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Hospital of Dalian Medical University, Dalian Innovation Institute of Stem Cell and Precision

Medicine, Dalian, Liaoning, China

Background: About one-third of adults have trouble sleeping, ranging from

occasional di�culty to chronic insomnia, along with di�culty maintaining

sleep. Many studies reported that the long-term use of hypnotics can cause

brain dysfunction and damage cognition.

Objective: The objective of the study is to evaluate whether low, medium,

and high doses of orexin dual receptor antagonists (DORA), zopiclone (ZOP),

eszopiclone (ESZ), and zolpidem (ZST) can impair cognition.

Methods: From the beginning through September 20, 2022, PubMed,

Embase, Scopus, the Cochrane Library, and Google Scholar were searched.

Randomized controlled trials (RCTs) assessing the therapeutic e�ects of

DORA, eszopiclone, and zopiclone for sleep and cognitive function were

included. The primary outcomes were indices related to the cognitive profile,

including memory, alertness, execution and control function, and attention

and orientation. The secondary outcomes were indices related to sleep and

adverse events. The standard mean di�erence (SMD) was generated for

continuous variables. Certain data were captured from figures by GetData 2.26

and analyzed using RStudio 4.2.

Results: Finally, a total of 8,702 subjects were included in 29 studies.

Compared with the placebo, the DSST (Digit Symbol Substitution Test)

scores of low, medium, and high doses of DORA were SMD = 0.77; 95%

CI: 0.33–1.20; SMD = 1.58; 95% CI: 1.11–2.05; and SMD = 0.85; 95%

CI: 0.33–1.36, respectively. The DSST scores of zolpidem at low, medium,

and high doses were SMD = −0.39; 95% CI: 0.85–0.07; SMD = −0.88,

95% CI: −2.34–0.58; and SMD = −0.12, 95% CI: −0.85–0.60, respectively.

Zopiclone’s DSST scale score was SMD = −0.18; 95% CI: −0.54–0.18. In

addition, the total sleep time (TST) of low, medium, and high doses of DORA

was SMD = 0.28, 95% CI: −0.15–0.70; SMD = 1.36, 95% CI: 0.87–1.86;

and SMD = 2.59, 95% CI: 1.89–3.30, respectively. The TST of zolpidem

with low, medium, and high doses was SMD = 1.01, 95% CI: 0.18–1.83;

SMD = 1.94, 95% CI: 0.46–3.43; and SMD = 1.71, 95% CI: 0.86–2.56,

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.1029554
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.1029554&domain=pdf&date_stamp=2023-01-09
mailto:tangji0920@126.com
https://doi.org/10.3389/fnhum.2022.1029554
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.1029554/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnhum.2022.1029554

respectively. The TST of low, medium, and high doses of eszopiclone was

relatively SMD = 2.03, 95% CI: −0.21–4.27; SMD = 2.38, 95% CI: 1.35–3.42;

and SMD = 1.71, 95% CI: 0.60–2.82. Zopiclone’s TST was SMD = 2.47, 95%

CI: 1.36–3.58.

Conclusion: We recommend DORA as the best intervention for insomnia

because it is highly e�ective in inducing and maintaining sleep without

impairing cognition. Although zolpidem has a more pronounced e�ect on

maintaining sleep, it is best to reduce its use because of its side e�ects.

Eszopiclone and zopiclone improved sleep quality, but their safety in cognition

remains to be verified.

KEYWORDS

DORA, nBZD, insomnia, cognition, dose-response

Introduction

In people aged over 18 years old, the overall prevalence

of insomnia is about 32.2% worldwide, according to

epidemiological studies. Moreover, according to statistics

of annual amount of sleeping drugs used in China, which was

provided by Food and Drug Administrations of China, it was

found that the general Chinese population consumes around

339 million tablets of hypnotic medications annually, with

zolpidem ranked first as the top hypnotic Adjacent to references

(De Gage et al., 2014; Picton et al., 2018). Don’t distinguish front

and rear positions drug with 133.7 million pills (Foda and Ali,

2012; Julie and Dopheide, 2020; Westermeyer and Carr, 2020).

