an experimenter would need to build a natural speech

experiment using EEG and acoustic and phonetic information,

we were unable to assess effects for higher order features.

Prior work has tracked neural responses to natural speech

using semantic information as a feature input in fMRI and

EEG (Huth et al., 2016; Broderick et al., 2019) as well as

higher frequency information to continuous speech (Kegler

et al., 2022). While incorporating semantic information in

EEG encoding models for natural speech experiments may

be a challenge due to the large high temporal resolution and

thus large number of time delays, researchers who seek to

build natural speech experiments using fMRI may consider a

similar bootstrapping analysis to assess the amount of data

they may need using such higher order features. However,

in principle our method should also work to determine how

much data would be needed for both lower and higher-

order speech representations. Lastly, the amount of training

data required may be dependent on the aim of a particular

research study. In our previous study (Desai et al., 2021)

as well as the current, we used acoustic and phonetic

features to fit mTRFs to predict neural activity from TIMIT

and movie trailer stimuli. Similarly, we added data from

Broderick et al. (2018) and used the envelope. However, it is
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FIGURE 4

Weight stabilization for three subjects with varying model performance using Movie Trailers. (A, C, E) are the same as described in Figure 3, but

instead use the same subjects to show weight stability across the number of repetitions for movie trailers. Here, the receptive field structure

appears to emerge at the knee point and final repetition in all three cases. (B, D, F) show the correlation of the receptive field at repetition N with

the receptive field at repetition N-1. At first, receptive fields are relatively unstable as reflected by oscillating correlations, but then they stabilize

as data are added.
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important to note that the Broderick EEG data set contained

other speech feature representations such as word onset.

Therefore, using other higher-order features may generate a

different knee point.

The results discussed above show that a correlation knee

point and thus minimal amount of data may be determined

using our method onmultiple datasets. However, there are other

potential caveats that researchers should consider. For example,

one may be concerned about the impact of using different EEG

systems, the number of EEG channels used in analysis, the

EEG cap brand, the signal-to-noise ratio in calculating the knee

point for each subject, and the participant’s engagement with the

stimuli during the experiment.

Regarding EEG systems, researchers may choose to use

either an active or passive system, with passive systems typically

showing higher impedance. Saline-based electrode setups may

also have the additional danger of changing impedance over

the experiment due to the pads drying out. Here we used an

active BrainVision system with EasyCap caps. In Broderick et al.

(2018), the researchers used a BioSemi-128 channel system. We

found similar results for these two systems in terms of knee

point, but overall correlations for the models differed, likely due

to differences in averaging over the test set. For those using

passive systems, they may first consider replicating the analysis

here on a larger dataset to determine if the same principles

hold. Similarly, we do not believe that the cap brand would

matter, however using an active vs. passive system may make

a difference in terms of the overall signal to noise ratio. Most

importantly, researchers should be sure that the caps used fit

well and are placed snugly on the participant’s head to maximize

data quality.

As evidenced by our analyses across multiple participants

with varying data quality, signal-to-noise ratio of the data

may be an additional consideration in determining amount

of data needed. To investigate this in our data, we used

previously calculated noise-ceiling corrected correlation values,

which represent the maximum possible correlation that could

be observed for a given dataset given the underlying trial to

trial noise (Desai et al., 2021). We then used these values

to compare against the knee point for each stimulus. There

was no significant correlation between the normalized/noise-

ceiling corrected correlation values from the knee point.

Thus, at least for this measure, the SNR did not play a

major role for our TIMIT and movie trailer stimuli. We

were unable to test the effects of SNR with the knee

point calculation for the audiobook dataset as stimuli were

not repeated.

Regarding participant engagement, we found that we

needed more movie trailer data and audiobook data compared

to TIMIT, even though participants perceive these stimuli

as more engaging. The movie trailers may require more

data because of the acoustically rich background information

that co-exists with speech information. From our previous

work (Desai et al., 2021), we calculated the speech-only

information which occurred 34% of the time, speech with

background sounds (e.g., sound effects and music), which

occurred 35% of the time, and the background sounds

only occurred 18% of the time. From this information,

we believe that more data would be required for stimulus

sets which involve other sounds in addition to a target

speech stimulus.

Finally, an additional caveat is that all EEG participants from

in Desai et al. (2021) and Broderick et al. (2018) were sampled

from healthy population groups (no reported hearing loss,

normal or corrected-to-normal vision, native English speakers,

and no history of neurological disorders). Thus, generalizing

the knee point calculations for the specific stimuli used in this

study to clinical or pediatric population groups may not hold

true and more data may be needed to achieve robust and stable

receptive fields.

4.2. Final recommendations and key
points

The field of auditory and computational neuroscience is now

leaning more toward incorporating more naturalistic stimuli to

generate ecologically valid experimental paradigms. While our

previous paper (Desai et al., 2021) focused on examining if it

was possible to replace continuous speech sentences (TIMIT)

with stimuli that are more engaging, we wanted to better

understand how much data we would need to obtain robust

results. A common complaint with most psycholinguistic or

neuroscience experiments is that they are long and boring.

