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Emotion classification using electroencephalography (EEG) data and machine

learning techniques have been on the rise in the recent past. However, past

studies use data from medical-grade EEG setups with long set-up times and

environment constraints. This paper focuses on classifying emotions on the

valence-arousal plane using various feature extraction, feature selection, and

machine learning techniques. We evaluate di�erent feature extraction and

selection techniques and propose the optimal set of features and electrodes

for emotion recognition. The images from the OASIS image dataset were

used to elicit valence and arousal emotions, and the EEG data was recorded

using the Emotiv Epoc X mobile EEG headset. The analysis is carried out

on publicly available datasets: DEAP and DREAMER for benchmarking. We

propose a novel feature ranking technique and incremental learning approach

to analyze performance dependence on the number of participants. Leave-

one-subject-out cross-validation was carried out to identify subject bias in

emotion elicitation patterns. The importance of di�erent electrode locations

was calculated, which could be used for designing a headset for emotion

recognition. The collected dataset and pipeline are also published. Our study

achieved a root mean square score (RMSE) of 0.905 on DREAMER, 1.902 on

DEAP, and 2.728 on our dataset for valence label and a score of 0.749 on

DREAMER, 1.769 on DEAP, and 2.3 on our proposed dataset for arousal label.

KEYWORDS

signal processing, electroencephalography (EEG), machine learning, valence, arousal,

emotion, feature extraction, artifact rejection

1. Introduction

The role of human emotion in cognition is vital and has been studied for

a long time with different experimental and behavioral paradigms. Psychology

researchers have tried to understand human perception through surveys for a long

time. Recently, with the increasing need to learn about human perception, without

human biases and conception of various emotions across people (Ekman, 1972),
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we observe the increasing popularity of neurophysiological

recordings and brain imaging methods. Since emotions are

triggered almost instantly, Electroencephalography (EEG) is an

attractive choice due to its better temporal resolutions and

mobile recording devices (Lang, 1995; Moss et al., 2003; Koelstra

et al., 2012; Katsigiannis and Ramzan, 2018; Ko et al., 2021;

Tuncer et al., 2021).

The algorithmic pipeline of decoding user intentions

through neurophysiological signals consists of denoising,

pre-processing, feature extraction, electrode and feature

selection, and classification. Although there are deep-learning

algorithms (Haselsteiner and Pfurtscheller, 2000; Übeyli,

2009; Schirrmeister et al., 2017; Karlekar et al., 2018; Zhou

et al., 2018; Jeevan et al., 2019; Jin and Kim, 2020; Tao et al.,

2020) which claim to do the frequency decomposition, feature

extraction, and classifier training in the hidden layers, their

explainability is limited, and amount of training data required

is huge. Machine learning with time-domain features performs

weighted spatial-temporal averaging of EEG signals with

pattern recognition. Feature extraction methods (Ting et al.,

2008; Al-Fahoum and Al-Fraihat, 2014; Oh et al., 2014; Zhang

et al., 2016) require human effort, and expertise is required

in identifying the appropriate features and electrode location

depending on the modality, stimulus, recording instrument, and

participant. Moreover, current feature extraction and selection

method benchmarks (Song et al., 2018; Dar et al., 2020) for

emotion recognition are focused on eliciting emotions through

video-based stimuli, and the applicability of the proposed

methods for static-image elicited emotional response is limited.

Most pattern recognition benchmarks (Placidi et al., 2016;

Kusumaningrum et al., 2020; Dhingra and Ram Avtar Jaswal,

2021) for decoding human emotions from EEG signals have
been performed with research-grade EEG recording systems

with large setup times, sophisticated recording setup, and cost.
Although a portable EEG headset has a lesser signal-to-noise

ratio, its low-cost and easy use makes it an attractive choice
for collecting data from a wider population sample and

overcoming the problem of insufficient uniform EEG data for
algorithmic research.