Brain function changes during sleep loss, including altered

cognitive function in brain regions involved in perceptual

abilities (alertness and orientation), attention, memory, and

executive control (Zhang et al., 2018; Chao et al., 2021).

Cognition is the behavior in which the brain receives

information from the outside world and processes it into

intrinsic mental activity (Haynes et al., 2018). People are

concerned about damaging cognition when taking hypnotic

drugs, which causes poor concentration, memory decline, and

so on (Sulheim et al., 2015; Olaithe et al., 2018; Suchting

et al., 2020). Sleep and cognitive function are closely related.

Effective sleep aids should maximize the patient’s perception

of sleep quality and avoid drug-related adverse reactions

without altering the underlying structural characteristics of sleep

(Aarsland, 2016). As a novel hypnotic drug, DORA inhibits

patients’ excessive wakefulness and induces and maintains sleep

by antagonizing the orexin signaling system (Sakurai, 2013).

Although animal experiments have pointed to a slight cognitive-

promoting effect of low-dose DORA, there have been no clinical

studies or meta-analyses to indicate whether the use of DORA

affects cognitive function in subjects (Hoyer and Jacobson, 2013;

Gamble et al., 2020; Zhou et al., 2020). This study divided four

commonly used hypnotics into low, medium, and high dosages.

Their efficacy and safety were comprehensively analyzed in

terms of aspects of sleep, cognition, and adverse effects to

provide a reference for using hypnotics.

Methods

This meta-analysis was performed following the PRISMA

guidelines (Preferred Reporting Items for Systematic Reviews

and Meta-analysis) (Page et al., 2021). The review scheme

is registered with PROSPERO, the International Prospective

System Review Register (Unique Identifier: CRD42022352911).

Search strategy

The literature was retrieved from independent databases,

including PubMed, Embase, Scopus, the Cochrane Library,

and Google Scholar. The Mesh terms were (“orexin dual

receptor antagonist” OR “Suvorexant” OR “Filorexant” OR

“Lemborexant” OR “Almorexant” OR “Daridorexant” OR “sb

649868”) AND (“Stilnox” OR “zolpidem”) AND (“Eszopiclone”

OR “eszopiclone”) AND (“Zopiclone” OR “zopiclone”)

AND (“Sleep” OR “sleep” OR “sleeping”) AND (“Cognitive

function” OR “cognitive function;” OR “cognitive functions”

OR “cognitional function” OR “Cognitive functioning” OR

“Cognition function”).

Inclusion and exclusion criteria

Inclusion criteria

1. Cohort studies, case-control studies, and randomized

controlled studies (RCTs) encompassing both subjects

without insomnia and those with insomnia;
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2. Cohort studies, case-control studies, and randomized

controlled studies (RCTs) encompassing both subjects

who are non-cognitively impaired and subjects with

cognitively impaired;

3. Cohort studies, case-control studies, and randomized

controlled studies (RCTs) using at least one of the following

agents: dual orexin receptor antagonists: suvorexant,

filorexant, lemorexant, almorexant, daridorexant, sb 649868,

and zolpidem. The dosages of these drugs should be definite.

Exclusion criteria

1. The agents including orexin dual receptor antagonists or

zopiclone or eszopiclone or zolpidem were in combination

with other hypnotic drugs in the treatment group.

2. Repeated publication of literature.

3. Unable to extract data or data were unclear or missed in the

literature.

4. Conference proceedings.

5. Non-RCT articles.

Data extraction and quality assessment

Two investigators independently searched, screened,

assessed the quality, and extracted information from articles.

The following data were collected: the number of subjects, age,

sex, race, drugs and corresponding dosages, cognitive outcomes,

sleep outcomes, and adverse events. Any discrepancy was

arbitrated by a senior investigator.

Outcomes

The primary outcomes were indices related to the cognitive

profile, including memory, alertness, execution and control

function, attention and orientation, etc.

The secondary outcomes were indices related to sleep and

adverse events.

For RCTs, risk of bias tools (second edition, ROB2),

according to the Cochrane Handbook, were used to assess the

quality, while for cohort and case-control studies, the Newcastle-

Ottawa Scale (NOS) was performed to assess the quality (Stang,

2010).

