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Introduction: Emerging deep learning approaches to decode motor imagery

(MI) tasks have significantly boosted the performance of brain-computer

interfaces. Although recent studies have produced satisfactory results in

decoding MI tasks of di�erent body parts, the classification of such tasks within

the same limb remains challenging due to the activation of overlapping brain

regions. A single deep learning model may be insu�cient to e�ectively learn

discriminative features among tasks.

Methods: The present study proposes a framework to enhance the

decoding of multiple hand-MI tasks from the same limb using a multi-branch

convolutional neural network. The CNN framework utilizes feature extractors

from established deep learning models, as well as contrastive representation

learning, to derive meaningful feature representations for classification.

Results: The experimental results suggest that the proposed method

outperforms several state-of-the-art methods by obtaining a classification

accuracy of 62.98% with six MI classes and 76.15 % with four MI classes on the

Tohoku University MI-BCI and BCI Competition IV datasets IIa, respectively.

Discussion: Despite requiring heavy data augmentation and multiple

optimization steps, resulting in a relatively long training time, this scheme is

still suitable for online use. However, the trade-of between the number of

base learners, training time, prediction time, and system performance should

be carefully considered.
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brain-computer interface, ensemble learning, representation learning,

motor-imagery, motor rehabilitation
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1. Introduction

Strokes, a leading cause of death worldwide, occur when

blood flow to the brain is restricted, preventing brain tissues

from receiving a sufficient supply of oxygen (Armour et al.,

2016). Most survivors experience paralysis—the permanent loss

of muscle control. The power of the mu and beta oscillatory

rhythms in the sensorimotor areas decreases and increases

in response to motor events during the processes of motor

imagery (MI) and real motor execution (Pfurtscheller and

da Silva, 1999). These phenomena are known as event-related

desynchronization (ERD) and event-related synchronization

(ERS), respectively. ERD/ERS patterns are typically observed

using electroencephalograms (EEG), which offer affordability,

non-invasiveness, and high temporal resolution (Bereś,

2017). The MI-based brain-computer interface (MI-BCI) is a

promising technology that provides a communication pathway

to control computer applications and peripheral devices by

translating motor intentions from EEG signals to computer

commands (Padfield et al., 2019). This system allows users

with motor impairments to manipulate orthoses and assistive

robots simply by imagining physical motions (Venkatakrishnan

et al., 2014; Bhattacharyya et al., 2016; He et al., 2018). The high

elicitation of ERD during MI execution contributes to the motor

recovery process (Pfurtscheller and Neuper, 2001; Chaudhary

et al., 2015). Consequently, the MI-BCI has gained significant

attention in the field of motor rehabilitation.

Although the field of MI-BCI has experienced significant

developments over the past several decades, the general use of

EEG-based BCI remains hindered by the poor spatial resolution

of EEG, which limits the range of unique MI tasks that

the system can distinguish (Yong and Menon, 2015). Other

suboptimal characteristics of EEG, such as a low signal-to-noise

ratio and high dimensionality, also represent major challenges in

BCI (Rashid et al., 2020). Common MI tasks employed to build

the system include hand, foot, and tongue imaging (Ang et al.,

2012). The classification of such tasks by conventional machine

learning algorithms has been relatively successful, as these tasks

activate spatially well-separated regions of the motor cortex.

However, they offer only one degree of freedom for orthotic

control usage (Pfurtscheller et al., 2003). For practical purposes,

the system must be able to decode a wider range of motions,

particularly within the same limb. To date, only a handful of

studies have examined the decoding of different MI tasks within

the same limbs, and most have yet to produce acceptable results,

as the tasks activate very close or overlapping regions of the brain

(Plow et al., 2010).

Recent advancements in hardware and software have led

to the development of increasingly sophisticated algorithms,

such as deep learning (DL). DL applications have demonstrated

significant improvements over classical machine-learning

approaches across various domains (Goodfellow et al., 2015).

DL algorithms automatically discover discriminative features

from raw inputs, thus eliminating the need for handcrafted

features and enabling end-to-end processing. Consequently,

DL architectures -specifically convolutional neural networks

(CNN) (Schirrmeister et al., 2017; Lawhern et al., 2018; Sakhavi

et al., 2018)—are increasing in popularity as their performance

outperforms that of traditional approaches. However, the

scarcity of available training samples in BCI often leads to

overfitting. As a result, DL in BCI can only yield marginal

improvements over handcrafted methods (Phunruangsakao

et al., 2022).

Ensemble learning is a method that employs multiple

individual DL models, known as base learners, to build a

single strong learner. This approach can enhance classification

performance, increase robustness, and reduce overfitting

compared to a typical DL model (Dietterich, 2000; Ganaie

et al., 2021). Accordingly, this paper proposes a novel multi-

branch CNN (MBCNN) to improve the classification of hand

MI tasks (grasping, flexion, and extension). MBCNN assumes

that each DL model can learn different discriminative features.

Thus, the models compensate for each other’s drawbacks. By

concatenating deep features, the classifier can fully leverage

informative feature representation, thereby improving its

discriminating capabilities. However, the concatenated features

may induce adverse effects, such as a slower training process

and overfitting owing to an increase in redundant and irrelevant

features (Yu and Liu, 2004). To address this issue, contrastive

representation learning has been applied to MBCNN (MBCL)

to group features together by class. In addition, an optimized

weighted voting strategy with differential evolution (DE) is

employed to validate whether model assemblage via feature

concatenation improves overall system performance compared

to prediction voting.

2. Related work

The loss of motor functions due to nervous system disorders

and injuries is a long-standing medical concern. Over the

past several decades, MI-BCI has been anticipated to restore

motor functions by allowing computerized devices to be

controlled by brain signals. However, the practical applications

of this approach are severely limited, as current systems have

relatively low degrees of freedom, classification performance,

and robustness for robotic control. Several methods, including

ensemble learning, have recently been proposed to address

these issues.

