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Statistical variability of electroencephalography (EEG) between subjects and

between sessions is a common problem faced in the field of Brain-Computer

Interface (BCI). Such variability prevents the usage of pre-trained machine

learning models and requires the use of a calibration for every new session.

This paper presents a new transfer learning (TL) method that deals with this

variability. This method aims to reduce calibration time and even improve

accuracy of BCI systems by aligning EEG data from one subject to the

other in the tangent space of the positive definite matrices Riemannian

manifold. We tested the method on 18 BCI databases comprising a total

of 349 subjects pertaining to three BCI paradigms, namely, event related

potentials (ERP),motor imagery (MI), and steady state visually evoked potentials

(SSVEP). We employ a support vector classifier for feature classification. The

results demonstrate a significant improvement of classification accuracy, as

compared to a classical training-test pipeline, in the case of the ERP paradigm,

whereas for both the MI and SSVEP paradigm no deterioration of performance

is observed. A global 2.7% accuracy improvement is obtained compared to

a previously published Riemannian method, Riemannian Procrustes Analysis

(RPA). Interestingly, tangent space alignment has an intrinsic ability to deal

with transfer learning for sets of data that have di�erent number of channels,

naturally applying to inter-dataset transfer learning.

KEYWORDS

Brain-Computer Interface, Riemannian geometry, transfer learning, domain

adaptation, ERP, motor imagery, SSVEP

1. Introduction

A Brain-Computer Interface (BCI) is a system that allows interactions between a

human and a machine using only neurophysiological signals coming from the brain.

It aims at rehabilitating, improving, or enhancing the ability of the user by means of a

computerized system (Wolpaw et al., 2002). The most common modality used to record

neurophysiological signals is electroencephalography (EEG). This is mainly because

EEG is affordable, completely safe for the user and because it features a high temporal

resolution. EEG signals can be translated into a command to be sent to a computer by

means of a decoding algorithm. The loop is often closed by means of a feedback given to

the user.
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Several BCI applications have emerged to help patients, such

as spellers (Yin et al., 2015; Rezeika et al., 2018) or wheelchair

controllers (Li et al., 2013). The focus in this line of research is

to restore lost communication or movement capabilities. Other

applications are designed for the rehabilitation of patients after

an incapacitating event such as a stroke (Frisoli et al., 2012;Mane

et al., 2020). Non-clinical applications have also been proposed,

for example to provide a means of control in video games

(Congedo et al., 2011; Bonnet et al., 2013). Mixed approaches

are also possible, for example in the Cybathlon BCI Race, where

people with complete or severe loss of motor function compete

in a video game-based competition (Perdikis et al., 2018).

Several paradigms can be used in order to control

a BCI. The most commons are event related potentials

(ERP), motor imagery (MI), and steady state visually evoked

potentials (SSVEP). The ERP paradigm consists of electrical

potentials evoked by sensory stimulations; in MI the user

imagines to move body parts, resulting in synchronizations

and desynchronizations in the sensory-motor cortex; in SSVEP-

based BCIs, the user concentrates on visual stimuli flashed at

distinct frequencies, leading to responses at the same frequency

in the brain. Regardless of the paradigm, it is necessary to

calibrate the BCI system in order to allow proper decoding.

The calibration process is time consuming, annoying for the

healthy user and problematic for the clinical population, which

has limited mental resources (Mayaud et al., 2016). In fact, a

calibration is required not only for every new user, but also for

every new session of the same user. This is due to the high inter-

subject and inter-session variability of the features extracted

from the EEG. Such variability is caused by several factors,

including, but not limited to, the impedance and placement

of EEG electrodes, individual morphological and physiological

characteristics of the brain and changing brain states.

One way do deal with this variability is to use transfer

learning (TL). This means trying to reuse some of the

information we have already gathered on known data that may

be coming from either previous subjects or previous sessions.

In transfer learning we usually consider two types of data. The

source represents the data we already know on a given subject

whereas the target consists of a new subject whose some training

data may be available, but mostly is unlabeled and is to be used

as a test. The aim is to adapt as accurately as possible the data of

the target using the few available training data to the source data

(or vice versa). In order to do so, several methods have already

been developed.

The authors in Jayaram et al. (2016) adapt the weights given

to spatial features that are meant to predict the stimulus in order

to transfer information from one subject to another or from one

session to another. Some other methods adapt the parameters

of a neural network. For example the authors in Fahimi et al.

(2019) perform a partial retraining of a deep neural network on

a small number of samples of a new user, improving significantly

the accuracy. Unsupervised domain adaptation methods have

also emerged, as in Sun et al. (2015), where the authors perform

unsupervised transfer learning in the Euclidean domain, using

covariance matrices to align data from different subjects. A well-

established approach for classification in the BCI field is to

use covariance matrices of the signal since those matrices have

many relevant properties (Congedo et al., 2017). The covariance

matrices are Symmetric Positive Definite (SPD) and therefore lie

in a Riemannian manifold. In this way, some algorithms have

been developed to achieve transfer learning in the Riemannian

manifold of SPD matrices. For instance, the authors in Zanini

et al. (2018) propose a recentering procedure consisting in

translating the center of mass of both the source and target

data to the identity using parallel transport. This procedure is

actually equivalent to a whitening using the Riemannian mean

as anchor point. In Yair et al. (2019), both the center of mass

of the source and target data are translated to their midpoint

along the geodesic, allowing equivalent results. The authors of

Rodrigues et al. (2019), inspired by the Procrustes analysis,

proposed to add two more steps after recentering: a stretching

of the observations, so as to equalize the dispersion of the data

in the source and target domain and a rotation, so as to align as

much as possible the center of mass of each class between the

source and the target data set. The method, named Riemannian

Procrustes Analysis (RPA), was shown to allow efficient transfer

learning. A later alignment method was discussed in He and

Wu (2020). This method is similar to Sun et al. (2015) with

improvement related to enhanced dimensions in the Euclidean

space. The authors of Zhang et al. (2020) chose another approach

by transferring instances of the source close enough to the

target in order to enhance the low data availability of the target

model. They usedMI data and compared the proximity of source

and target trials using Hamming distance after preprocessing

steps. Another idea proposed in Zhang and Wu (2020) is to

find a common subspace between source and target, yielding a

projection matrix to reduce the gap between the source and the

target. Finally the authors train on the source subspace to test on

target subspace.