Definition of various doses

High dose: zolpidem ≥ 10mg, eszopiclone = 3mg,

Suvorexant ≥ 15mg, filorexant ≥ 15mg, lemborexant > 10mg,

almorexant ≥ 30mg, daridorexant > 25mg, and SB-649868 >

30 mg.

Moderate dose: 5mg < zolpidem < 10mg, eszopiclone =

2mg,10mg ≤ suvorexant < 15mg, 10mg ≤ filorexant < 15mg,

5mg < lemborexant ≤ 10mg, 10mg ≤ almorexant ≤ 30mg,

10mg ≤ daridorexant ≤ 25mg, and 10mg < SB-649868 ≤

30 mg.

Low dose: zolpidem≤ 5mg, eszopiclone= 1mg, suvorexant

< 10mg, filorexant < 10mg, lemborexant ≤ 5mg, almorexant <

10mg, daridorexant < 10mg, and SB-649868 ≤ 10 mg.

Statistical methods

The software utilized was RStudio 4.2.1. The standard

mean difference (SMD) was generated as the effect size for

continuous variants. Odds ratios (ORs) were generated for

dichotomous variants. If only figures were presented, two

researchers independently used GetData 2.26 to capture data

and calculate the means. A fixed-effects model would be

implemented if I2 ≤ 50% and p > 0.01. Otherwise, a random-

effects model would be performed. If I2 > 75%, Galbraith

plots would be drawn to exclude studies outside the outlines

to eliminate heterogeneity. Publication bias was assessed by the

funnel plot and Egger’s test. A probability value of p < 0.05 was

considered statistically significant.

Results

Study search and baseline characteristics
and quality

In the preliminary phase, a total of 2,085 articles were

searched, and after careful screening, 27 RCTs and 2 case-control

studies were eventually considered eligible for analysis (Figure 1)

(Ancoli-lsrael, 2010; McCall et al., 2010; Menza et al., 2010; Mets

et al., 2011; Bettica et al., 2012; Herring et al., 2012, 2013, 2014,

2016, 2017, 2020; Hoever et al., 2012, 2013; Uchimura et al.,

2012a,b; Sun et al., 2013; Leufkens et al., 2014; Tek et al., 2014;

Vermeeren et al., 2014, 2016, 2019; Spierings et al., 2015; Connor

et al., 2016; Dauvilliers et al., 2020; Dopheide, 2020; Karppa et al.,

2020; Murphy et al., 2020; Zammit et al., 2020; Bland et al., 2021;

Boof et al., 2021; Louzada et al., 2022). The subjects of these

studies were from America, Australia, Britain, and Germany,

among others. Their ages ranged from 18 to 85 years, and the

proportion of women was 47.3%.

The DORA agents include suvorexant, filorexant,

lemborexant, almorexant, daridorexant, and SB-649868.

According to ROB2, all 27 RCTs were of high quality. The two

case-control studies had a NOS score of 4.

Cognitive profile—Memory

Compared with the placebo group, the memory test score

of low-dose DORA was SMD = −0.39, 95% CI: −1.15–0.37

(Figures 2–4). Amemory test score of high-dose eszopiclone was
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FIGURE 1

Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram of study search and selection for the meta-analysis.

SMD = −0.15, 95% CI: −0.60–0.30. The DSST (Digit Symbol

Substitution Test) scale scores of low, medium, and high doses of

DORA were SMD = 0.77, 95% CI: 0.33–1.20; SMD = 1.58, 95%

CI: 1.11–2.05; and SMD= 0.85, 95% CI: 0.33–1.36, respectively.

The DSST scale scores of zolpidem at low, medium, and high

doses were, respectively, SMD = −0.39, 95% CI: −0.85–0.07;

SMD = −0.88, 95% CI: −2.34–0.58; and SMD = −0.12, 95%

CI: = 0.85–0.60. Zopiclone’s DSST scale score was SMD =

−0.18, 95% CI: = 0.54–0.18. The DSST scale is the most widely

used cognitive screening scale, which can comprehensively and

quickly reflect the intellectual status and cognitive function

decline of the person being tested. It is also a part of the revised

Wechsler Adult Intelligence Scale, which assesses information

processing, attention, and psychomotor performance.