A base learner refers to an individual learner, feature

extractor, or classification model that can be assembled via

ensemble learning to form a single strong learner. Ensemble

learning often yields higher classification accuracy than

traditional DL models (Dietterich, 2000; Ganaie et al., 2021).

Most existing ensemble learning approaches for MI-BCI can be

categorized as ensemble classification or feature combinations.
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The underlying concept of ensemble classification is to

combine predictions from multiple classifiers to improve the

generalizability or robustness of a single-base classifier. Feature

combinations comprise sets of features extracted from the same

raw data using different extractionmethods. The combination of

different features can boost classifier performance by providing

stronger discriminative descriptors to the classifier.

One approach to ensemble classification is the

transformation of a multiclass classification problem to a

multiple binary classification problem. This can be achieved

using a one-vs-one (OvO) or one-vs-rest (OvR) strategy. Liao

et al. (2014) used an OvO strategy to assemble 10 binary

classifiers corresponding to 10 pairs of finger movements

that use movement-related spectral changes as features. They

achieved an average classification rate of 77.1% when a support

vector machine was employed as the classifier. The study by

Vuckovic and Sepulveda (2008) adopted a similar approach to

classifying pairs of extension, flexion, pronation, and supination,

and obtained a decoding accuracy as high as 80% in certain

subjects. Geng et al. (2008) applied OvR to reduce the number

of classifiers corresponding to four mental tasks, whereas Jeunet

et al. (2015) used combined shrinkage linear discriminant

analysis (Lotte and Guan, 2010) to decode MI tasks and

explore relationships between the users’ control performance,

personality, cognitive profiles, and neurophysiological markers.

In contrast to the methods previously mentioned, ensemble

classification by meta-learning does not require the addition

of new base learners as more classes are added. Instead, the

metalearning algorithm combines predictions from multiple

base learners trained on the same dataset to enhance

the ensemble model’s generalizability. Silva et al. (2017)

demonstrated that ensemble multi-layer perceptron (MLP)

models outperform single MLPs under an appropriate training

scheme. Ramos et al. (2017) explored the voting ensemble to

make the final prediction based on the sum of predictions

made by the base learners. They combined the outputs

of 11 different classification algorithms and compared the

performance of the voting ensemble via majority voting and

weighted majority voting. The results show that voting weights

optimized by the genetic algorithm produced the optimal

results. Bashashati et al. (2016) built an ensemble model from

classifiers trained with different hyper-parameters (frequency

bands, channels, and time intervals), automatically tuned by

Bayesian optimization. This approach yielded results similar

to those obtained by state-of-the-art methods. The multi-

branch 3D CNN developed by Zhao et al. (2019) utilizes three

CNNs with different filter sizes to extract a wider variety of

features, wherein the CNNs’ softmax outputs are combined

to obtain the final predictions. An insufficient number of

base learners may cause instability in the ensemble classifier,

whereas an excessive number of base learners introduces high

computational complexity. This trade-off must be carefully

evaluated, as a low prediction time and high classification

accuracy are important for the system to be practical (Ruta and

Gabrys, 2005).

C2CM (Sakhavi et al., 2018) uses a feature combination by

modifying the filter bank common spatial pattern (FBCSP) (Ang

et al., 2012), and combining the envelope representation with a

CNN to aid pattern recognition within the input. Riyad et al.

(2020) added 4 different branches to EEGNet (Lawhern et al.,

2018), enabling it to derive meaningful feature representation.

The approach developed by Amin et al. (2019) concatenates

deep features from several CNNs with different architectures

to improve MI classification accuracy. Li et al. (2019) utilized

a channel-projection mixed-scale CNN to account for the

spatial dependencies and varying temporal information of EEG

input. TS-SEFFNet (Li et al., 2021) incorporates squeeze-and-

excitation feature fusion to map temporal and multispectral

features onto a representation space. A study by Özdenizci et al.

(2018) exploited EEG and electromyography signals to decode

complex hand gestures using hierarchical graphical models.

Although feature combinations can yield more informative

features that aid classification, a degree of feature learning must

be incorporated to eliminate redundant and irrelevant features

that may confuse the classifier. Özdenizci and Erdoğmuş (2019)

utilized information theoretic feature transformation learning

to reduce the confounding effects of heuristic feature ranking

and selection caused by dimensionality reduction approaches,

such as common spatial patterns. Ma et al. (2022) developed

a time-distributed attention network that contains class- and

band-attention submodules. NeuroGrasp (Cho et al., 2021)

integrates a CNN and bidirectional long short-term memory

for feature extraction. The features were subsequently adapted

using convolutional SiamNet with contrastive loss. Although

these methods have demonstrated great potential for decoding

complex tasks within the same limb, their classification accuracy

remains relatively insufficient for practical use.

3. Methodology

The proposed multi-branch CNN with contrastive

representation learning (MBCL) was trained by sequential

optimization with a sliding window to augment the data. The

optimization comprises three sequential steps: pretraining,

contrastive representation learning, and fine-tuning. During

pretraining (Figure 1A), multiple base learners were initialized

and individually optimized on the same training samples

to address the same multiclass classification problem using

Equation (3). The base learner is a typical DL architecture that

includes a feature extractor and a classifier, wherein the feature

extractor is assumed to learn a unique representation. The

concatenation of these features can aid the classification process

by providing more informative, distinctive, and independent

features. Three base learners were employed during the
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FIGURE 1

Overview of the proposed multibranch convolutional neural network with contrastive representation learning via sequential optimization. (A)
Pretraining: The base learners are separately pretrained on the same dataset. (B) Contrastive representation learning: The features of the
pre-trained extractors are concatenated and optimized. (C) Fine-tuning: The classifier is trained on the projected feature. Dashed lines indicate
the frozen model, F is the feature extractor, H is the classifier, P is the feature projector, Lcls is the cross entropy loss function, and Lsup is the
supervised contrastive loss function.

experiment: ShallowConvNet, DeepConvNet, and EEGNet. The

base learner architecture is summarized in Table 1.