In this article we introduce a Riemannian transfer learning

approach similar in spirit to the RPA approach (Rodrigues et al.,

2019), but operating in the tangent space. Our contribution has

multiple benefits as compared to previous attempts. First, it lies

in a state-of-the-art BCI feature space, the Riemannian tangent

space, introduced in the BCI domain by Barachant et al. (2010).

Since the tangent space is an Euclidean space, there exists a wide

variety of well-established tools to decode the data therein and

in general they are faster as compared to a decoding approach in

the Riemannian manifold. Second, since it acts on an Euclidean

space, it can be used for all kind of feature vectors, not just

those obtained in a Riemannian setting. Third, our method

is computationally effective, as it only requires one singular

value decomposition (SVD). Fourth, it extends naturally to the

heterogeneous transfer learning case, i.e., when the number

and/or placements of electrodes is not the same in the source
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and target data set. In a similar previous attempt the SVD has

been applied independently on the source and target dataset and

the resulting matrices are then used to align the data (Sun et al.,

2015). Our method is instead casted as a Procrustes problem

and therefore it fulfills a well-known optimality condition for

inter-domain alignment.

A previous version of our method has been presented in

Bleuze et al. (2021). As compared to that presentation, we

have improved it by adding several ways to deal with the rank

deficiency of the cross product matrix. Also, here we test it

on a very large amount of data, namely, 18 BCI databases

comprising a total of 349 subjects. Furthermore, these databases

pertain to three BCI modalities: event related potentials (ERP),

motor imagery (MI), and steady state visually evoked potentials

(SSVEP). Therefore, the present study is a comprehensive test

bed, which is a well-grounded way to reach general conclusions

when comparing machine learning pipelines.

2. Materials and methods

2.1. Notations

Throughout this article we will denote matrices with upper

case bold characters (A), vectors with lower case bold characters

(a), indices and scalars by lower case italic characters (a), and

constants by upper case italics (A). The function tr(.) will

indicate the trace of a matrix, (.)T its transpose, ||.|| the 2-norm
or the Frobenius norm, ◦ the Hadamard product, log(.), and

exp(.) thematrix logarithm and exponential, respectively. IN will

denote the identity matrix in dimension N.

2.2. Riemannian geometry

Let us consider a set of trials {Xn}n∈[1,N] with shape (Nc,

Nsample), where Nc is the number of channels, Nsample the

number of (temporal) samples and N the number of matrices

in the set. A generic trial is simply denoted as X. In order to

be as close as possible to a realistic scenario, we consider data

with a low level of pre-processing and we do not use any artifact

removal method, such as ocular artifacts or outliers removal

(Çınar and Acır, 2017; Minguillon et al., 2017).

The (spatial) sample covariance matrix estimation (SCM)

writes

C = 1

Nsample − 1
XXT . (1)

The SCM has shape (Nc, Nc). It lies in a Riemannian manifold

of symmetric positive definite (SPD) matrices (Bhatia, 2009). It

is therefore possible to classify directly a set {Cn} of covariance
matrices by means of classification algorithms acting on such a

manifold, such as the Minimum Distance to Riemannian Mean

(MDRM) classifier (Barachant et al., 2012) or its refinement

Riemannian Minimum Distance to Means Field (RMDMF;

Congedo et al., 2019). It is also possible to project the matrices

onto the tangent space of the manifold at a base point M and

use Euclidean classifiers therein (Barachant et al., 2012, 2013).

The base point M in this work will always be chosen as the

Log-Euclidean mean, which is defined as Fillard et al. (2005).

M = exp

(

1

N

∑

n

log (Cn)

)

. (2)

The projection onto the tangent space at base point M is

obtained by the logarithmic map operator (Nielsen and Bhatia,

2013).

LogM (C) = M
1
2 log

(

M− 1
2CM− 1

2

)

M
1
2 . (3)

The projected matrix is now a (Nc, Nc) symmetric matrix. Since

we are concerned with transfer learning (TL), we are interested

in matching the position of the source and target data sets in

the manifold as much as possible. Following Zanini et al. (2018),

we recenter both the source and target data sets by setting

their global mean at the identity. This is simply obtained by

transforming all trials of a dataset such as

Crec = M− 1
2CM− 1

2 , (4)

where M is the center of mass of the observations and Crec

denotes the recentered trial. After recentering all trials their

center of mass becomes the identity matrix, corresponding to

the “zero” point in an Euclidean space.

The logarithmic mapping at the identity simplifies, yielding

LogINc
(Crec) = I

1/2
Nc

log
(

I
−1/2
Nc

M− 1
2CM− 1

2 I
−1/2
Nc

)

I
1/2
Nc

= log
(

M− 1
2CM− 1

2

)

.

The above recentering followed by tangent space projection was

first proposed in the BCI field in Barachant et al. (2012, 2013)

and is nowadays a standard processing procedure, which in this

article is carried out systematically, unless explicitly mentioned.

Once projected onto the tangent space the matrices are

vectorized. Since they are symmetric, only the upper (or lower)

triangle of the matrix is kept and the off-diagonal terms are

weighted by
√
2 so as to preserve the norm of the original matrix.

In mathematical notation, the vectorization of tangent vector S

reads

s = triu (S ◦ A) , (5)

with triu(.) the operator vectorizing the upper triangle and A a

matrix with the same shape as S, filled with 1 on the diagonal

and
√
2 on the off-diagonal part. Since the matrices have been

previously recentered, the resulting vectors are also recentered,

that is, the mean tangent vector is the zero vector.

Having obtained the tangent vectors as described here above,

it is possible to use all the well know classification algorithms
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that act in an Euclidean space, the most commonly employed in

the BCI community being the linear discriminant analysis (LDA;

Barachant et al., 2012), support vector classifier (SVC; Xu et al.,

2021) and Lasso logistic regression (LR) (Tomioka et al., 2006).

In this study, we use the SVC.

2.3. Alignment

As anticipated in the introduction, the method here

proposed has been inspired by previous Riemannian TL

methods, such as in Zanini et al. (2018) and Rodrigues et al.

(2019) which focus on covariance matrices in the Riemannian

space of SPD matrices. In Rodrigues et al. (2019) the authors

consider again the recentering and add two further alignment

steps:

1. a rescaling so as to match the dispersion around the mean

(center of mass) in both the source and target data sets and

2. a rotation so as to align the mean of each class as much as

possible. This effectively results in a Riemannian Procrustes

alignment.