In this study, first, we propose a protocol for eliciting

emotions by presenting selected images from the OASIS

dataset (Kurdi et al., 2016) and signal recording through

a low-cost, portable EEG headset. Second, we create a

pipeline of pre-preprocessing, feature extraction, electrode

and feature selection, and classifier for emotional response

(Valence and Arousal) decoding and evaluate it for our

dataset and two open-source datasets; incremental training to

demonstrate the dependence of performance on population

sample size is presented. Third, we rank different categories

of feature extraction techniques to evaluate the applicability

of feature extraction techniques for highlighting the patterns

indicative of emotional responses. Moreover, we analyze the

electrode importance and rank different brain regions for their

importance. The electrodes’ relative importance can help explain

the significance of different regions for emotion elicitation,

lead to optimized electrode configuration while conducting

neural-recording studies, and inspire the development of

advanced feature extraction techniques for emotional response

decoding. Fourth, we ask if we can automate the feature

selection and electrode selection techniques for BCI pipeline

engineering and validate the procedure with a qualitative

and quantitative comparison with neuroscience literature.

Importantly, we validate the pipeline for two open-source

datasets based on video-based stimuli and recorded signals

through the proposed protocol for eliciting emotions through

images. The variety of stimuli, recording instruments, and

demography of the population sample aids in eliminating bias

and rigorous analysis of different pipeline components. Lastly,

we publish the proposed pipeline and recorded dataset for

the community.

In the past, the scope of using electrophysiological data

for emotion prediction has widened and led to standardized

2D emotion metrics of valence and arousal (Russell, 1980)

to train and evaluate pattern recognition algorithms. Human

brain-recording experiments have been conducted to associate

emotion quantitatively with words, pictures, sounds, and

videos (Lang, 1995; Lane et al., 1999; Gerber et al., 2008;

Eerola and Vuoskoski, 2011; Leite et al., 2012; Moors et al.,

2013; Warriner et al., 2013; Kurdi et al., 2016; Mohammad,

2018). EEG frequency band is dominant during different

roles, corresponding to various emotional, and cognitive

states (Klimesch et al., 1990; Klimesch, 1996, 1999, 2012;

Bauer et al., 2007; Berens et al., 2008; Jia and Kohn,

2011; Kamiński et al., 2012). Besides using energy spectral

values, researchers use many other features such as frontal

asymmetry, differential entropy and indexes for attention,

approach motivation and memory. “Approach” emotions, such

as happiness, are associated with left hemisphere brain activity,

whereas “withdrawal,” such as disgust, emotions, are associated

with right hemisphere brain activity (Davidson et al., 1990;

Coan et al., 2001). The left-to-right alpha activity is therefore

used for approach motivation. The occipito-parietal alpha

power has been found to have correlations with attention

(Smith and Gevins, 2004; Misselhorn et al., 2019). Fronto-

central increase in theta and gamma activities has been proven

essential formemory-related cognitive functions (Shestyuk et al.,

2019). Differential entropy combined with asymmetry gives out

features such as differential and rational asymmetry for EEG

segments are some recent developments as forward-fed features

for neural networks (Duan et al., 2013; Torres et al., 2020).

In an attempt to classify emotions using EEG signals,
many time-domain, frequency-domain, continuity, complexity

(Gao et al., 2019; Galvão et al., 2021), statistical, microstate
(Lehmann, 1990; Milz et al., 2016; Shen X. et al., 2020),

wavelet-based (Jie et al., 2014), and Empirical (Patil et al.,
2019; Subasi et al., 2021) features extraction techniques
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TABLE 1 Table summarizing various machine learning algorithms and features used to classify emotions on various datasets, reported with

accuracy.