Owing to the intra-subject variability and poor spatial

resolution of EEG signals, the deep feature mapping of

equivalent MI tasks may be too sparse, whereas that of

different MI tasks may be too compact. Moreover, deep

feature representation from different feature extractors

may introduce irrelevant and redundant features that

can skew classifier performance. To address these issues,

contrastive representation learning was conducted, wherein

each classifier was detached from its base learner to allow feature

concatenation. Subsequently, a feature projector was added for

contrastive representation learning (Figure 1B). The feature

extractors were frozen in this step, as an excessive number of

trainable parameters in the extractors may cause overfitting

when mapping the contrastive features. The feature projector

was optimized via supervised contrastive loss, as shown in

Equations (1), (2).

After the feature representation was optimized, the classifier

head was added on top of the feature projector (Figure 1C). The

layers below the classifier were frozen when the classifier was

fine-tuned on the projected features using Equation (3). Finally,

an end-to-end model was built and prepared for classification.

3.1. Network architecture

3.1.1. Feature extractor

Feature extraction is a process wherein relevant information

or characteristics are derived such that the raw input can be

easily interpreted (Azlan and Low, 2014). Therefore, it is crucial

to increase the effectiveness of the classifiers. Raw EEG signals

are usually assumed to carry spatio-temporal information;

therefore, they cannot be treated as a special type of images

(Lotte et al., 2007). FBCSP is among the most widespread feature

extraction algorithms that learn spatio-temporal features from

multiple subbands of EEG signals (Ang et al., 2012). Although

FBCSP has successfully demonstrated its strength in extracting

discriminative features from EEG, it is sensitive to noise and

artifacts. Recently, many studies have introduced DL approaches

that mimic the functionality of FBCSP.

Inspired by the success of CNNs in computer vision,

Schirrmeister et al. (2017) developed DeepConvNet, which can

extract a wide range of features. Its architecture comprises

four convolutional-max-pooling blocks. The first block was

specifically designed to handle a large number of EEG

channels by sequentially applying temporal convolutions, spatial

filtering, and max-pooling with a linear activation function. The

remaining three blocks employ standard convolutional-max-

pooling (ConvBlock) with ELU activation for feature extraction.

The authors further proposed ShallowConvNet. The first two

layers of ShallowConvNet perform the temporal and spatial

filtering, which resemble the bandpass and spatial filtering steps

in FBCSP. Likewise, batch normalization, average pooling, and

logarithmic activation resemble the log-variance computation

in FBCSP. Unlike FBCSP, however, ShallowConvNet allows

all steps to be jointly optimized by combining them into a

single end-to-end model. Lawhern et al. (2018) introduced a

compact CNN architecture called EEGNet, which uses depth-

wise and separable convolutional layers to reduce the trainable

parameters, thus avoiding overfitting.

The present study employed ShallowConvNet,

DeepConvNet, and EEGNet as feature extractors for MBCNN,

MBCL, and DE. Each model’s architecture is summarized in

Table 1. Because the sampling frequency of Dataset IIa is double

that of the Tohoku MI-BCI dataset, the kernel lengths of the

feature extractor are different.

3.1.2. Feature projector

Owing to the intra-subject variability and overlapping

activation of brain regions generated by MI tasks, training a
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TABLE 1 Architecture and parameters of each module, and ELU is exponential linear unit.

Module Layer Filter Tohoku MI-BCI BCI dataset IIa Activation

Kernel Output dim Kernel Output dim

ShallowConvNet (Schirrmeister et al., 2017)

Input - - (16, 128, 1) - (22, 1,000, 1) -

Conv2D 40 (1, 13) (16, 116, 40) (1, 26) (22, 976, 40) -

Conv2D 40 (16, 1) (1, 116, 40) (16, 1) (1, 976, 40) -

BatchNormalization - - (1, 116, 40) - (1, 976, 40) ELU

AveragePooling2D - - (1, 12, 40) - (1, 61, 40) Log

Dropout - - (1, 12, 40) - (1, 61, 40) -

Flatten - - (480) - (2,440) -

DeepConvNet (Schirrmeister et al., 2017)

Input - - (16, 128, 1) - (22, 1,000, 1) -

Conv2D 25 (1, 2) (16, 124, 25) (1, 3) (22, 991, 25) Linear

Conv2D 25 (16, 1) (1, 124, 25) (22, 1) (1, 991, 25) Linear

BatchNormalization - - (1, 124, 25) - (1, 991, 25) ELU

MaxPooling2D - - (1, 62, 25) - (1, 330, 25) -

Dropout - - (1, 62, 25) - (1, 330, 25) -

ConvBlock 50 (1,5) (1, 29, 50) (1,10) (1, 107, 50) ELU

ConvBlock 100 (1,5) (1, 12, 100) (1,10) (1, 32, 100) ELU

ConvBlock 200 (1,5) (1, 4, 200) (1,10) (1, 7, 200) ELU

Flatten - - (800) - (1,400) -

EEGNet (Lawhern et al., 2018)

