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Our understanding of the cognitive functions of the human brain has

tremendously benefited from the population functional Magnetic Resonance

Imaging (fMRI) studies in the last three decades. The reliability and replicability

of the fMRI results, however, have been recently questioned, which has been

named the replication crisis. Sufficient statistical power is fundamental to

alleviate the crisis, by either “going big,” leveraging big datasets, or by “going

small,” densely scanning several participants. Here we reported a “going small”

project implemented in our department, the Bergen breakfast scanning club

(BBSC) project, in which three participants were intensively scanned across

a year. It is expected this kind of new data collection method can provide

novel insights into the variability of brain networks, facilitate research designs

and inference, and ultimately lead to the improvement of the reliability of the

fMRI results.

KEYWORDS

deep neuroimaging, precision brain mapping, resting-state fMRI, MRS, reliability,
variability, reproducibility

Introduction

The pursuit of understanding how the brain works has been driving researchers
to develop innovative and novel utilities. Since the discovery of functional Magnetic
Resonance Imaging (fMRI) in the early 90s (Kwong et al., 1992; Ogawa et al., 1992)
it has been ubiquitously utilized in the cognitive neuroscience research field due to
its relatively high spatial resolution compared to other non-invasive neuroimaging
tools. Undoubtedly, by leveraging fMRI, our understanding of the brain has been
substantially deepened and expanded. For example, it is now well known that there are
several brain regions preferentially responding to specific stimuli, such as the fusiform
area (FFA) for faces (Kanwisher et al., 1997), the visual word form area for words
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(Nobre et al., 1994), and the number form area (NFA) for
numbers (Shum et al., 2013). Besides, several brain networks
have been consistently recognized with the resting-state fMRI
data (Damoiseaux et al., 2006), which can be corresponded to
the brain networks at tasks (Smith et al., 2009). In addition, the
association between the brain indices and phenotypes has also
been widely explored (Genon et al., 2018; Masouleh et al., 2019).

Although new insights and perspectives have been
proliferated with fMRI data, however, the reliability and
reproducibility have been recently questioned (Bennett and
Miller, 2010). It has shown that different parameter choices
in the processing pipeline could affect the final conclusions
(Botvinik-Nezer et al., 2020). What’s more, the puzzlingly high
correlation in fMRI studies in emotion, personality, and social
cognition (Vul et al., 2009) is somehow worrisome [but also
see different opinion (Lieberman et al., 2009)]. Playing into this
point, low statistical power, often produced by small sample
sizes, can undermine the reliability of the neuroscience research
(Button et al., 2013).

Having said that, how can we increase the reliability and
reproducibility of fMRI studies, especially about the brain-
behavior correlation? In one recently published article inNature,
the researchers have suggested that acquiring thousands of
individuals’ data can be one way to reliably detect small
effects from brain-wide associations (Marek et al., 2022).
A corresponding opinion article (Gratton et al., 2022) has
suggested that there are generally two ways to increase reliability
by obtaining sufficient data: “going big” as in the mentioned
article, or “going small” in which several individuals can be
repeatedly scanned to form a deep neuroimaging dataset.

The concept of deep brain imaging is relatively new but not
exotic. It can be traced down to the MyConnectome project
(Laumann et al., 2015; Poldrack et al., 2015; Poldrack, 2021),
where a single subject was densely scanned for around 2 years
resulting in around 100 MRI sessions. It has been shown that
the brain networks trend differently between group level and
individual level, and different factors such as drinking coffee
can introduce connectomic shifts (Poldrack et al., 2015). The
Bergen breakfast scanning club (BBSC) project is inspired by
the MyConnectome project, and we would like to replicate the
findings from the MyConnectome project as well as explore
other factors which could affect fMRI signals, for example, the
effect of seasonal long-night and long-day phenomena which are
unique to world regions close to the poles.

Based on this endeavor, here we report a “going small”
project implemented in our department between February 2021
and 2022, where three individuals were densely scanned for a
year. All three subjects are male, right-handed, and speak at least
two languages (age: 31, 27, and 40). The name of the project
is a combination of scanning place Bergen and the breakfast
club, where initially we wanted to scan the participants in the
morning. It was also an homage to the Midnight Scanning Club
dataset (Gordon et al., 2017).

Project’s description

The overarching goal of the BBSC project is to understand
the variability of the fMRI signal and explore precision brain
mapping at the individual level. The purpose of the project is
threefold. The first is to explore the effects of exogenous factors
exerting on fMRI signals, such as time of day, and time of year
since the long-night and long-day phenomena in Norway. The
second is to explore how endogenous factors affect fMRI signals,
such as emotional state, physiological indices, and daily routine.
The third is to explore the relationship between functional and
structural brain organization. Accordingly, there were three
protocols in the project including a behavioral, a functional,
and a structural protocol. Brain imaging data were acquired at
the Haukeland University Hospital with an up-to-date high-
performance 3T MRI (GE Discovery 750).

It was expected that the participants would be scanned twice
a week (once in the morning, once in the afternoon) with
the functional protocol and once a month with the structural
protocol, which would result in 50 scanning sessions in total for
each participant.