Dataset Classifier Feature extraction method Accuracy (%) References

DEAP kNN Gray-level co-occurrence matrix; Spectral power density 79.58 (Average) Jadhav et al., 2017

DEAP kNN Relative power energy; Logarithmic relative power energy;

Absolute logarithmic; Relative power energy

67.51, 68.55, 65.10

(VAD)

Verma and Tiwary,

2017

DEAP SVM Hjorth parameters; Entropy; Power of frequency bands; RASM;

DASM; Energy of frequency bands using wavelets

65.72 (10 fold CV);

65.92 (LOO-CV)

Khateeb et al., 2021

DEAP GNB Spectral power; Spectral power differential asymmetry 61.6, 64.7, 61.8

(VAD)

Koelstra et al., 2012

Video clips kNN Absolute logarithmic Recoursing; Energy Efficiency of alpha, beta,

and gamma bands decomposed using db4 wavelet function

83.26 Murugappan et al.,

2010

Movie clips SVM Power spectrum and wavelet decomposition of frequency bands;

Entropy exponent; Katz fractal dimension; Feature smoothening

using LDS; Feature reduction using PCA, LDA, and CFS

87.53 (Best

accuracy)

Wang X. et al., 2011

DEAP 2k-NN Spectral power of frequency bands; Spectral power difference of

symmetric electrodes; Histogram parameters of segment level

probability vectors; Dirichlet distribution parameters

76.9, 68.4, 73.9, 75.3

(VADL)

Wang et al., 2014

have been proposed. We have summarized the latest

studies using EEG to recognize the emotional state in

Table 1.

This paper is organized as follows. Section 2.1

describes the three datasets used for our analysis. The

theoretical background and the details of pre-processing

steps (referencing, filtering, motion artifact, and rejection

and repair of bad trials) are discussed in Section 2.2.

Section 2.3 addresses the feature extraction details and

provides an overview of the features extracted. Section

2.4 describes the feature selection procedure adopted

in this work. Section 3 presents our experiments and

results. This is followed by Section 4 for discussion of

experiments performed and results obtained in this work.

Finally, Section 5 summarizes this work’s conclusion and

future scope.

2. Materials and methods

2.1. Datasets

2.1.1. OASIS EEG dataset

2.1.1.1. Stimuli selection

The OASIS image dataset (Kurdi et al., 2016) consists of

a total of 900 images from various categories, such as natural

locations, people, events, and inanimate objects with various

valence and arousal elicitation values. Out of 900 images, 40

were selected to cover the valence and arousal rating spectrum,

as shown in Figure 1.

FIGURE 1

Valence and arousal ratings of OASIS dataset. Valence and

arousal ratings of the entire OASIS (Kurdi et al., 2016) image

dataset (blue) and the images selected for our experiment (red).

The images were selected to represent each quadrant of the 2D

space.

2.1.1.2. Participants and device

The experiment was conducted in a closed room, with the

only light source being the digital 21” Samsung 1,080 p monitor.

Data was collected from fifteen participants of mean age 22 with

ten males and five females using an EMOTIV Epoc EEG headset

consisting of 14 electrodes according to the 10–20 montage

system at a sampling rate of 128 Hz, and only the EEG data

corresponding to the image viewing time was segmented using

markers and used for analysis.

The study was approved by the Institutional Ethics

Committee of BITS, Pilani (IHEC-40/16-1). All EEG
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FIGURE 2

EEG data collection protocol. Experiment protocol for the collection of EEG data. Forty images from the OASIS dataset were shown to elicit

emotion in the valence and arousal planes. After presenting each image, ratings were collected from participants.

experiments/methods were performed in accordance with

the relevant guidelines and regulations as per the Institutional

Ethics Committee of BITS, Pilani. All participants were

explained the experiment protocol, and written consent for

recording the EEG data for research purposes was obtained

from each subject.

2.1.1.3. Protocol

The subjects were explained the meaning of valence and

arousal before the start of the experiment and were seated at a

distance of 80–100 cm from the monitor.

The images were shown for 5 s through Psychopy (Peirce

et al., 2019), and the participants were asked to rate valence and

arousal on a scale of 1–10 before proceeding to the next image,

as shown in Figure 2. Additionally, the participants’ ratings were

compared to the original ratings provided in the OASIS image

dataset as shown in Supplementary Figure 1, and MSE between

the two was 1.34 and 1.39 for valence and arousal, respectively.