Input - - (16, 128, 1) (22, 1,000, 1) -

Conv2D 8 (1,64) (16, 128, 8) (1,128) (22, 1,000, 8) -

BatchNormalization - - (16, 128, 8) - (22, 1,000, 8) ELU

DepthwiseConv2D 16 (16,1) (1, 128, 16) (22,1) (1, 1,000, 16) -

BatchNormalization - - (1, 128, 16) - (1, 1,000, 16) ELU

AveragePooling2D - (1,4) (1, 32, 16) (1,8) (1, 125, 16) -

Dropout - - (1, 32, 16) - (1, 125, 16) -

SeparableConv2D 16 (1,16) (1, 32, 16) (1,32) (1, 125, 16) -

BatchNormalization - - (1, 32, 16) - (1, 125, 16) ELU

AveragePooling2D - (1,8) (1, 4, 16) (1,16) (1, 7, 16) -

Dropout - - (1, 4, 16) - (1, 7, 16) -

Flatten - - (64) - (112) -

Feature projector
Input - - (1,344) - (3,952) -

Dense - 16 (16) 16 (16) ELU

Classifier
Input - - (16) - (16) -

Dense - 6 (6) 4 (4) Softmax

classification model with only traditional cross-entropy loss

may cause suboptimal generalizability in the model. The

core idea of contrastive representation learning is to project

feature representations such that samples from the same class

are grouped together, whereas samples from different classes

are projected further apart (Khac et al., 2020). To achieve

this, a feature projector is employed to learn contrastive

representations from the deep convolutional features produced

by feature extractors. The projector comprises a single 16-unit

dense layer with exponential linear unit (ELU) activation, which

was empirically found to produce the optimal results. While

contrastive learning can be applied in both supervised and

unsupervised settings, a supervised setting ismore suited forMI-

BCI because it allows for the full utilization of labeled samples.

Conversely, an unsupervised setting requires a large number of

training samples, which are generally not available in MI-BCI.

During contrastive representation learning, a feature

projector is trained using supervised contrastive loss (Khosla

et al., 2020). The loss function is formulated as follows:

Lsup =
∑

i∈I

L
i
sup (1)
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∑

i∈I

L
i
sup =

∑

i∈I

−1

P(i)

∑

p∈P(i)

log
exp

(

zi · zp/τ
)

∑

a∈A(i) exp (zi · za/τ)
(2)

Where i ∈ I ≡ {1 . . .N} is the index of the sample in

the mini-batch, A(i) ≡ I\{i} is the index without i, z is the

projected feature, τ is the temperature constant, and P(i) ≡
{

p ∈ A(i) : ỹp = ỹi

}

is the set of indices for all positive samples

without i.

Temperature plays a significant role in determining the

robustness of a classifier. While a smaller temperature tends to

produce better results, the numerical instability makes it more

difficult to train. To optimize the results, the temperature in the

present study was empirically set at 0.05. Data augmentation is

also essential in contrastive learning, as it increases the number

of negative and positive samples. Accordingly, a sliding window

was employed to simulate data augmentation.

3.1.3. Classifier

A single dense layer with softmax activation is used to

decode the motor intention from the feature representation.

The shallow architecture of the classifier allows features to be

processed directly, thus minimizing overfitting. The classifier

outputs the probability of the sample belonging to each class and

is optimized using cross-entropy loss, represented by the sum

of the negative logarithms of the predicted probabilities of each

class:

Lcls = −E

cls
∑

k=1
(y==k) log(H(z)) (3)

where is an indicator function dependent on the condition

that y == k, H is the classifier, and z is the projected feature.

4. Experiment

To verify the benefits of contrastive representation learning,

the performance of MBCL was compared with that of MBCNN,

wherein contrastive representation learning and the feature

projector were disabled. Because MBCNN did not utilize the

feature projector, its training steps only encompassed base

learner pretraining and classifier fine-tuning. Because feature

concatenation may induce feature redundancy, MBCNN and

MBCL were additionally compared with an optimized weighted

voting ensemble strategy using differential evolution (DE), as

described in Section 4.2. To ensure a fair comparison, MBCNN,

MBCL, and DE used the same feature extractor and classifier.

All models were implemented in the TensorFlow library

using the Keras API and trained on an Intel Core i7 CPUwith an

NVIDIA GeForce GTX 1070 GPU. The models were fitted using

the Adam optimizer with a learning rate of 1e−3, batch size of

32, and dropout probability of 0.5. The training was terminated

FIGURE 2

Timing of the Tohoku University MI-BCI dataset signal
acquisition. The trial timeline is a sequence of a side cue (SC), an
animation (AA) of the MI task requested, a MI task performing, a
visual reinforcement (R), and an end cue (Achanccaray et al.,
2021).

when cross-entropy loss (Equation 3) had stopped improving for

10 epochs.

4.1. Dataset description and
preprocessing

4.1.1. Tohoku University MI-BCI dataset

The dataset (Achanccaray et al., 2021) was acquired from

the Neuro-Robotics Laboratory, Tohoku University. It includes

EEG data from 18 able-bodied subjects (15 males and 3 females;

17 right-handed and 1 left-handed; aged between 19 and 39

years) who performed 20 trials of 3 motor imagery tasks

(grasping, flexion, and extension) on each hand. Brain activity

was recorded with a 16-channel g.USBamp (g.tec Medical

Engineering GMBH) amplifier with a sampling frequency of 512

Hz. Wet active electrodes were placed at AF3, AF4, FC3, FCz,

FC4, C3, Cz, C4, T7, T8, CP3, CPz, CP4, Pz, O1, and O2, in

accordance with the 10–20 international system. During data

acquisition, subjects were instructed to minimize their head and

eye movements.

Figure 2 shows the signal acquisition timing scheme. A

fixation cross is shown during [0, 2]s of each trial to indicate the

side of theMI task. Consequently, an animation of the randomly

chosenMI task is played during [2, 4]s. Next, the subject is asked

to repeatedly perform the requested MI task for 6 s. Then, the

subject is given a visual reinforcement for 2 s. Finally, a blue line

is shown on the screen to signal the end of the trial.