DORA doses in each group have, respectively, improved

the total score. Zopiclone and zolpidem low-dose groups have

helped in SRT (simple response time scale) and VAS (visual

analog scale). The subjects takingmedium and high doses of ZST

benefit from improving their CCT (Competitive Cognitive Trait

Anxiety Inventory) scale score and do not affect other doses. The

SRT was used in both memory research and clinical research,

and the selective response time scale CRT (Competency Ration

Table), which is famous for detecting the residual effects of

hypnotics like medium-dose DORA, are superior to those used

in the placebo group in terms of total score or single item of the

scale (Miller et al., 1989; Stormer et al., 2012).

The word recall accuracy score of low-dose/high-dose

DORAwas SMD= 0.30, 95%CI:−0.98–1.58 and SMD=−1.00,

95% CI:−2.43–0.43, respectively. The correct rate score of word

recall of zolpidem at low, medium, and high doses was SMD

= −0.15, 95% CI: −0.73–0.43; SMD = −0.05, 95% CI: −0.62–

0.53; and SMD = −0.43, 95% CI: −0.87–0.01, respectively.

Zopiclone’s Word recalls accuracy score was SMD=−0.43, 95%

CI: −0.92–0.07. The memory was evaluated before and 4 h after

administration (measured by word recall). Compared with the

placebo group, the number of correct words in almost every

dose of ZST decreased, which was unrelated to the dose. The

low dose of DORA significantly increased the number of correct

words recalled.

Cognitive profile—Alertness

Compared with the placebo group, the daytime alertness

score of low-dose and middle-dose DORA was SMD = 0.66,

95% CI: 0.33–0.98 and SMD = −0.07, 95% CI: −0.33–

0.18, respectively. The daytime alertness score of zolpidem

at low, medium, and high doses was SMD = −1.22,

95% CI: −2.06–0.37; SMD = −0.83, 95% CI: −2.63–0.97;

and SMD = −0.95, 95% CI: −1.80–0.10, respectively. The

daytime alertness score of low, medium, and high dose

eszopiclone was SMD = 0.67, 95% CI: −0.47–1.81; SMD
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FIGURE 2

(A–C) A Forest map of cognition and sleep results at di�erent doses in DORA, zolpidem, zopiclone, and eszopiclone groups. DSST, Digit symbol

substitution test; VAS, visual analog scale; SRT, simple response time scale; CCT, competitive cognitive trait anxiety inventory; CRT, competency

ratio table; SE, Sleep e�ciency; WASO, wake after sleep onset; LPS, latency to persistent sleep; TST, total sleep time; REM, rapid eye movement;

NAW, number of awakenings; SWS, slow wave sleep; NREM, non-REM sleep.

= 0.81, 95% CI: 0.16–1.46; and SMD = 3.13, 95% CI:

1.01–5.25, respectively. Zopiclone’s daytime alertness score

was SMD = 0.33, 95% CI: −0.17–0.82. There are some

differences between DORA and zolpidem. DORA causes

a dose-dependent decrease in subjective alertness (reaction

time), which is more obvious than zolpidem. In this test,

compared with the better-performing eszopiclone and zopiclone

groups, zolpidem had no significant therapeutic effect on

motor coordination. In the morning, the single dose of low-

dose, middle-dose, and high-dose DORA has a statistically
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FIGURE 3

(A–E) Color contrast quality evaluation chart. The evaluation method of each related index is to evaluate the clinical treatment e�ect of the

subject. The green point is to improve and have a positive e�ect. The red point is to damage, reduce, and produce negative harm. The number

of points is evaluated according to the numerical value. The larger the numerical value, the more the number of points.
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FIGURE 4

(A) Suvorexant is the first approved drug under DORA. According to the dose-response non-linear curve, at 20mg, the subjects scored the

highest on the DSST scale, and the incidence of motor vehicle driving violations/accidents was the lowest. At doses below 20mg, the subjects

had better information processing, attention, and psychomotor abilities. The diurnal function of the subjects in the suvorexant group decreased

significantly after taking a dose of more than 20mg. It was concluded that the maximum dose of suvorexant should not be more than 20mg,

which was consistent with the recommended doses of 5, 10, 15, and 20mg in the guidelines. The sleep result seems to have little relationship

with the dose. With the increase in dose, LPS decreases, and TST prolongs. SE is lower when it is <30mg, then SE increases. (B) In the