2.1.2. DEAP

DEAP dataset (Koelstra et al., 2012) has 32 subjects; each

subject was shown 40 music videos one min long. Participants

rated each video in arousal, valence, like/dislike, dominance, and

familiarity levels. Data was recorded using 40 EEG electrodes

placed according to the standard 10–20 montage system. The

sampling frequency was 128Hz. This analysis considers only 14

channels (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8,

AF4) for the sake of uniformity with the other two datasets.

2.1.3. DREAMER

DREAMER (Katsigiannis and Ramzan, 2018) dataset has

23 subjects; each subject was shown 18 videos at a sampling

frequency 128 Hz. Audio and visual stimuli in the form of

film clips were employed to elicit emotional reactions from

the participants of this study and record EEG and ECG

data. After viewing each film clip, participants were asked to

evaluate their emotions by reporting the felt arousal (ranging

from uninterested/bored to excited/alert), valence (ranging from

unpleasant/stressed to happy/elated), and dominance. Data was

recorded using 14 EEG electrodes.

2.2. Preprocessing

Raw EEG signals extracted from the recording device are

continuous, unprocessed signals containing various kinds of

noise, artifacts and irrelevant neural activity. Hence, a lack of

EEG pre-processing can reduce the signal-to-noise ratio and

introduce unwanted artifacts into the data. In the pre-processing

step, noise and artifacts presented in the raw EEG signals are

identified and removed to make them suitable for analysis in

the further stages of the experiment. The following subsections

discuss each pre-processing step (referencing, filtering, motion

artifact, and rejection and repair of bad trials) in more detail.

2.2.1. Referencing

The average amplitude of all electrodes for a particular

time point was calculated and subtracted from the data of all

electrodes. This was done for all time points across all trials.
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2.2.2. Filtering

A Butterworth bandpass filter of 4th order was applied to

filter out frequencies between 0.1 and 40 Hz.

2.2.3. Motion artifact

Motion artifacts were removed by using Pearson Coefficients

(Onikura et al., 2015). The gyroscopic data (accelerometer

readings) and EEG data were taken corresponding to each

trial. Each of these trials of EEG data was separated into its

independent sources using Independent Component Analysis

(ICA) algorithm. For the independent sources obtained

corresponding to a single trial, Pearson coefficients were

calculated between each source signal and each axis of

accelerometer data for the corresponding trial. The mean and

standard deviations of Pearson coefficients were then calculated

for each axis obtained from overall sources. The sources with

Pearson coefficient 2 standard deviations above themean for any

one axis were high pass filtered for 3 Hz using a Butterworth

filter as motion artifacts exist at these frequencies. The corrected

sources were then projected back into the original dimensions of

the EEG data using the mixing matrix given by ICA.

2.2.4. Rejection and repair of bad trials

Auto Reject is an algorithm developed by Jas et al. (2017)

for rejecting bad trials in Magneto-/Electro- encephalography

(M/EEG data), using a cross-validation framework to find the

optimum peak-to-peak threshold to reject data.

• We first consider a set of candidate thresholds φ.

• Given a matrix of dimensions (epochs × channels ×
time points) by X ∈ R N×P, where N is the number of

trials/epochs and P is the number of features. P = Q*T, Q is

the number of sensors, and T is the number of time points

per sensor.

• The matrix is split into K-folds. Each of the K parts will

be considered the training set once, and the rest of the K-1

parts become the test set.

• For each candidate threshold, i.e., for each

Tl ∈ φ

we apply this candidate peak to peak threshold (ptp) to

reject trials in the training set known as bad trials, and the

rest of the trials become the good trials in the training set.

ptp(Xi) = max(Xi)−min(Xi)

where Xi indicates a particular trial.

• A is the peak-to-peak threshold of each trial, Gl is the set of

trials whose ptp is less than the candidate threshold being

considered

A = {ptp(Xi)|i ∈ traink}

Gl = {i ∈ traink|ptp(Xi) < Tl}

• Then, the mean amplitude of the good trials (for each

sensor and their corresponding set of time points) is

calculated

X = 1

N

N
∑

i=1

Xi

• While the median amplitude of all trials is calculated for the

test set X̃valk
• Now, the Frobenius norm is calculated for all K folds, giving

K errors ek ∈ E; the mean of all these errors is mapped to

the corresponding candidate threshold.

ekl = ||XGl
− X̃valk ||Fro

• The following analysis was done considering all channels at

once; thus, it is known as auto-reject global

• Similar process can be considered where analysis can be

done for each channel independently, i.e., data matrix

becomes(epochs × 1 × time points) known as the local

auto-reject, where we get optimum thresholds for each

sensor independently.