In this article, the same steps are undertaken in the tangent

space. In particular, we rotate the tangent vectors using an

Euclidean Procrustes procedure.

Let us consider the set of centered tangent vectors for the

source {sn}n∈[1,Ns] and the target {tn}n∈[1,Nt] domain. Ns and

Nt are the number of vectors for, respectively, the source and

the target data set. As we will see, in the following it will not

be required that the source and target tangent vectors have

the same dimensions. Denoting s and t the generic source

and target tangent vectors, the rescaling is obtained setting the

average norm within each set to 1, which is readily obtained by

transformations

s̃ = s
1
Ns

∑

n ||sn||
(6)

and

t̃ = t
1
Nt

∑

n ||tn||
, (7)

yielding rescaled source and target data sets {s̃n}n∈[1,Ns] and

{t̃n}n∈[1,Nt]. It is also possible to set the norm of the target data

set equal to the norm of the source data set if it is sought not to

modify the norm of the source data set.

For the rotation (alignment), we propose a supervised

method that uses the mean point of the classes. Let us consider

K classes that we ought to align. Although other procedures

are possible, in the following we always align the target set to

the source set. Let y and z be the label vectors of, respectively,

{s̃n}n∈[1,Ns] and {t̃n}n∈[1,Nt] with shape Ns and Nt . We start by

computing the mean for each class k, given its Nk trials

sk =
1

Nk

∑

yi=k

s̃i (8)

for the source set and

tk =
1

Nk

∑

zi=k

t̃i (9)

for the target set. In the supervised procedure these vectors are

the anchor points we use for alignment. Therefore, we define

S = [sk, k ∈ [1,K]] (10)

and

T = [tk, k ∈ [1,K]] (11)

as the two matrices of shape
(

Nc(Nc+1)
2 ,K

)

holding the anchor

vectors stacked one next to the other. We can now define the

cross-product matrix

Cst = ST
T
. (12)

of shape
(

Nc(Nc+1)
2 , Nc(Nc+1)

2

)

. Like any rectangular matrix—

or squared when source and target have the same number

of channels—Cst can be decomposed by singular value

decomposition, such that

Cst = UDVT , (13)

withU andV the two orthonormal matrices holding in columns

the left and right singular vectors, respectively, andD a diagonal

matrix holding the singular values. As usual in signal processing,

we will retain a subset of the singular vectors in order to suppress

noise. Such a truncation has also the advantage to work for

the case where U and V do not have the same shape. As a

general rule, we seek the smallest number Nv of singular vectors

which corresponding singular values explain at least 99.9% of

the variance, resulting in Ũ and Ṽ with shape
(

Nc(Nc+1)
2 ,Nv

)

.

Finally, we are able to align the target vectors previously created

{t̃n}n∈[1,N] to the domain of the source vectors {s̃n}n∈[1,N] as

t̂ = ŨṼT t̃ (14)

where t̂ denotes the aligned target vectors. The newly created

set {t̂n}n∈[1,N] is now aligned to the space of source vectors

{s̃n}n∈[1,N], therefore it can be classified with algorithms trained

on the source domain. As it is well-known, when the cross-

product in Equation (12) is full-rank, the unique solution to the

Procrustes optimization problem

argmin
Z

(||ZT− S||) (15)
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FIGURE 1

Flowchart summarizing the analysis pipeline.

is indeed Z = UVT . In our case, the solution is not unique.

Note that a connection between this problem and the Bures-

Wasserstein metric has been recently described in Bhatia et al.

(2019).

The whole process for our method is summarized in

Figure 1.

2.4. Augmenting/improving Cst

Cross-product matrix Cst is usually rank deficient and its

estimation could be improved in several ways. In this section,

we will suggest two such improvements. First, as long as a

supervised TL is possible, since we are relying on averaging

the tangent vectors, it is possible to employ robust average

estimators. For instance, we may consider the trimmed means,

FIGURE 2

Schematic of a two-class dataset using the first dimension of a

PCA for each class.

the median or power means to estimate suitable anchor points.

We may also stack several of these average estimators to obtain

larger matrices sk and tk, which may provide more robust

information on the actual central tendency of the data.

Second, we cluster the data sets in several subsets describing

the shape of the data set when considered altogether and

compute separate means for each cluster. We may use, for

instance, principal component analysis (PCA) on each class

independently to create clusters, as depicted in Figure 2. The

centroid of those clusters are then computed and used as anchor

points. In order to obtain the clustering for both the source and

target data set, we consider for each class a PCA trained on the

source and used as such on both the source and target data set.

Using such a clustering procedure, if the source and the

target data set display a rather similar shape, their alignment will

be very effective, leading to promising transfer learning results.

Such a procedure is also possible with unlabeled data in case

of unsupervised TL. However, in this case, we have noticed

that at least two PCA components are necessary to obtain an

efficient transfer learning. Therefore, in the unsupervised case

we recommend using at least two PCA components and separate

data for each dimensions, creating a Cst matrix with shape
[

Nc(Nc+1)
2 ,Nd × Ng

]

with Nd the number of dimensions used

and Ng the number of groups created in each dimensions. An

effective strategy is to visualize the data and their representations

in order to verify whether the chosen reduced dimensionality

offers a good approximation of the data as it may be as

well totally inaccurate, depending on the data, especially for

unsupervised TL. For our results, we chose to create three PCA

clusters for each class and use these means to compute the

cross-product matrixCst as it gives enough information without

reducing the size of the data used for each mean too much.
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TABLE 1 List of the processed databases for event-related potentials,

motor imagery paradigms, and steady-state visual evoked potentials.

Type Ch Trials Sess Sub

2003–2015 P300 8 1,800 1 10

2008–2014 P300 8 4,200 1 8

2009–2014 P300 16 1,728 3 10

Brain Invaders 2013a P300 16 480 1 24

EPFL P300 dataset P300 32 3,268 4 8

2001–2014 MI 22 288 2 9

2001–2015 MI 13 400 2 12

2002–2014 MI 15 160 1 14

2004–2014 MI 3 720 5 9

Alexandre motor imagery MI 16 40 1 8

Cho 2017 MI 64 200 1 49

Grosse-Wentrup 2009 MI 128 300 1 10

Physionet motor imagery MI 64 45 1 109

Weibo 2014 MI 60 160 1 10

Zhou 2016 MI 14 290 3 4

SSVEP exoskeleton SSVEP 8 160 1 12

SSVEP Nakanishi SSVEP 8 180 1 9

SSVEPWang SSVEP 62 240 1 34

Ch, number of channels; Sess, number of sessions; Sub, number of subjects.