Experiments can be anywhere between 1 and 2 h long, requiring

the participant to sit still and sometimes requiring them to

listen to the same stimulus over and over. Thus, we hope to

provide researchers in the field with some suggestions as to

the type of stimuli we used and how much data are needed

when building future studies. Additionally, we hope that this

work provides information on the amount of data needed if

one were interested in encoding selectivity of specific speech

features (phonological features vs. pitch vs. acoustic envelope)

or a combination of multiple lower-level speech features. For

these measures, the data requirements appear to be similar, but

researchers should always pilot on their own stimulus set before

assuming how much data may be needed. We want to highlight

a few key points from our study and the analysis conducted in

this paper:

• From our results, we found that on average, 192 s of TIMIT

data and 565.76 s of movie trailer data are needed from

our dataset. Our entire EEG session per subject lasted close

to 1.5 h, however our results suggest that the full original

recording time is not needed to achieve the knee point.
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• We found that 495.47 s of audiobook data were needed

using the acoustic envelope as opposed to the original

1-h long task from Broderick et al. (2018). This analysis

shows that our method can be applied to other datasets

with similar results.

• To figure out how much data we needed for specific feature

types for TIMIT, we found the following: 81 sentences

(162 s) for the acoustic envelope, 95 sentences (190 s) for

phonological features, and 100 sentences (200 s) for pitch,

were needed on average across all 16 subjects. Despite these

smaller numeric differences in howmuch data were needed

to achieve a knee point, the differences were not statistically

significant. Researchers might choose to err on the side

of at least 5–10min of training stimulus presentation for

all of these task types. This assumes a test set size of

10 TIMIT sentences repeated 10 times, which remained

constant in our analyses.

• For movie trailers, based on individual features, we found

the following: 610.12 s for the acoustic envelope, 575.12 s

for phonological features, and 657.5 s for pitch, were

needed on average across all 16 subjects. This assumes a test

set size of 271 s (2 movie trailers) in the event where most of

the subjects listened to and watched both test set trailers. In

the case where only one of the trailers were heard out of the

test set, the duration of the single movie trailers was 136 s.

• While the knee point calculation does provide a

quantitative measurement of the minimum amount

of data overall, the correlation value still does continue to

increase when adding more training set data for all three

of stimuli described in this manuscript (TIMIT, movie

trailers, and audiobooks).

• Identifying the receptive fields for subjects with good,

moderate, and weak model performance provided

more insight on how feature selectivity changed with

having more data. Overall, the difference in correlation

performance between the minimum number of trials (knee

point) for both stimuli and the full dataset (∼1.5 h of

collected EEG data) had a smaller change in percentage

(33.5% increase for TIMIT and 36.8% increase for movie

trailers across all subjects). In comparison, the percent

improvement between the first repetition to the knee point

was greater for both stimuli: 62.5% increase for TIMIT

and 236% increase for movie trailers across all subjects.

Thus, in situations when the time to collect data may

be limited, the percentage change suggests a substantial

increase in average correlation value from the encoding

model compared to the percentage change between the

knee point and final repetition.

Generally speaking, more trials of data help achieve a higher

signal-to-noise ratio for an optimal result. In an ideal world,

collecting more data is better. However, including more trials in

an experiment can ultimately be detrimental due to participant

fatigue in both healthy subjects and clinical populations. Having

fewer trials with better quality data, in which the subject

does not move or fall asleep, can ultimately improve the data

quality and also allow experimenters to collect data from a

more heterogeneous population as opposed to fewer individuals.

Additionally, there may be instances where smaller datasets

are unavoidable due to time constraints when working with

clinical populations such as those with hearing loss who may

be easily fatigued or even pediatric populations, who may not

be able to sustain attention for long periods of time. Finally,

certain populations may prefer specific stimuli over others,

such as stimuli that are more entertaining or engaging to

listen to. In those cases, identifying the amount of data for a

specific stimulus type becomes crucial to collect high fidelity and

clean data, and to avoid discarding data that could be used in

an analysis.
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SUPPLEMENTARY FIGURE 1

Feature comparison of the movie trailer stimuli that were presented to

the EEG participants. A total of 23 movie trailers were presented. For

some of the trailers (e.g., Big Hero 6, Ferdinand, Incredibles, The Lego

Ningajo Movie), di�erent variations of the trailer were shown. (A) Total

duration of each movie trailer in seconds. (B) Heat map shows the total

number of phonological features across all of the movie trailers. As

expected, the sonorant and obstruent phonological features have the

largest count for all trailers. A few trailers included very little speech (e.g.,

“bighero6-tlr1”). (C) Heat map shows the total count of binned pitch

between the frequency ranges on the y-axis for all movie trailers. The

pitch range between 51 and 85Hz has the largest count across all

trailers. (D) The average power spectrum for each movie trailer plotted

across frequency based on the original audio sampling rate of 16 kHz.

SUPPLEMENTARY FIGURE 2

Individual and average correlation value for audiobook data. A total of 19

EEG subjects were used for the analysis in which they listened to an

audiobook. For the audiobook data, each gray line shows how the

correlation values change for an individual subject when adding each

additional 2-s chunk of audiobook training set data. The average

increasing correlation value of all subjects is shown in green with

standard error. The dashed vertical line at 247 2-s-long chunks

(495.47 s) indicates the average knee point across all subjects (gray

shading shows standard error of the mean).
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