• The most optimum threshold is the one that gives the least

error

T∗ = Tl∗ with l∗ = argmin l
1

K

K
∑

i=1

ekl

As bad trials were already rejected in the DEAP and

DREAMER datasets, we do not perform automatic trial

rejections.

2.3. Feature extraction

In this work, the following set of 36 features was extracted

from the EEG signal data with the help of EEGExtract library

(Saba-Sadiya et al., 2020) for all three datasets:

• Shannon Entropy (S.E.)

• Subband Information Quantity for Alpha [8–12 Hz], Beta

[12–30 Hz], Delta [0.5–4 Hz], Gamma [30–45 Hz], and

Theta[4–8 Hz] band (S.E.A., S.E.B., S.E.D., S.E.G., S.E.T.)

• Hjorth Mobility (H.M.)

• Hjorth Complexity (H.C.)

• False Nearest Neighbor (F.N.N)

• Differential Asymmetry (D.A., D.B., D.D., D.G., D.T.)

• Rational Asymmetry (R.A., R.B., R.D., R.G., R.T.)

• Median Frequency (M.F.)

• Band Power (B.P.A., B.P.B., B.P.D., B.P.G., B.P.T.)

• Standard Deviation (S.D.)

• Diffuse Slowing (D.S.)
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• Spikes (S.K.)

• Sharp spike (S.S.N.)

• Delta Burst after Spike (D.B.A.S.)

• Number of Bursts (N.B.)

• Burst length mean and standard deviation (B.L.M., B.L.S.)

• Number of Suppressions (N.S.)

• Suppression length mean and standard deviation (S.L.M.,

S.L.S.).

These features were extracted with a 1 s sliding window and

no overlap. The extracted features can be categorized into two

different groups based on the ability to measure the complexity

and continuity of the EEG signal. The reader is encouraged to

refer to the work done by Ghassemi (2018) for an in-depth

discussion of these features.

2.3.1. Complexity features

Complexity features represent the degree of randomness and

irregularity associated with the EEG signal. Different features in

the form of entropy and complexity measures were extracted to

gauge the information content of non-linear and non-stationary

EEG signal data.

2.3.1.1. Shannon entropy

Shannon entropy (Shannon, 1948) is a measure of

uncertainty (or variability) associated with a random variable.

Let X be a set of finite discrete random variables X =
{x1, x2, ..., xm}, xi ∈ Rd, Shannon entropy, H(X), is defined as

H(X) = −c

m
∑

i=0

p (xi) ln p (xi) (1)

where c is a positive constant and p(xi) is the probability of (xi)

(ǫ) X such that:

m
∑

i=0

p (xi) = 1 (2)

Higher entropy values indicate high complexity and less

predictability in the system (Phung et al., 2014).

2.3.1.2. Subband information quantity

Sub-band Information Quantity (SIQ) refers to the entropy

of the decomposed EEG wavelet signal for each of the five

frequency bands (Jia et al., 2008; Valsaraj et al., 2020). In our

analysis, the EEG signal was decomposed using a butter-worth

filter of order 7, followed by an FIR/IIR filter. This resultant

wave signal’s Shannon entropy [H(X)] is the desired SIQ of

a particular frequency band. Due to its tracking capability for

dynamic amplitude change and frequency component change,

this feature has been used to measure the information in the

brain (Shin et al., 2006; Kanungo et al., 2021).