3. Results

The TSA algorithm previously introduced has been tested on

three well know BCI paradigms: ERP, MI, and SSVEP. We have

analyzed 18 open-access BCI databases available on the Mother

Of All BCI Benchmark (MOABB; Jayaram and Barachant, 2018).

Python library, of which five uses the ERP paradigm, 10 the MI

paradigm, and 3 the SSVEP paradigm. The 18 databases include

a total of 349 subjects with very high variability between and

within datasets. We summarize the data in Table 1, following

Congedo et al. (2019).

We execute transfer learning from one subject to the

other for all possible source/target pair of subjects within each

database. The accuracy is evaluated using balanced accuracy

since the number of trials per class is often unbalanced (always

for the ERP paradigm).

Since the amount of data of all pair-wise comparisons is

huge, we start by visually evaluating all balanced accuracies

obtained for a given database by means of seriation plots, i.e.,

plots showing the accuracy for each pair of target and source

subject arranged in matrix form. The accuracy is averaged over

all numbers of alignment trials for each pair. The case where

the target and the source are the same, i.e., on the diagonal,

is replaced by the classical train-test cross-validation accuracy,

offering a straightforward benchmark. Furthermore, the target

and source subjects are sorted on rows by descending order

of the train-test cross-validation accuracy. It should be kept

in mind that since the train-test procedure is fully supervised

and optimized for the train data, it is expected to outperform

a transfer learning method. Figure 3 shows a representative

seriation plot for each paradigm allowing the visual comparison

of the performance of the TSA vs. the RPA transfer learning

method; all figures are available as Supplementary material.

In order to evaluate the average performance, we plot the

balanced accuracy averaged across all subjects in a database

for each method as a function of the number of alignment

trials. Since we are averaging across subjects, for this analysis

we include only those subjects featuring at least 60% accuracy

in a classical train-test cross-validation. This restriction excludes

about half of the subjects, leaving 178 subject out of 349. It’s

important to note that subjects with an overall 60% accuracy

usually have more than 70% accuracy with all available training

trials. Figure 4 shows a representative plot for each paradigm. All

figures are available as Supplementary material.

Then, we summarize all the pair-wise accuracy information

in the accuracy tables such as Table 2. These tables give for

each target subject the accuracy averaged over numbers of

alignment trials and source subjects. For this database, there

are 30 numbers of alignment trials considered and 18 possible

source subjects, which makes an average over 540 values. This

makes the standard error low in general. Accuracy tables for all

databases are given as Supplementary material.

The accuracy tables confirm what can be evaluated visually

in the average accuracy plots and seriation plots; on the average

there is about 1% difference between classical train-test cross-

validation accuracy and TSA and about 5% between classical

train-test cross-validation and RPA. This speaks in favor of a

clear improvement of the TSA method over the RPA method.

Table 3 summarizes all the balanced accuracy for each dataset.

On the average across databases there is no loss of accuracy using

a TSA as compared to the optimal train-test accuracy. This is not

true for the RPA.

Finally, we performed statistical tests on all pair-wise

source/target accuracy results we have collected. To this end, we

follow the procedure introduced in Rodrigues et al. (2021). In a

nutshell: we first compute signed paired t-test for every target

subject comparing the accuracy between methods, yielding T

statistics Tm,i and p-values pm,i for each pair of methods m

and target subject i. In order to correct for the multiplicity

of statistical tests we use Holm’s sequential rejection multiple

test procedure (Holm, 1979) for each target subject. This

produces tables such as Table 4. Corresponding tables for each

database are available as Supplementary material. Then, we

combine the p-values we obtain using the Stouffer’s Z-score

method (Zaykin, 2011) for each database, yielding multiple

p-values corresponding to each pair of methods for each

database. Those p-values are also corrected by means of Holm’s

procedure and are summarized in Table 5. In this table we

can see that among the 18 databases we have analyzed, 11

show a significant improvement of TSA as compared to RPA.
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FIGURE 3

Representative seriation plots for TSA (left) and RPA (right) methods for each paradigms. See text for details. (A) Database Cho2017 (MI). (B)

Database brain invaders 2013a (ERP). (C) Database SSVEP exoskeleton (SSVEP).

No significant difference between the classical train-test cross-

validation accuracy and TSA is found with the exception of

two databases, for which TSA proves inferior. This number

grows to five databases comparing the classical train-test cross-

validation accuracy and the accuracy obtained by RPA. Finally,

using Stouffer’s Z-score method, p-values corresponding to each
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FIGURE 4

Accuracy as a function of the number of alignment trials for TSA

and RPA methods for a representative database in each

paradigm (MI, ERP, SSVEP). (A) Database Cho2017 (MI). (B)

Database brain invaders 2013a (ERP). (C) Database SSVEP

exoskeleton (SSVEP).

paradigm are computed and corrected with Holm’s procedure

(Table 6).

So far we have focused on cross-subject transfer learning,

however the method we propose can also be used to transfer

different information, such as from one session to another with

the same subject or from one task to the another. In order to

ensure the ability of our method to reduce the inter-session

variability, we used the dataset having multiple sessions and

TABLE 2 Balanced accuracy ± standard error for the good subjects of

database Cho 2017 averaged over number of alignment trials and

source for train-test, TSA, and RPA.