The 6-s MI trials were downsampled by a factor of 4

and filtered using an eighth-order Butterworth bandpass filter

with a cut-off frequency of 0.5 and 30 Hz and a fourth-order

50 Hz notch filter, artifact removal and standardization were

not performed, following the preprocessing steps described in

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1032724
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Phunruangsakao et al. 10.3389/fnhum.2022.1032724

the original paper (Achanccaray and Hayashibe, 2020) for fair

comparison. The dataset was divided into training and test

sets using 5 repetitions of stratified 5-fold cross-validation with

different randomization for each repetition, i.e., the experiments

done on this dataset were evaluated 25 times on different sets of

training and test samples with no data leakage.

There have been several attempts to decode multiple hand-

MI tasks, but most of the studies focused only on tasks from

either left or right hand (Edelman et al., 2015; Yong and Menon,

2015; Achanccaray and Hayashibe, 2020; Chu et al., 2020).

Hence, this experiment aims to expand the applicability of MI-

BCI system by decoding multiple MI tasks from both hands.

Furthermore, the MI tasks exemplified by this dataset are highly

demanding for motor rehabilitation, as upper-body paralysis

is the most common. Therefore, this dataset was selected for

the experiment.

The training times for MBCNN andMBCL under sequential

optimization and sliding windowing on this dataset were 279.41

± 4.34s and 296.36± 8.58s, respectively.

4.1.2. BCI competition IV dataset IIa

The dataset (Tangermann et al., 2012) comprises 22-channel

EEG samples from 9 subjects performing left/right hand, foot,

and tongue MI movements (72 trials for each task). All signals

were sampled at 250 Hz. Subjects were asked to perform an MI

task for 4 s.

The samples were filtered using a third-order Butterworth

bandpass filter with cutoff frequencies of 4 and 38 Hz, and

later standardized using electrode-wise exponential moving

standardization to reduce noise (Gramfort et al., 2013),

following the procedure described in Schirrmeister et al. (2017)

for fair comparison. The standardization is formulated as

follows:

x′k =
xk − µk

√

σ 2
k

(4)

Where x′
k
and xk are standardized signal and raw signal

at time k, respectively. µk and σ 2
k
denote exponential moving

average and variance which are calculated by:

µk = (1− α)xk + αµk−1

σ 2
k = (1− α)

(

xk − µk

)2
+ ασ 2

k−1

(5)

Where α is the decay factor, set to 0.999. At the beginning

of each epoch, µ0 and σ 2
0 were set as the mean and

variance, respectively, of each electrode. The dataset was split

in accordance with the competition guideline (Ang et al., 2012),

where two EEG recording sessions were used for training

and testing, respectively. The experiment on this dataset was

repeated ten times to reduce bias.

This dataset, which is commonly employed as a benchmark,

was selected to verify that the proposed scheme can effectively

decode MI tasks not only within the same limb but also among

different limbs.

The training times for MBCNN andMBCL under sequential

optimization and sliding windowing on this dataset were 103.77

± 9.90s and 117.94± 13.04s, respectively.

4.1.3. Sliding window

The lack of training data inMI-BCI often leads to overfitting.

Data augmentation is a process that mitigates this issue by

generating new samples via small modifications to the original

samples. Schirrmeister et al. (2017) demonstrated that the use

of sliding windows to create multiple crops from each trial

improves the model’s generalizability and robustness while

reducing overfitting. Likewise, a sliding window was used to

augment the samples in this study.

The trials on the Tohoku University MI-BCI dataset were

reshaped using a 1-s windowwith a 0.1-s stride. The first window

starts at the onset time, and the last window ends at the trial time,

in accordance with the original procedure (Achanccaray et al.,

2021). This resulted in a total of 53 windows per trial.

Schirrmeister et al. (2017) used a 2-s sliding window

to augment the samples in BCI Dataset IIa, wherein the

first window starts at 0.5 s before onset time, and the last

window ends with the trial, resulting in 625 windows per trial.

However, in this study, the samples in BCI Dataset IIa were

reshaped using a 4-s window with a 0.1-s stride to reduce the

computational load.

Note that there was no data leakage between the training and

test sets.

4.2. Optimized weighted voting
ensemble strategy

Theoretically, an increase in the number of training features

improves the DL model’s discriminating power. However,

training an ensemble model on excessive training samples

has adverse effects, such as a slower training process and

overfitting owing to feature redundancy (Yu and Liu, 2004).

The voting ensemble strategy combines predictions from

multiple models to obtain a final prediction. In contrast

to the feature combination approach, this strategy does not

share feature representations among the models and reduces

coupling between different MI tasks, resulting in less feature

redundancy and higher robustness (Duan et al., 2014; Subasi and

Mian Qaisar, 2021). Therefore, it was used for comparison with

the MBCNN and MBCL models in this experiment.

Because some base learners are assumed to be more reliable

than others, this study proposes an optimized weighted voting

ensemble strategy, wherein each base learner is assigned a

different weight or contribution to the final prediction. The

softmax outputs from the base learners were multiplied by
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FIGURE 3

Flow chart of di�erential evolution algorithm.

the assigned weights, and the class with the highest summed

probability was selected for the final prediction. The weights

were optimized using a differential evolution (DE) (Storn and

Price, 1997), whose objective function is to maximize the

classification accuracy within the training dataset.

DE is a population-based optimization method that

iteratively selects the optimal candidate through an evolutionary

process. As shown in Figure 3, the algorithm consists of four

steps: initialization, mutation, crossover, and selection. It begins

with a random population initialization of possible solutions.