2.3.1.3. Hjorth parameters

Hjorth Parameters indicate time-domain statistical

properties introduced by Hjorth (1970). Variance-based

calculation of Hjorth parameters incurs a low computational

cost, making them appropriate for EEG signal analysis. We use

complexity and mobility (Das and Pachori, 2021) parameters

in our analysis. Horjth mobility signifies the power spectrum’s

mean frequency or the proportion of standard deviation. It is

defined as:

Hjorth Mobility =

√

√

√

√

var
(

dx(t)
dt

)

var(x(t))
(3)

where var(.) denotes the variance operator and x(t) denotes

the EEG time-series signal.

Hjorth complexity signifies the change in frequency. This

parameter has been used to measure the signal’s similarity to a

sine wave. It is defined as:-

Hjorth Complexity =
Mobility

(

dx(t)
dt

)

Mobility(x(t))
(4)

2.3.1.4. False nearest neighbor

False Nearest Neighbor is a measure of signal continuity and

smoothness. It is used to quantify the deterministic content in

the EEG time series data without assuming chaos (Kennel et al.,

1992; Hegger and Kantz, 1999).

2.3.1.5. Asymmetry features

We incorporate Differential Entropy (DE) (Zheng et al.,

2014) in our analysis to construct two features for each of the

five frequency bands, namely, Differential Asymmetry (DASM)

and Rational Asymmetry (RASM). Mathematically, DE [h(X)] is

defined as:

h(X) =−
∫ ∞

−∞

1√
2πσ 2

exp
(x− µ)2

2σ 2 log
1√
2πσ 2

exp
(x− µ)2

2σ 2 dx = 1

2
log 2πeσ 2

(5)

where X follows the Gauss distribution N(µ, σ 2), x is a

variable and π and exp are constant.

Differential Asymmetry (or DASM) (Duan et al., 2013)

for each frequency band was calculated as the difference of

differential entropy of each of seven pairs of hemispheric

asymmetry electrodes.

DASM = h
(

Xleft
i

)

− h
(

X
right
i

)

(6)

Rational Asymmetry(or RASM) (Duan et al., 2013)

for each frequency band was calculated as the ratio of

differential entropy between each of seven pairs of hemispheric

asymmetry electrodes.

RASM = h
(

Xleft
i

)

/h
(

X
right
i

)

(7)
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2.3.2. Continuity features

Continuity features signify the clinically relevant signal

characteristics of EEG signals (Hirsch et al., 2013; Ghassemi,

2018). These features have been acclaimed to serve as qualitative

descriptors of states of the human brain and are important in

emotion recognition.

2.3.2.1. Median frequency

Median Frequency refers to the 50% quantile or median

of the power spectrum distribution. Median Frequency has

been studied extensively due to its observed correlation with

awareness (Schwilden, 1989) and its ability to predict imminent

arousal (Drummond et al., 1991). It is a frequency domain or

spectral domain feature.

2.3.2.2. Band power

Band power refers to the signal’s average power in a specific

frequency band. The powers of the delta, theta, alpha, beta,

and gamma frequency bands were used as spectral features.

Initially, a butter-worth filter of order seven was applied to the

EEG signal to calculate band power. IIR/FIR filter was applied

further on the EEG signal in order to separate out signal data

corresponding to a specific frequency band. The average of the

power spectral density was calculated using a periodogram of

the resulting signal. Signal Processing sub-module (scipy.signal)

of SciPy library (Virtanen et al., 2020) in python was used to

compute the band power feature.

2.3.2.3. Standard deviation

Standard Deviation has proved to be an important time-

domain feature in past experiments (Panat et al., 2014; Amin

et al., 2017). Mathematically, it is defined as the square root of

the variance of the EEG signal segment.

2.3.2.4. Di�use slowing

Previous studies (Boutros, 1996) have shown that diffuse

slowing correlates with impairment in awareness, concentration,

and memory; hence, it is an important feature for estimating

valence/arousal levels from EEG signal data.

2.3.2.5. Spikes

Spikes (Hirsch et al., 2013) refers to the peaks in the

EEG signal up to a threshold, fixed at mean + 3 standard

deviation. The number of spikes was computed by finding

local minima or peaks in EEG signal over seven samples using

scipy.signal.find_peaks method from SciPy library (Virtanen

et al., 2020).