Train-test acc TSA acc RPA acc

Subject 1 67.86± 2.00 66.70± 0.43 65.84± 0.43

Subject 3 81.39± 0.81 77.78± 0.18 74.96± 0.32

Subject 4 69.26± 1.49 69.24± 0.40 69.25± 0.50

Subject 5 65.90± 2.12 65.03± 0.50 59.12± 0.55

Subject 6 70.74± 2.11 67.65± 0.38 59.80± 0.53

Subject 10 70.55± 1.91 70.71± 0.45 62.32± 0.43

Subject 12 70.97± 1.61 73.01± 0.39 67.68 pm0.29

Subject 13 63.60± 1.14 64.30± 0.25 60.83± 0.25

Subject 14 88.26± 1.52 86.99± 0.37 82.06± 0.45

Subject 15 66.15± 1.64 65.63± 0.38 65.20± 0.37

Subject 20 64.96± 1.13 64.64± 0.26 60.79± 0.33

Subject 21 60.63± 1.50 58.63± 0.24 56.54± 0.30

Subject 23 68.64± 1.62 66.69± 0.37 64.94± 0.41

Subject 34 82.73± 0.37 81.89± 0.09 79.97± 0.15

Subject 38 61.98± 1.27 61.51± 0.27 58.53± 0.35

Subject 40 76.73± 1.89 76.30± 0.44 72.21± 0.47

Subject 42 88.34± 3.32 83.02± 0.73 75.78± 0.77

Subject 46 62.55± 1.79 59.08± 0.37 54.64± 0.26

Subject 47 72.34± 1.66 67.98± 0.36 63.03± 0.42

TABLE 3 Balanced accuracy ± standard error for the good subjects of

each dataset averaged over number of alignment trials, target and

source for train-test, TSA, and RPA.

Train-test acc TSA acc RPA acc

2003–2015 69.04± 0.74 76.05± 0.57 69.63± 0.57

2008–2014 67.52± 0.69 72.00± 0.38 65.50± 0.38

2009–2014 70.48± 0.50 77.38± 0.21 70.90± 0.21

Brain invaders 2013a 67.26± 0.45 76.07± 0.11 69.59± 0.11

EPFL P300 dataset 67.22± 0.61 73.013± 0.24 65.28± 0.24

2001–2015 81.13± 0.73 79.01± 0.24 76.21± 0.24

2002–2014 78.40± 0.70 76.51± 0.20 72.55± 0.55

2004–2014 74.35± 1.30 76.00± 0.59 75.27± 0.59

Alexandre motor imagery 78.51± 2.82 76.30± 1.33 75.93± 1.33

Cho 2017 71.24± 0.52 69.83± 0.12 65.97± 0.12

Grosse-Wentrup 2009 77.20± 0.91 73.12± 0.34 72.16± 0.34

Physionet motor imagery 70.75± 1.35 64.28± 0.27 63.26± 0.27

Weibo 2014 73.97± 1.25 69.66± 0.50 71.27± 0.50

Zhou 2016 82.82± 1.59 82.43± 0.86 81.31± 0.86

SSVEP exoskeleton 69.50± 1.16 69.69± 0.40 68.72± 0.40

SSVEP Nakanishi 95.55± 0.82 95.95± 0.28 96.83± 0.28

SSVEPWang 68.26± 2.63 57.42± 0.76 59.11± 0.76

Global 74.42± 0.30 74.49± 0.12 71.79± 0.12

processed results for inter-session cross-validation. In order to

do so, we used the data of one session as a source, then for

each other sessions with 80% test and 20% training data split we

trained the transfer learning model and tested the results. The
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TABLE 4 Subject-wise p-values for MI database Cho 2017.

TSA>RPA TRAIN>TSA TRAIN>RPA

Subject 1 0.002∗ 0.818 0.420

Subject 3 0.033∗ <0.001∗ <0.001∗

Subject 4 0.005∗ 0.690 0.248

Subject 5 <0.001∗ 0.980 0.301

Subject 6 0.001∗ 0.379 0.013∗

Subject 10 <0.001∗ 0.503 0.007∗

Subject 12 <0.001 0.086 <0.001∗

Subject 13 0.001∗ 0.997 0.700

Subject 14 0.443 <0.001∗ <0.001∗

Subject 15 0.004∗ 0.964 0.843

Subject 20 0.385 0.991 0.988

Subject 21 <0.001∗ 1.000 0.999

Subject 23 0.009∗ 0.836 0.514

Subject 34 <0.001∗ <0.001∗ <0.001∗

Subject 38 <0.001∗ 1.000 0.980

Subject 40 0.020∗ 0.002∗ <0.001∗

Subject 42 0.361 <0.001∗ <0.001∗

Subject 46 0.126 1.000 0.995

Subject 47 <0.001∗ 0.038∗ <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

TABLE 5 Database-wise p-values.

TSA>RPA TRAIN>TSA TRAIN>RPA

2003–2015 < 0.001 1.000 0.663

2008–2014 0.002∗ 0.877 0.326

2009–2014 <0.001∗ 1.000 0.561

Brain invaders 2013a <0.001∗ 1.000 1.000

EPFL P300 dataset <0.001∗ 1.000 0.102

2001–2014 0.004∗ 0.468 0.191

2001–2015 <0.001∗ 0.133 0.005∗

2002–2014 <0.001∗ 0.139 <0.001∗

2004–2014 0.515 0.641 0.552

Alexandre motor imagery 0.636 0.353 0.280

Cho 2017 <0.001∗ 0.098 <0.001∗

Grosse-Wentrup 2009 0.097 0.083 0.071

Physionet motor imagery <0.001∗ <0.001∗ <0.001∗

Weibo 2014 1.000 0.099 0.189

Zhou 2016 0.071 0.453 0.398

SSVEP exoskeleton 0.002∗ 0.702 0.477

SSVEP Nakanishi 1.000 0.464 0.886

SSVEPWang 0.989 <0.001∗ <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

processed is then repeated using each session as the source. We

compared four different methods:

• Tangent Space Alignment (TSA), our method,

• Riemannian Procrustes Analysis (RPA) used as a

comparison in this article,

TABLE 6 p-values for each paradigm and in global for all tests that

have been done. The global p-values are the combination of the

p-values for all databases regardless of their paradigm.

TSA>RPA TRAIN>TSA TRAIN>RPA

p300 <0.001∗ 1.000 0.961

Imagery <0.001∗ <0.001∗ <0.001∗

SSVEP <0.654 <0.001∗ <0.001∗

Global <0.001∗ 1.000 <0.001∗

TRAIN, train-test; ∗Significant p-values after multiple comparison correction.

FIGURE 5

Bar graph giving the inter-session balanced accuracy for the

databases possessing multiple sessions.

TABLE 7 Inter-session balanced accuracy table for each dataset and

methods.