In the behavioral protocol, we have collected information
about the participants’ daily life such as sleep duration, time
spent on excise, and any significant daily events. The behavioral
protocol was implemented twice a day (after getting up and
before going to bed) on participants’ mobile phones.

In the functional protocol (Figure 1A), first, 7 min T1-
weighted brain image data were collected, which will be used
for brain registration and gray matter changes exploration.
Second, to test the metabolism level, 5 min magnetic resonance
spectroscopy (MRS) data were recorded. MRS can detect
metabolism changes in the brain, where major metabolites
concentration can be calculated (Harris et al., 2017). Last, 12 min
resting-state fMRI data as recommended (Birn et al., 2013)
have been collected as well as the pulse, respiratory, and blood
oxygen saturation levels. The resting-state fMRI, simply put,
records systematic, non-random variations in the activation of
the brain in the absence of a specific task. These activations
are indirectly reflected in regional fluctuations in the level of
oxygenation of the blood (a.k.a. BOLD signal). It has been widely
used to explore functional brain activation (Biswal et al., 1995),
from which brain networks (also called “resting-state networks”)
can be extracted (Damoiseaux et al., 2006) and network-related
characteristics can be explored (Bullmore and Sporns, 2009;
Van Den Heuvel and Pol, 2010). Questionnaires including
the outside and inside weather indices and the participants’
emotional states were filled out before scanning, while the
Amsterdam resting state questionnaire (Diaz et al., 2013) was
filled out after scanning. This protocol was implemented twice a
week for a year except for public holidays.

In the structural protocol (Figure 1A), 10 min T2-weighted
brain images were first collected to examine the variability of the
gray matter. Then, 10 min diffusion-weighted imaging (DWI)
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FIGURE 1

Skeleton of the project and analysis plan. (A) The project neuroimaging protocols. The background indicates that daylight time will gradually be
minimized from spring to winter. The functional protocol was implemented twice a week while the structural protocol was implemented once a
month. (B) The illustration of the analysis plan.

and 7 min Fluid-attenuated inversion recovery (FLAIR) brain
imaging data were recorded to explore the variability of the
white matter. This protocol was implemented once a month for
a year except for public holidays.

Analysis plan

The overview of the analysis plan was depicted in Figure 1B.
First and foremost, we will chart the fluctuation of the fMRI
data and MRS data to depict the variability of those signals
over a year. Second, in order to achieve the first purpose,
indices extracted from the neuroimaging data will be compared
between season-dependent long and short daylight periods, as
well as morning and evening. Third, in order to get the second

purpose, we will explore the relationship between physiological
data (pulse, respiratory, and blood oxygen saturation levels) and
resting-state fMRI data. Accordingly, we will propose how to
clean the resting-state fMRI data with these physiological data.
Finally, in order to reach the third purpose, a virtual brain model
will be constructed based on the virtual brain (TVB) platform
(Sanz Leon et al., 2013). The dataset will be made public after
the main results have been published.

Discussion

In a conventional way, dozens or hundreds of participants
should be recruited for an fMRI study or big open datasets can
be leveraged to explore the questions that one is interested in.
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Contrary to the conventional way, here we report a deep brain
imaging project, the BBSC project, where three participants
have been densely scanned for a year. The relatively new
data collection method can provide new insights into the
architecture of the brain and the variability of how the brain
signal fluctuates over a year.

Deep brain imaging data can extend our understanding of
brain parcellation which are yet mainly based on the “going big”
approach. Brain templates or parcellations are conventionally
constructed from congregated data from different participants,
which inevitably will wipe out the individual characters. For
example, a recent study shows that a brain region belonging to
the default mode network (DMN) network at the group level
brain parcellation is actually affiliated with the attention network
at the individual level (Laumann et al., 2015). By leveraging
deep brain imaging data, detailed brain parcellation based on
individual functional connections can be revealed (Gordon
et al., 2017; Marek and Greene, 2021), which can further make
a contribution to precision medicines (Gratton et al., 2020).
The BBSC project will advance this endeavor, and further based
on the individual brain parcellation explore the variability of
individual brain networks.

Furthermore, deep brain imaging data can better illustrate
the relationship between structural and functional brain
organizations. By using the functional and structural data
collected in the BBSC project, a virtual brain model can
be constructed with the TVB platform (Sanz Leon et al.,
2013). Thus, the dependence between functional and structural
brain organizations can be illustrated by manipulating the
parameters in the model (Sanz Leon et al., 2013). Overall,
the deep brain imaging method holds much potential and
can advance our understanding of how the brain works
(Gratton and Braga, 2021).

Deriving from the project, we can provide practical
information for fMRI data collection and analysis. For
example, it could be ideal that participants should be
scanned within a season or daytime window; always
measure variable X in addition to fMRI because the
signal can be convoluted by variable X. In summary,
the rich data collected from the BBSC project entails
the potential to chart the variability of the fMRI signal
over a year, better comprehension of the relationship
between functional and structural data, and the dependence
between exogenous and endogenous factors and fMRI
signals. Hereafter, the results can enhance the reliability of
the fMRI studies.
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