During each iteration, the population vectors (parents) undergo

mutation and crossover to produce a large variety of candidate

solutions (offspring). The selection step replaces the parents

with the offspring, yielding a lower objective function value.

It was found that 100 generations, 50 populations, [0.5, 1]

mutation probability, and 0.7 crossover probability produced the

best results during the empirical experiment. Accordingly, those

parameters were assigned for the weight optimization.

5. Result and discussion

The experimental results on the Tohoku University dataset

(Achanccaray et al., 2021) with six MI classes are presented in

terms of classification accuracy, Cohen’s kappa value, p-value,

and average prediction time. The kappa value was used to assess

the inter-rater reliability, or likelihood that the results were

generated by chance. It ranges between –1 and 1, where –1

represents total disagreement, 0 indicates no agreement, and 1

denotes perfect agreement. The values are calculated as follows:

κ =
p0 − pe

1− pe
(6)

Where p0 is the classification accuracy and pe is the

random classification accuracy. A statistical test was performed

to observe the significance between MBCL and the alternative

methods. The normality of the classification accuracy was

tested using the Shapiro-Wilk (S-W) test, where a p-value

exceeding 0.05 suggests normality. Because the test’s results

indicate that the accuracy does not exhibit a normal distribution,

a Mann-Whitney U-test was employed to calculate the

statistical significance, where a p < 0.05 implies a significant

statistical difference. One major drawback of the multi-branch

architecture is its high computational complexity. Therefore, the

average prediction time must be assessed to determine whether

the prediction model is suitable for online applications. This was

calculated by averaging the time taken by the model to predict

all test samples.

Because there is no released code for comparable ensemble

learning approaches, these results were solely compared with

those obtained by the base learners. Therefore, the proposed

methods were subsequently evaluated on BCI Dataset IIa with

four MI tasks to further validate their performance. These

results were compared with those obtained by several state-of-

the-art approaches, including the BCI competition IV winner

(FBCSP; Ang et al., 2012), feature combination approaches (CP-

MixedNet; Li et al., 2019, TS-SEFFNet; Li et al., 2021, Incep-

EEGNet; Riyad et al., 2020, and C2CM; Sakhavi et al., 2018),

and ensemble classification methods (3D CNN; Zhao et al., 2019

and BO; Bashashati et al., 2016). Because the comparative results

on BCI Dataset IIa were obtained from original papers and

re-implementations, only the classification accuracy and kappa

value were used as evaluation metrics. Results from the Tohoku

University and BCI IIa datasets are presented in Tables 2, 3,

respectively. The highlighted results indicate the optimal values

for each case.

The results from Tohoku University dataset reveals that the

ensemble techniques (DE, MBCNN, and MBCL) significantly

outperform the non-ensemble techniques (ShallowConvNet,

DeepConvNet, and EEGNet) in all cases. This is mainly due

to the capability of the base learners to compensate for one

another’s weaknesses, as some base learners may be able to

learn discriminative features other base learners cannot, and

provide informative features to the classifier. Upon comparing

the statistical significance betweenMBCL and other approaches,

it is found that there is a statistically significant between all pairs

(p < 0.05). Additionally, DE and MBCNN are compared. The

main difference between these methods lies in how the base

learners are assembled. MBCNN concatenates the features from

each base learner and feeds them into the classifier, whereas

DE utilizes a voting strategy to optimize the prediction of

the base learners. Despite the potential harmful effects that

redundant and irrelevant features may have on the classifier

in MBCNN, the results show that the classification accuracy

of DE and MBCNN from both dataset are closely matched.

Therefore, the negative effects of such features are negligible.

MBCNN also exhibited superior performance over several

feature combination approaches and DE outperformed some

ensemble classification methods on BCI dataset IIa.
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TABLE 2 Performance comparison of di�erent approaches on six MI classes Tohoku University MI-BCI dataset, where highlighted results indicate

the best values for each case.

Subject ShallowConvNet

(Schirrmeister et al.,

2017)

DeepConvNet

(Schirrmeister et al.,

2017)

EEGNet

(Lawhern et al., 2018)

DE MBCNN MBCL

T01 42.42 42.75 33.50 44.09 44.05 44.21

T02 69.83 66.88 67.57 71.78 70.48 72.95

T03 80.50 76.65 78.24 81.58 80.90 83.05

T04 69.34 63.3 72.45 72.85 71.33 75.28

T05 53.17 58.21 48.75 58.22 60.06 61.05

T06 67.98 65.11 59.55 69.47 71.55 73.11

T07 71.54 69.21 70.30 70.94 70.87 72.39

T08 48.76 47.47 49.05 49.95 50.12 51.49

T09 54.46 52.21 51.17 54.87 55.80 56.46

T10 71.23 61.74 61.62 72.32 70.26 73.28

T11 59.59 56.52 56.92 60.01 59.92 62.34

T12 48.75 40.85 48.85 48.50 46.48 48.97

T13 65.45 61.71 66.27 64.14 64.83 66.26

T14 58.87 54.08 47.50 59.05 58.16 60.97

T15 70.07 69.92 62.59 72.04 72.55 71.75

T16 71.25 67.23 70.18 72.14 71.42 73.55

T17 44.39 42.48 37.68 46.23 47.97 50.38

T18 34.09 32.74 27.63 33.82 33.46 36.15

Average 60.09 57.17 56.10 61.22 61.12 62.98

Kappa 0.5043 0.4671 0.4552 0.5179 0.5176 0.5410

p-value 0.0018 ≪0.05 ≪0.05 0.0597 0.0448 -

Time (ms/sample) 2.4013 2.6254 2.3501 2.9345 3.1824 3.3186

TABLE 3 Performance comparison of di�erent approaches on four MI classes BCI competition IV dataset IIa, where highlighted results indicate the

best values for each case.