Train-test TSA RPA DCT

EPFL P300 74.85± 0.38 73.46± 0.38 72.24± 0.39 72.16± 0.40

2009–2014 78.19± 0.64 78.00± 0.65 76.79± 0.63 77.59± 0.64

2001–2014 79.66± 1.57 78.56± 1.66 78.48± 1.61 76.23± 1.63

2001–2015 83.78± 0.86 82.10± 0.95 81.19± 0.99 77.49± 1.03

2004–2014 75.83± 0.52 75.55± 0.50 74.11± 0.53 71.09± 0.50

Zhou 2016 88.48± 0.86 87.22± 0.84 87.83± 0.90 81.45± 1.19

• Usual train-test method using only target data,

• Direct testing (DCT) using algorithms trained on

the source without aligning target data by a rotation

(recentering only).

The results are given in Figure 5 and presented numerically in

Table 7.

These results are coherent with the previous ones. They yield

accuracies slightly improved as compared to sessions mixed all

together, which is expected. Moreover, the proposed method
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performs better than RPA on all databases with the exception

of Zhou 2016.

4. Discussion

The extensive analysis we have carried out shows that for

the ERP paradigm TSA clearly outperforms RPA. For the MI

paradigm we observe that TSA performs better than RPA and

that the classical train-test cross-validation outperforms both

TSA and RPA. For SSVEP, the classical train-test cross-validation

outperforms both TSA and RPA. In global, RPA is outperformed

by both TSA and the classical train-test cross-validation. Based

on Table 6, we do not conclude on the superiority of TSA as

compared to train-test in terms of accuracy as the global value

that can be found is mainly due to very large values found

for the ERP paradigm. To conclude with the results, it has

been shown that TSA outperforms RPA for the large majority

of the databases we have used in this analysis, reaching an

accuracy pretty close to the optimal train-test method. It is

also a clear improvement from a methodological point of view

in comparison to RPA as it naturally allows transfer learning

between datasets with different number of channels, where RPA

needs some extensions in order to do so (Rodrigues et al.,

2021).

In this paper, we have introduced a new method for

transfer learning inter and intra subject for brain computer

interfaces. Our study indicates that it outperforms a state-of-the-

art analogous method (RPA). However, it still does not reach the

same accuracy that can be achieved with a classical test-train

cross-validation procedure for the motor imagery and SSVEP

paradigm. Further research is needed to understand why the

performance of the TSA method is clearly superior for the ERP

paradigm.

In terms of computation time, since we have a closed

form for the rotation of TSA method, it is way faster than

the RPA method, where an optimization on the Grassmann

manifold is performed. However, even if our method can be

faster by one order of magnitude, with Nc being the size of

the pre-covariance signal (number of channels plus number of

channels of the average target for ERP, number of channels

for MI, number of classes times number of channels for

SSVEP) we compute rotations with size [Nc∗(Nc+1)
2 , Nc∗(Nc+1)

2 ]

where RPA computes rotation with size (Nc,Nc). This means

that for datasets with a significant amount of channels

the computational advantage of TSA will tend to vanish.

Table 8 shows the average time of computation for each

dataset if no spatial filter were to be applied before the

covariance estimation, sometimes yielding big covariance

matrices. Usually spatial filter are applied so the low time

values are those that are to be usually encountered. Moreover,

when computing the rotations for TSA, we can consider only

a number of channels that will result in a proportion of

TABLE 8 Database-wise average computation time for both TSA and

RPA methods.

TSA (s) RPA (s) Ratio Cov shape

2003–2015 1.027 11.889 11.57 16 ∗ 16
2008–2014 1.711 10.874 6.36 16 ∗ 16
2009–2014 0.897 6.118 6.82 32 ∗ 32
Brain invaders 2013a 0.774 13.368 17.26 32 ∗ 32
EPFL P300 dataset 1.341 8.607 6.42 64 ∗ 64
2001–2014 0.999 5.075 5.08 22 ∗ 22
2001–2015 0.664 4.362 6.57 13 ∗ 13
2002–2014 0.416 2.241 5.39 15 ∗ 15
2004–2014 0.029 0.166 5.74 3 ∗ 3
Alexandre motor imagery 0.067 0.777 11.61 16 ∗ 16
Cho 2017 5.299 16.858 3.18 64 ∗ 64
Grosse-Wentrup 2009 161.942 113.926 0.70 128 ∗ 128
Physionet motor imagery 2.739 4.432 1.62 64 ∗ 64
Weibo 2014 3.719 13.282 3.57 60 ∗ 60
Zhou 2016 0.468 3.752 8.02 14 ∗ 14
SSVEP exoskeleton 0.056 1.184 21.22 16 ∗ 16
SSVEP Nakanishi 0.41 0.970 23.81 16 ∗ 16
SSVEPWang 125.949 22.320 0.18 124 ∗ 124

the global variance of the data. This means that we do not

need to compute the whole [Nc∗(Nc+1)
2 , Nc∗(Nc+1)

2 ] rotation

matrix, we can select only a few singular values and their

corresponding vectors, highly reducing computation time if

needed.

We also observed that in some cases, mainly for ERPs,

skipping the rescaling of the target data will lead to improved

classification results. Further research is needed to fully

understand the role of rescaling in Procrustes-like transfer

learning methods.

In this article, we have proposed a procedure to improve the

rank deficiency of the cross-product matrix, making the result

more stable and more accurate. However, this improvement also

presents some downsides. When using only the average point

of the data for both source and target data, the method will

be pretty sensitive to noise since the number of points used

for means computation is drastically reduced. Adding trimmed

means and/or medians could make the method less sensitive to

noise. Additionally, when augmenting Cst using PCA, the more

groups will be created, the more each group will be sensitive to

noise. By reducing the number of points in a group one increases

the impact of artifacts on the average point. Furthermore, PCA

is an algorithm that is pretty sensitive to noise and could be

replaced by one of its robust variant. It is to be noticed that a

low number of groups in general allows a good approximation

of the shape of the data. Of course, artifact correction or removal

would allow better performances.
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It should be reminded that in this article we did not apply

any form of pre-processing in order to increase the overall

accuracy. We have done so because the goal of the article is

to compare transfer learning methods on a large amount of

data and in a wide variety of real-world situations, that is,

on noisy data. For the same reason, we are using all the data

of a subject without making any adaptation from one session

to the other. This choice obviously leads to reduced overall

accuracy, resulting in an important decrease in the number

of subjects used for the final average results. It is important

to do so, however, since, as it has been found in previous

studies, there is a large gap between “good” and “bad” subjects in

transfer learning accuracy (Zanini et al., 2018; Rodrigues et al.,

2019).