Almorexant group, the subjects’ alertness scores were higher at 10mg to 30mg and reached the highest alertness at 30mg, while when the dose

was >30mg, the alertness gradually decreased. In addition, the reaction time decreased with the increase in dose. The dose did not a�ect the

word memory score and body swing amplitude. NAW and WASO showed an upward trend before 30mg and reached the highest point at 30mg.

significant impact on the “wake up mode” and “wake up

behavior” after taking it, compared with the placebo group,

indicating that it is more difficult to wake up at a high dose

and that alertness after waking up is lower. However, the

overall therapeutic effect of low- and medium-dose DORA on

alertness is better than that of the placebo group, which will

improve alertness.

The reaction time of medium and high doses of DORA

was, respectively, SMD = 0.72, 95% CI: 1.81–0.38 and SMD =

1.39, 95% CI: 0.10–2.67. Low- and high-dose zolpidem’s reaction

time was SMD = 0.79, 95% CI: 0.01–1.59 and SMD = 0.65,

95% CI: 0.21–1.52, respectively. Zopiclone’s reaction time was

SMD= 0.11, 95% CI: 0.51–0.29. Psychomotor performance was

measured by the selection of the reaction time. DORA reduced

the selective reaction time by 1.5, 4, and 8 h after administration,

but the effect was not obvious. This indicates that DORA does

not damage situational memory after waking up in the middle

of the night.
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Cognitive profile—Execution and control
function

When taking zopiclone and a low and medium dose of

zolpidem, the driving ability of the subjects was impaired.

Users who needed to drive the next day or perform tasks that

required full attention had to be warned and were asked to be

mindful of the possibility of an accident/violation while driving

the next day. The standard deviation of the lateral position

(SDLP cm) in the standardized road driving test evaluated

the driving performance. We evaluated individual-level driving

performance to measure whether there was a statistically

significant imbalance between drug placebo differences and

relative driving impairment. Compared with the placebo group,

the incidence of motor vehicle accidents/violations with low-

and middle-dose DORA was SMD = 0.02, 95% CI: 0.21–0.17;

SMD = 0.36, 95% CI: 0.52–0.20, respectively. The incidence

of motor vehicle accidents/violations with medium- and high-

dose zolpidem was SMD = 0.77, 95% CI: 0.39–1.16 and SMD

= 1.17, 95% CI: 0.62–1.72, respectively. Zopiclone’s motor

vehicle accident/violation rates were SMD= 0.29, 95% CI: 0.29–

0.87). Compared with zolpidem, low- and medium-dose DORA

improves some aspects of the cognitive performance of motor

vehicle driving.

The daytime function scores were SMD = 0.06, 95% CI:

0.31–0.43 in low-dose DORA group, and SMD = 0.17, 95%

CI: 0.07–0.41 in medium dose zolpidem group. The daytime

function scores of low/medium/high dose Eszopiclone were

SMD = 0.95, 95% CI: −0.16–2.07; SMD = 0.33, 95% CI: 0.20–

0.45; SMD = 0.24, 95% CI: 0.06–0.42, respectively. After taking

sleeping pills, subjects were asked to be weary of any sloppiness,

slowness in action, and poor reaction time when driving the

next day; it could have been dangerous. The results showed that

DORA and eszopiclone also improved the daytime function of

people with insomnia with good safety.

Cognitive profile—Attention and
orientation

Balance and psychomotor performance were assessed during

the night. Balance (body sway as measured by platform stability)

was assessed before and 1.5, 4, and 8 h after administration.

Compared with the placebo group, low-dose DORA’s attention

score was SMD = −0.07, 95% CI: −0.30–0.16. The intensity

score of high-dose eszopiclone was SMD = 0.14, 95% CI:

−0.31–0.59. The concentration scores of medium and high-dose

eszopiclone were SMD = 0.15, 95% CI: −0.14–0.44; SMD =

0.22, 95% CI:−0.48–0.91, respectively.