Subject Average Kappa

A01 A02 A03 A04 A05 A06 A07 A08 A09

FBCSP (Ang et al., 2012) 76.00 56.50 81.25 61.00 55.00 45.25 82.75 81.25 70.75 67.75 0.6000

3D CNN (Zhao et al., 2019) 77.40 60.14 82.93 92.29 75.84 68.99 76.04 76.85 84.66 75.01 0.6440

CP-MixedNet (Li et al., 2019) 74.65 53.47 73.26 70.14 67.36 48.96 74.31 72.92 69.44 67.17 0.5620

TS-SEFFNet (Li et al., 2021) 82.29 49.79 87.57 71.74 70.83 63.50 82.92 81.53 81.94 74.71 0.6630

TSSM (Xie et al., 2017) 80.00 58.70 86.30 68.20 60.30 59.20 84.40 84.00 89.60 74.52 0.5930

BO (Bashashati et al., 2016) 82.12 44.86 86.60 66.28 48.72 53.30 72.64 82.33 76.35 68.13 0.5751

Incep-EEGNet (Riyad et al., 2020) 78.47 52.78 89.93 66.67 61.11 60.42 90.62 82.29 84.37 74.07 0.6540

C2CM (Sakhavi et al., 2018) 87.50 65.28 90.28 66.67 62.50 45.49 89.58 83.33 79.51 74.46 0.6595

DE 82.69 45.78 89.76 69.00 62.31 52.89 94.42 80.10 83.20 73.35 0.6447

MBCNN 80.06 46.30 88.91 71.16 65.70 54.40 92.46 79.51 82.74 73.47 0.6429

MBCL 82.74 52.85 88.20 77.27 67.92 58.15 94.37 80.51 83.33 76.15 0.6820

The concatenated features from feature combination

approaches, including MBCNN, are unlikely to be

optimized for subsequent classification. To improve the

discriminative power of the classifier, MBCL employs

contrastive representation learning, which leverages

annotated samples to accommodate intra-subject non-

stationarity and enhance feature representation. This

allows the features to be more discriminative and

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1032724
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Phunruangsakao et al. 10.3389/fnhum.2022.1032724

FIGURE 4

Confusion matrix of di�erent approaches on Tohoku University MI-BCI dataset. The classes are abbreviated as follows; LG, Left Grasping; RG,
Right Grasping; LF, Left Flexion; RF, Right Flexion; LE, Left Extension; RE, Right Extension.

minimizes the intra-class distance while maximizing the

inter-class distance. Consequently, the proposed MBCL

approach produced the optimal decoding performance for

both datasets.

Although the average classification accuracy of MBCL

was the highest on BCI Dataset IIa, it did not produce the

highest accuracy in any individual subject. The most plausible

explanation is that the hyperparameters for training were

not optimized for this dataset as they were set empirically.

Specifically, the temperature constant (τ ) in Equations (1), (2)

notably contributes to the feature mapping for each subject.

By applying contrastive representation learning without proper

value of τ , the resulting feature mappings were unlikely to

be optimal for the classifier. This issue can be mitigated by

performing cross-validation.

As illustrated by the confusion matrices (Figure 4), the

predictions generated by different classification models and

ensemble techniques can enhance prediction performance for

all classes. The flexion and extension tasks activate overlapping

brain regions related to wrist movements, whereas grasping

activates finger-movement-related brain regions (Sanes et al.,

1995). Although all models performed adequately well on

grasping, this was not the case for flexion and extension.

Regardless of enhanced classification performance, ensemble

techniques still have difficulties classifying MI tasks within

the same limb, as the base learners cannot effectively

discriminate among them. The t-distributed stochastic neighbor

embedding (van der Maaten and Hinton, 2008) (t-SNE) plot in

Figure 5 depicts the feature distribution mapped using different

approaches on Subject 3 of the Tohoku University dataset.

This confirms that MBCL can map features of the same

class more compactly, and features of different classes more

distantly, than othermethods, as it was trained under contrastive

representation learning. Despite the additional training step,

the confusion between flexion and extension shown by the

MBCL was still high. Specifically, the accuracy of flexion and

extension was half that of grasping. This illustrates the fact that

the discriminative performance of an ensemble model depends

heavily on the base learners. Furthermore, the dataset provides

16-channel EEG signals, which may fail to effectively capture

important information in overlapping brain regions, leading to

poor discriminability among tasks within the same limb.

Recent studies have shown that graph-based approaches

are able to produce higher classification accuracy than CNN
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FIGURE 5

t-SNE plot of feature embedding on subject 3 of Tohoku University MI-BCI dataset. The classes are abbreviated as follows; LG, Left Grasping; RG,
Right Grasping; LF, Left Flexion; RF, Right Flexion; LE, Left Extension; RE, Right Extension.

TABLE 4 Performance comparison of methods under di�erent training schemes.

Sequential optimization Joint optimization

Sliding window Trial-wise Sliding window Trial-wise

Dataset Method Average Kappa Average Kappa Average Kappa Average Kappa

Tohoku MI-BCI

DE 61.22 0.5179 49.94 0.3819 -

MBCNN 61.12 0.5176 46.24 0.3341 54.58 0.4436 20.58 0.0001

MBCL 62.98 0.5410 39.33 0.2458 56.57 0.4679 21.58 0.0095

BCI dataset IIa

DE 73.35 0.6447 65.24 0.5366 -

MBCNN 73.47 0.6429 66.13 0.5484 65.05 0.5347 65.04 0.5339

MBCL 76.15 0.6820 66.77 0.5569 65.04 0.5338 61.59 0.4879

since they are more effective at capturing long-term temporal

dependencies and intricate functional brain connectivity among

channels (Stefano Filho et al., 2018; Zhang et al., 2020; Demir

et al., 2021). CNN’s basic presumption that electrodes are

equally spaced apart, akin to picture pixels, prevents it from

exploring discriminative EEG representations (Zhong et al.,

2022). Although applying a 2D convolutions to each EEG trial

may mitigate the issue, the flattening of 3D representations for

classification may cause information loss. Therefore, adopting

graph neural network or transformer, rather than CNN, as

base learners could potentially increase the performance of the

proposed method.