Another point to mention is that even though our method

has been tested extensively on many databases, there are even

more databases to test on. Additionally, some paradigms such

as affective BCI have not been investigated in this article.

Investigation on cross-database transfer learning is still to be

done.

As all efficient transfer learning methods, TSA can be very

helpful when used along with a machine learning model that

takes too much time for training on new data for online sessions.

TSA also allows the alignment of multiple subjects’ data into the

same feature space. Such alignment could improve classification

accuracy of multiple subjects and allow the training of robust

classifier on aligned data that will give improved results for new

subjects once they are aligned. This is the object of current

investigation in our laboratory.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found at: http://moabb.neurotechx.com/docs/

datasets.html.

Author contributions

AB performed the research, analyzed the data, and wrote

the manuscript. MC suggested the original idea for the method.

MC and JM designed, reviewed, and edited the manuscript. All

authors have read and approved the submitted manuscript.

Funding

This research has been partially supported by CNRS grant

80|PRIMES TrAp and by ANR grant Hifi (ANR-20-CE17-0023).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnhum.

2022.1049985/full#supplementary-material

References

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2012). Multiclass brain-
computer interface classification by Riemannian geometry. IEEE Trans. Biomed.
Eng. 59, 920–928. doi: 10.1109/TBME.2011.2172210

Barachant, A., Bonnet, S., Congedo, M., and Jutten, C. (2013).
Classification of covariance matrices using a Riemannian-based kernel for
BCI applications. Neurocomputing 2013, 172–178. doi: 10.1016/j.neucom.2012.
12.039

Barachant, A., Bonnet, S., Congedo, M., Jutten, C., Riemannian, C. J., and
Bonnet, S. (2010). Riemannian geometry applied to BCI classification. Lecture
Notes Comput. Sci. 6365, 629–636. doi: 10.1007/978-3-642-15995-4_78

Bhatia, R. (2009). Positive Definite Matrices. Princeton, NJ: Princeton University
Press. doi: 10.1515/9781400827787

Bhatia, R., Jain, T., and Lim, Y. (2019). On the Bures-Wasserstein
distance between positive definite matrices. Exposit. Math. 37, 165–191.
doi: 10.1016/j.exmath.2018.01.002

Bleuze, A., Mattout, J., and Congedo, M. (2021). “Transfer learning for the
Riemannian tangent space: applications to brain-computer interfaces,” in 7th
International Conference on Engineering and Emerging Technologies, ICEET 2021
(Istanbul), 1–6. doi: 10.1109/ICEET53442.2021.9659607

Bonnet, L., Lotte, F., and Lécuyer, A. (2013). Two brains, one game: design and
evaluation of a multiuser BCI video game based on motor imagery. IEEE Trans.
Comput. Intell. AI Games 5, 185–198. doi: 10.1109/TCIAIG.2012.2237173

Çınar, S. and Acır, N. (2017). A novel system for automatic removal of ocular
artefacts in EEG by using outlier detection methods and independent component
analysis. Expert Syst. Appl. 68, 36–44. doi: 10.1016/j.eswa.2016.10.009

Congedo, M., Barachant, A., and Bhatia, R. (2017). Riemannian geometry
for eeg-based brain-computer interfaces; a primer and a review. Brain Comput.
Interfaces 4, 155–174. doi: 10.1080/2326263X.2017.1297192

Congedo, M., Goyat, M., Tarrin, N., Ionescu, G., Varnet, L., Rivet, B., et
al. (2011). “Brain invaders”: a prototype of an open-source p300-based video

Frontiers inHumanNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1049985
http://moabb.neurotechx.com/docs/datasets.html
http://moabb.neurotechx.com/docs/datasets.html
https://www.frontiersin.org/articles/10.3389/fnhum.2022.1049985/full#supplementary-material
https://doi.org/10.1109/TBME.2011.2172210
https://doi.org/10.1016/j.neucom.2012.12.039
https://doi.org/10.1007/978-3-642-15995-4_78
https://doi.org/10.1515/9781400827787
https://doi.org/10.1016/j.exmath.2018.01.002
https://doi.org/10.1109/ICEET53442.2021.9659607
https://doi.org/10.1109/TCIAIG.2012.2237173
https://doi.org/10.1016/j.eswa.2016.10.009
https://doi.org/10.1080/2326263X.2017.1297192
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Bleuzé et al. 10.3389/fnhum.2022.1049985

game working with the openvibe platform,” in 5th International Brain-Computer
Interface Conference, BCI 2011 (Graz), 280–283.

Congedo, M., Rodrigues, P. L. C., and Jutten, C. (2019). “The Riemannian
minimum distance to means field classifier,” in 8th International Brain-Computer
Interface Conference, BCI 2019 (Graz).

Fahimi, F., Zhang, Z., Goh, W. B., Lee, T. S., Ang, K. K., and
Guan, C. (2019). Inter-subject transfer learning with an end-to-end deep
convolutional neural network for EEG-based BCI. J. Neural Eng. 16:026007.
doi: 10.1088/1741-2552/aaf3f6

Fillard, P., Arsigny, V., Ayache, N., and Pennec, X. (2005). A Riemannian
framework for the processing of tensor-valued images. Lect. Notes Comput. Sci.
3753, 112–123. doi: 10.1007/11577812_10

Frisoli, A., Loconsole, C., Leonardis, D., Banno, F., Barsotti, M., Chisari, C.,
et al. (2012). A new gaze-BCI-driven control of an upper limb exoskeleton for
rehabilitation in real-world tasks. IEEE Trans. Syst. Man Cybern. Part C 42,
1169–1179. doi: 10.1109/TSMCC.2012.2226444

He, H., and Wu, D. (2020). Transfer learning for brain-computer interface:
a Euclidean space data alignment approach. IEEE Trans. Biomed. Eng. 67, 1–22.
doi: 10.1109/TBME.2019.2913914

Holm, S. (1979). Board of the foundation of the Scandinavian journal of statistics
a simple sequentially rejective multiple test procedure a simple sequentially
rejective multiple test procedure. Scand. J. Stat. 6, 65–70.

Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., and Grosse-Wentrup, M.
(2016). Transfer learning in brain-computer interfaces. IEEE Comput. Intell. Mag.
11, 20–31. doi: 10.1109/MCI.2015.2501545

Jayaram, V., and Barachant, A. (2018). MOABB: trustworthy algorithm
benchmarking for BCIs. J. Neural Eng. 15:066011. doi: 10.1088/1741-2552/aadea0

Li, Y., Pan, J., Wang, F., and Yu, Z. (2013). A hybrid BCI system combining p300
and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60,
3156–3166. doi: 10.1109/TBME.2013.2270283

Mane, R., Chouhan, T., andGuan, C. (2020). BCI for stroke rehabilitation:motor
and beyond. J. Neural Eng. 17:041001. doi: 10.1088/1741-2552/aba162

Mayaud, L., Cabanilles, S., Langhenhove, A. V., Congedo, M., Barachant, A.,
Pouplin, S., et al. (2016). Brain-computer interface for the communication of
acute patients: a feasibility study and a randomized controlled trial comparing
performance with healthy participants and a traditional assistive device. Brain
Comput. Interfaces 3, 197–215. doi: 10.1080/2326263X.2016.1254403

Minguillon, J., Lopez-Gordo, M. A., and Pelayo, F. (2017). Trends in EEG-BCI
for daily-life: requirements for artifact removal. Biomed. Signal Process. Control 31,
407–418. doi: 10.1016/j.bspc.2016.09.005

Nielsen, F., and Bhatia, R. (2013). Matrix Information Geometry. Heidelberg.
doi: 10.1007/978-3-642-30232-9

Perdikis, S., Tonin, L., Saeedi, S., Schneider, C., and del R. Millán,
J. (2018). The cybathlon bci race: Successful longitudinal mutual learning

with two tetraplegic users. PLoS Biol. 16:5:e2003787. doi: 10.1371/journal.pbio.
2003787

Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., and
Volosyak, I. (2018). Brain-computer interface spellers: a review. Brain Sci. 8:57.
doi: 10.3390/brainsci8040057

Rodrigues, P. L., Congedo, M., and Jutten, C. (2021). Dimensionality
transcending: a method for merging BCI datasets with different dimensionalities.
IEEE Trans. Biomed. Eng. 68, 673–684. doi: 10.1109/TBME.2020.
3010854

Rodrigues, P. L. C., Jutten, C., and Congedo, M. (2019). Riemannian procrustes
analysis: transfer learning for brain-computer interfaces. IEEE Trans. Biomed. Eng.
66, 2390–2401. doi: 10.1109/TBME.2018.2889705

Sun, B., Feng, J., and Saenko, K. (2015). Return of frustratingly easy
domain adaptation. Proc. AAAI Conf. Artif. Intell. 30:1. doi: 10.1609/aaai.v30i1.
10306

Tomioka, R., Aihara, K., and Müller, K.-R. (2006). Logistic regression
for single trial EEG classification. Adv. Neural Inform. Process. Syst. 19,
1377–1384.

Wolpaw, J. R., Birbaumer, N., Mcfarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Xu, J., Markham, A., Meunier, A., Raggam, P., and Grosse-Wentrup, M.
(2021). Distance covariance: a nonlinear extension of Riemannian geometry for
EEG-based brain-computer interfacing. IEEE Int. Conf. Syst. Man Cybern. 2021,
2000–2005. doi: 10.1109/SMC52423.2021.9658876

Yair, O., Ben-Chen, M., and Talmon, R. (2019). Parallel transport on the cone
manifold of spd matrices for domain adaptation. IEEE Trans. Signal Process. 67,
1797–1811. doi: 10.1109/TSP.2019.2894801

Yin, E., Zhou, Z., Jiang, J., Yu, Y., and Hu, D. (2015). A dynamically optimized
ssvep brain-computer interface (BCI) speller. IEEE Trans. Biomed. Eng. 62,
1447–1456. doi: 10.1109/TBME.2014.2320948

Zanini, P., Congedo, M., Jutten, C., Said, S., and Berthoumieu, Y.
(2018). Transfer learning: a Riemannian geometry framework with applications
to brain-computer interfaces. IEEE Trans. Biomed. Eng. 65, 1107–1116.
doi: 10.1109/TBME.2017.2742541

Zaykin, D. V. (2011). Optimally weighted z-test is a powerful method
for combining probabilities in meta-analysis. J. Evol. Biol. 24, 1836–1841.
doi: 10.1111/j.1420-9101.2011.02297.x

Zhang, K., Xu, G., Chen, L., Tian, P., Han, C. C., Zhang, S., et al. (2020). Instance
transfer subject-dependent strategy for motor imagery signal classification using
deep convolutional neural networks. Comput. Math. Methods Med. 2020:1683013.
doi: 10.1155/2020/1683013

Zhang, W., and Wu, D. (2020). Manifold embedded knowledge transfer for
brain-computer interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 1117–1127.
doi: 10.1109/TNSRE.2020.2985996

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1049985
https://doi.org/10.1088/1741-2552/aaf3f6
https://doi.org/10.1007/11577812_10
https://doi.org/10.1109/TSMCC.2012.2226444
https://doi.org/10.1109/TBME.2019.2913914
https://doi.org/10.1109/MCI.2015.2501545
https://doi.org/10.1088/1741-2552/aadea0
https://doi.org/10.1109/TBME.2013.2270283
https://doi.org/10.1088/1741-2552/aba162
https://doi.org/10.1080/2326263X.2016.1254403
https://doi.org/10.1016/j.bspc.2016.09.005
https://doi.org/10.1007/978-3-642-30232-9
https://doi.org/10.1371/journal.pbio.2003787
https://doi.org/10.3390/brainsci8040057
https://doi.org/10.1109/TBME.2020.3010854
https://doi.org/10.1109/TBME.2018.2889705
https://doi.org/10.1609/aaai.v30i1.10306
https://doi.org/10.1016/S1388-2457(02)00057-3
https://doi.org/10.1109/SMC52423.2021.9658876
https://doi.org/10.1109/TSP.2019.2894801
https://doi.org/10.1109/TBME.2014.2320948
https://doi.org/10.1109/TBME.2017.2742541
https://doi.org/10.1111/j.1420-9101.2011.02297.x
https://doi.org/10.1155/2020/1683013
https://doi.org/10.1109/TNSRE.2020.2985996
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	Tangent space alignment: Transfer learning for Brain-Computer Interface
	1. Introduction
	2. Materials and methods
	2.1. Notations
	2.2. Riemannian geometry
	2.3. Alignment
	2.4. Augmenting/improving Cst

	3. Results
	4. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