The body sway scores of low-dose and high-dose DORA

were SMD = 0.46, 95% CI: −0.03–0.94; SMD = 0.23, 95%

CI: −0.52–0.97, respectively. In all DORA doses, the overall

therapeutic effect on body sway was not as good as that in

the placebo group, and body sway increased (injury). The

stability when getting up (for example, using the bathroom)

was poor. These results suggest that DORA may be a potential

risk, especially for elderly patients who are prone to falling

and moving slowly. The subjective assessment showed that the

decrease in motor coordination was dose-dependent. In the

middle dose, it significantly reduced the motor coordination

ability. Each dose of Eszopiclone improved attention so that

the subjects could concentrate more on clearly perceiving

certain things and thinking deeply about certain problems

without disturbance.

Sleep profile

In general, the sleep effect of each group was definite,

and the response was good. DORA, zolpidem, zopiclone, and

eszopiclone can shorten subjective and objective sleep latency

(LPS), reduce the number of awakenings (NAW), extend the

total sleep time (TST), and can induce sleep quickly. To

some extent, it can prolong the sleep phase, deepen sleep,

and improve sleep quality. In addition, it is remarkable that

many studies found that DORA does not seem to significantly

change the underlying sleep structure characteristics. In addition

to the subjective and objective effects on the beginning and

maintenance of sleep, DORA also improves the patients’

perception of sleep quality. Subjectively, it significantly improves

the emotional improvement and the person feels refreshed in

the morning. The Self fresh score of low, medium, and high

doses of DORA group was SMD = 0.01, 95% CI: −0.14–0.15;

SMD = 0.19, 95% CI: −0.21–0.59; and SMD = 0.10, 95%

CI: −0.14–0.35, respectively. The number of awakenings after

falling asleep (WASO) in each comfort group was higher than

in the experimental group. The WASO of low, medium, high

doses of DORA was SMD = 0.00, 95% CI: −0.22–0.22; SMD

= 0.29, 95% CI: 0.09–0.49; and SMD = −1.45, 95% CI: −1.80–

1.10, respectively. TheWASO of low, medium, and high doses of

zolpidemwas SMD= 0.24, 95% CI: 1.01–0.54; SMD= 2.36, 95%

CI: 4.45–0.27; and SMD= 0.02, 95% CI: 0.74–0.69, respectively.

The WASO of low, medium, and high doses of eszopiclone was

SMD= 0.90, 95%CI:−0.88–2.68; SMD=−0.78, 95%CI:−0.97

to −0.59; and SMD = −0.33, 95% CI: −0.58 to −0.09. The

WASO of zopiclone was SMD= 0.95, 95% CI: 3.66–1.76).

Slow wave sleep (SWS) performance in the placebo group

was also inferior to that in the sleeping drug group. Slow-wave

sleep plays an important role in restoring physical energy and

growth. The SWS of low, medium, and high doses of DORA

were SMD = 0.01, 95% CI: −0.42–0.45; SMD = 0.12, 95% CI:

−0.31–0.56; and SMD= 0.08, 95% CI:−0.36–0.52, respectively.

The SWS of high-dose eszopiclone was SMD = −0.56, 95%

CI: −0.93 to −0.18. The SWS of zopiclone was SMD = 0.55,

95% CI: 0.03–1.06. In addition, the rapid eye movement sleep
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(REM) of the ZST group also decreased. The study found that,

during REM sleep, brain protein synthesis was accelerated, and

oxygen consumption and blood flow were increased, which

could promote the recovery of energy and memory storage, thus

improving the learning and working efficiency of the next day.

Sleep efficiency (SE) of low, medium, and high doses of

DORA were SMD = 0.01, 95% CI: −0.20–0.23; SMD = 0.19,

95% CI: −0.14–0.52; and SMD = 0.35, 95% CI: 0.09–0.60,

respectively. The SE of zolpidem at low, medium, and high doses

were SMD = 0.99, 95% CI: 0.17–1.82; SMD = 1.61, 95% CI:

−0.60–3.83; and SMD= 0.42, 95% CI: 0.14–0.69. The SE of high

dose of eszopiclone (SMD = 0.22, 95% CI: −0.14–0.58). The SE

of zopiclone was SMD = 0.66, 95% CI: 0.15–1.17. Low sleep

efficiency often induces headaches, dizziness, tension, anxiety,

and other behaviors, and even falls due to muscle weakness.