In addition, because DL models usually exhibit high

complexity, they require sufficiently large datasets for training

to generate accurate predictions (Adadi, 2021). DL models

trained on insufficient data exhibit high variance and error
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TABLE 5 Statistical significance (p-value) of methods under di�erent training schemes, where underlined values indicate no significant statistical

di�erence.

Sequential optimization vs. joint optimization Sliding window vs. trial-wise

Dataset Method Sliding window Trial-wise Sequential optimization Joint optimization

Tohoku MI-BCI

DE - ≪0.05 -

MBCNN ≪0.05 ≪0.05 ≪0.05 ≪0.05

MBCL ≪0.05 ≪0.05 ≪0.05 ≪0.05

BCI dataset IIa

DE - 0.0002 -

MBCNN ≪0.05 0.6719 0.0035 0.9316

MBCL ≪0.05 0.0104 ≪0.05 0.0819

TABLE 6 Performance comparison of di�erent approaches on six MI classes Tohoku University MI-BCI dataset with di�erent number of base

learners.

Base learners Average Kappa p-value Time (ms/sample)

DE

2 60.74 0.5120 0.0140 2.2811

3 61.22 0.5179 0.0597 2.9345

4 61.23 0.5175 0.0611 3.1459

MBCNN

2 58.59 0.4852 ≪0.05 2.8076

3 61.15 0.5176 0.0448 3.1561

4 59.81 0.5015 0.0002 3.3917

MBCL

2 61.16 0.5180 0.0252 2.8685

3 62.98 0.5410 - 3.2803

4 62.01 0.5293 0.2215 3.3419

during testing, as they learn noise or misleading patterns

from the training samples. This phenomenon is known

as overfitting. Because the number of training samples in

BCI is severely limited by inconvenient and time-consuming

calibration sessions (Rashid et al., 2020), overfitting is a common

problem in DL-based BCI systems.

To mitigate the issue of overfitting, sequential optimization

and sliding windowing were incorporated into the proposed

method. Sequential optimization refers to the process in

which each module is sequentially and separately optimized

to reduce the number of trainable parameters during each

step, as explained in Section 3. In contrast, joint optimization

simultaneously optimizes all modules via multi-objective

optimization, as in a typical DL training scheme. The final

objective function is formulated as follows:

L = L
cls + L

sup (7)

Additionally, sliding windowing was employed to increase

the number of samples by augmenting the data. This approach

divides a trial into several crops, as described in Section 4.1.3,

whereas trial-wise windowing uses the entire trial for training

and testing.

Tables 4, 5 show the performance and statistical significance

of the proposed methods under different training schemes,

respectively. It is apparent that joint optimization and trial-wise

windowing yielded the lowest performance due to overfitting.

The training schemes that incorporated either sequential

optimization or sliding windowing exhibited enhanced

performance. However, the results on BCI Dataset IIa were

marginally improved and exhibited no statistical significance,

with the exception of the comparison between trail-wise

windowing with sequential optimization and joint optimization

on MBCL. It is possible that joint optimization yields higher

performance than sequential optimization for sufficiently

large datasets, as it jointly optimizes all modules and objective

functions. However, for smaller datasets, such as those used

in BCI, sequential optimization is recommended. The new

samples that were created via sliding windowing enhanced the

overall training process by reducing the possibility of overfitting

while improving the effectiveness of contrastive representation

learning. When both sequential optimization and sliding

windowing were applied, performance improved significantly.

Table 6 illustrates the performance of the proposed methods

from empirical experiments when different numbers of base

learners were utilized. The methods with three base learners

(ShallowConvNet, DeepConvNet, and EEGNet) were compared

with those with two and four base learners where EEGNet

were removed and an additional ShallowConvNet were added,

respectively. It is evident that incorporating fewer base learners
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decreased the computational time. In contrast, more base

learners did not always yield the best classification results.

From the empirical experiment, two base learners were unlikely

to provide optimal feature representation, whereas four base

learners tended to overfit the data. Therefore, only three base

learners were employed in this study. This emphasizes the

importance of choosing the appropriate number of base learners

as trade-off between computation time and classification

accuracy is critical.

6. Conclusion

This study proposes a framework for multi-branch CNN

with contrastive representation learning to integrate base

learners, thus improving BCI performance in decoding multiple

MI tasks. The framework achieves this by concatenating features

from the base learners to produce more discriminative and

informative classification features. However, the concatenated

features may contain redundant or irrelevant information.

To mitigate this, MBCL employs contrastive representation

learning to map representations, such that similar samples are

grouped together, whereas distinct samples are set far apart.

Furthermore, the approach was compared with a differential

evolution method that uses an optimized voting strategy and

does not share feature representations among base learners. The

results demonstrate that the proposed framework outperformed

all single classification models and voting strategies. However,

the improved performance was strictly limited by the base

learners’ ability to distinguish discriminative features, and the

framework’s scalability is limited. Although the increase in

base learners improves system performance, there is a trade-

off in terms of prediction and training time; therefore, the

number of base learners must be carefully considered. The

proposed framework also relies on heavy data augmentation

and sequential optimization, which may further prolong

training time.
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