Several hypnotics improve sleep efficiency to a certain extent.

Adverse event profile

Compared with the placebo group, the probabilities of low,

middle, and high doses of DORA to develop headache were RR

= 0.90, 95% CI: 0.74–1.10; RR = 0.89, 95% CI: 0.66–1.19; and

RR= 0.56, 95% CI: 0.25–1.28. Zolpidem’s probability of causing

a headache was RR = 0.29, 95% CI: 0.06–1.35 (Figure 5). The

probability of zopiclone causing a headache was RR= 3.75 (95%

CI: 1.32–10.62). The incidence of adverse events was analyzed

by the RR method. According to the forest map of adverse

results, the incidence of adverse reactions among subjects in the

DORA, zolpidem, zopiclone, and eszopiclone groups was higher

than that in the placebo group. The most common adverse

reactions were headache and somnolence. The probability of

somnolence in low, medium, and high doses of DORA was RR

= 0.37, 95% CI: 0.30–0.46; RR = 0.36, 95% CI: 0.23–0.55; and

RR = 0.06, 95% CI: 0.01–0.29, respectively. The probability of

somnolence with zolpidem was RR = 0.83, 95% CI: 0.26–2.64.

The probability of somnolence with low, medium, and high

doses of eszopiclone was relatively low: RR = 1.33; 95% CI:

0.30–5.82; RR = 0.65, 95% CI: 0.19–2.25; and RR = 0.48, 95%

CI: 0.15–1.55, respectively. The probability of somnolence with

zopiclone was RR = 0.64, 95% CI: 0.26–1.55. In addition, the

probability of fatigue occurring in low, medium, high doses of

DORA was RR = 0.64, 95% CI: 0.41–1.01; RR = 0.53, 95% CI:

0.32–0.88; and RR = 0.20, 95% CI: 0.01–4.06, respectively. The

probability of zolpidem’s fatigue was RR = 0.67, 95% CI: 0.19–

2.36. The probability of zopiclone fatigue was RR = 0.99, 95%

CI: 0.11–9.29. The present study’s most common adverse events

included somnolence, headache, dizziness, abnormal dreams,

fatigue, diarrhea, nausea, and dry mouth. The incidence of

adverse reactions was reported more at high doses than at low

doses. No serious adverse reactions were reported, and the drug

reactions were good.

Discussion

As far as we know, this meta-analysis is the first dose-

response meta-analysis of DORA cognitive research. DORA is

considered to be the latest insomnia treatment method. The

study found that it would not damage the sleep structure,

and its slight cognitive promotion effect in animal experiments

has become an undisputed research focus in the field of sleep

disorders in recent years. In the present study, we proved

that, compared with the placebo group, DORA has a lower

incidence of adverse reactions, such as headache (1.47 and 1.33%

increase, respectively, in low and medium doses), lethargy (5.25

and 6.17% increase in low and medium doses, respectively),

and fatigue (1.26 and 1.84% increase, respectively, in low and

medium doses), which can effectively improve the perception of

sleep quality of subjects. Consistent with many studies, subjects

report feeling refreshed the next morning. The subjects were

energetic (low, medium, and high doses increased the sFresh

score by 0.345, 6.6, and 3.9 points, respectively) and suffered

no damage to the daytime function (SMD = 0.06, 95% CI =

0.31–0.43) or memory performance (SMD = −0.39, 95% CI

−1.15–0.37), showing superior efficacy and safety. Although

zolpidem (low dose) is very effective in shortening sleep latency

(SMD = −0.19, 95% CI = 0.73–0.35) and prolonging sleep

duration (SMD = 1.01, 95% CI = 0.18–1.83), its tolerance and

safety are not ideal. It is likely to damage the memory and

alertness of the subjects and increase the risk of motor vehicle

driving violations/accidents the next day. Eszopiclone (low dose)

played an active role in daytime sensitivity (SMD = 0.67, 95%

CI = 0.47–1.81) and daytime function (SMD = 0.95, 95% CI

= 0.16–2.07). Surprisingly, the incidence of headaches in the

zopiclone group was 15.28% lower than in the control group.

The incidence of nightmares decreased by 8.33%.

Over the years, DORAs has developed into a very

successful hypnotic drug. DORA inhibits the hyperactive

arousal pathway of people with insomnia by blocking orexin

signal transduction. The effect of an ideal hypnotic is to

fall asleep quickly, have enough sleep throughout the night,

and have a reduced residual sleepy effect the next morning.

DORA benefits people by improving sleep, enhancing metabolic

waste removal, and strengthening the circulation of the glial

lymphoid system (Peleg-Raibstein and Burdakov, 2021). In

the follow-up survey, DORA was well tolerated without

serious safety problems, rebound, or withdrawal reactions

(Scott, 2020; Esmaili-Shahzade-Ali-Akbari et al., 2021). Based

on the different aspects of the cognitive field, orexin can

directly project to the hippocampus and affect learning

and memory and regulate cognition, indicating that DORA

treatment may be a potential strategy to improve the early

cognitive impairment of patients with insomnia (Kukkonen,

2017). Non-benzodiazepines (NBZDs), which include zolpidem,

zopiclone, and eszopiclone, have fewer addictive effects, fewer
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FIGURE 5

(A,B) A Forest map of adverse reactions in DORA, zolpidem, zopiclone, and eszopiclone groups.

neuromuscular effects, and fewer damage to cognitive function.

Especially zolpidem and eszopiclone, which only agonize

hypnotic receptors, do not aggravate receptors involved in

muscle relaxation, anxiolysis, and cognitive impairment, NBZDs

are less disruptive to normal sleep architecture, are safer than

benzodiazepines (BZDs), and have less daytime sedation and

other adverse effects (Nielsen, 2017). However, as a first-line

therapeutic drug in clinical application, the cognitive results of

zolpidem are not satisfactory. In addition, there is no clear “gold

standard” for measuring hypnotic drugs and cognitive results.

Zopidem has minor sequelae, tolerance, drug dependence and

withdrawal symptoms, and a wide range of safety (Holm and

Goa, 2000). However, when used with other central inhibitors,

it can cause severe respiratory depression (Castro et al., 2020).

It is suitable for occasional and temporary insomnia. It is

a short-term sleeping drug with common adverse reactions

such as hallucinations, excitement, nightmares, and depression.

Zopiclone and eszopiclone are representatives of the third

generation of sedative-hypnotic drugs (Zhang et al., 2020). These

drugs have definite efficacy, few adverse reactions, rapid action,

and effectiveness for up to 6 h, enabling patients to fall asleep

quickly and maintain sufficient sleep depth (Terzano et al.,

2003). No obvious drug resistance was found after long-term

use, and no rebound was found after drug withdrawal (Hesse

et al., 2003; Stranks and Crowe, 2014). The latest drug zopiclone

is a dextral isomer of zopiclone. The latest drug dexzopiclone is

a dextro isomer of zopiclone and is two times more potent than

the parent but less toxic than the parent. The order of addiction

level is as follows: benzodiazepines > zopiclone > zolpidem.

We can assume that DORA is used as a potential

preventive, therapeutic, or neuroprotective drug to target the

downregulation of the orexinergic system (Kumar et al., 2016),

not only to manage the sleep disorder of patients with insomnia

but also to improve sleep to slow down their neurodegenerative

process and slow down their cognitive impairment (Drake et al.,

2019). In short, taking DORA may provide a new possibility for

treating insomnia (mainly mild to moderate) by improving sleep

and enhancing cognition (Roch et al., 2021).

Evaluating the cognitive effects of hypnotics is a complex and

challenging task. First, due to limited amount of the extended

timespan of the hypnotics given in the articles selected for our

study and the small number of literature available, more research
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is needed on the residual effects of clinically relevant doses.

Second, considering that DORA only slightly improves short-

termmemory, there is no evidence that it can help improve long-

term memory, and the study duration of the included trials was

relatively short (Seol et al., 2019; Toor et al., 2021). It is necessary

to extend the experimental time and follow-up regularly. Finally,

because everyone has a different sensitivity to this drug, we

should also consider the effect of treatment. In short, in addition

to high-quality randomized controlled trials, more research is

needed to solve the problem of combiningDORAwith cognition

in clinical practice to help more patients.
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