2.3.2.6. Delta burst after spike

The change in delta activity after and before a spike is

computed epoch-wise by adding the mean of seven elements

of the delta band before and after the spike, used as a

continuity feature.

2.3.2.7. Sharp spike

Sharp spikes refer to spikes which last <70 ms

and is a clinically important features in the study of

electroencephalography (Hirsch et al., 2013).

2.3.2.8. Number of bursts

The number of amplitude bursts(or simply the number of

bursts) constitutes a significant feature (Hirsch et al., 2013).

2.3.2.9. Burst length mean and standard deviation

Statistical properties of the bursts, mean µ and

standard deviation σ of the burst lengths, have been used

as continuity features.

2.3.2.10. Number of suppressions

Burst Suppression refers to a pattern where high voltage

activity is followed by an inactive period and is generally a

characteristic feature of deep anesthesia (Ching et al., 2012).

We use the number of contiguous segments with amplitude

suppressions as a continuity feature with a threshold fixed at 10µ

(Saba-Sadiya et al., 2020).

2.3.2.11. Suppression length mean and standard

deviation

Statistical properties like mean µ and standard deviation σ

of the suppression lengths are used as a continuity feature.

2.4. Feature selection

After feature extraction, feature selection is performed to

optimize the selection and ranking of features, reduce model

complexity, decrease computation time and enhance learning

precision. The feature selection step plays a crucial role in

eliminating redundant features that do not contribute to model

performance while preserving the relevant information of

EEG signals. Hence, selecting the correct predictor variables

or feature vectors can improve the learning process in any

machine learning pipeline. In this work, initially, zero-variance

or constant features were eliminated from the set of 36 extracted

EEG features using the VarianceThreshold feature selection

method using sci-kit learn package (Pedregosa et al., 2011). Next,

a subset of 25 features common to all 3 datasets (DREAMER,

DEAP, and OASIS EEG) was selected after applying the

VarianceThreshold method for further analysis. This was done

to validate our approach on a common set of features. The set of

11 features (S.E., F.N.N., D.S., S.K., D.B.A.S., N.B., B.L.M., B.L.S.,

N.S., S.L.M., S.L.S.) were excluded from further analysis. Hence,

we reduce the feature space from a set of 36 extracted features

to this subset of 25 features. Corresponding to each feature, a

feature matrix of shape [nc, ns] is generated. We append all these

feature matrices to create a newmatrix of shape [nc∗nf , ns]. This
matrix is inverted to get features as columns for each segment,

i.e., a matrix of shape [ns, nc ∗ nf ] where nc is the number of
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channels, nf is the number of features and ns is the number

of segments. These feature column vectors serve as input for

the SelectKBest algorithm for performing feature selection and

ranking for all three datasets. SelectkBest (Pedregosa et al., 2011)

is a filter-based, univariate feature selection method intended

to select and retain first k-best features based on the scores

produced by univariate statistical tests. In our work, f_regression

was used as the scoring function since valence and arousal are

continuous numeric target variables. It uses Pearson correlation

coefficient as defined in Equation (8) to compute the correlation

between each feature vector in the input matrix, X and target

variable, y, as follows:

ρi =
(X[:, i]−mean(X[:, i])) ∗ (y−mean(y))

std(X[:, i]) ∗ std(y) (8)

The corresponding F-value is then calculated as:

Fi =
ρ2i

1− ρ2i

∗ (n− 2) (9)

where n is the number of samples.

SelectkBest method then ranks the feature vectors based on

F-scores returned by the f_regression method. Higher scores

correspond to better features.

2.5. Regression and evaluation

2.5.1. Random forest regressor

Random forest is an ensemble estimator that fits many

classifying decision trees on various sub-samples of the data set

and uses averaging over this ensemble of trees to improve the

predictive accuracy and control over-fitting (Pedregosa et al.,

2011). Moreover, it has been found to be suitable for high-

dimensional data. In this experiment, a random forest regressor

was implemented with 100 tree estimators and squared-error

criterion as base parameters using the sci-kit learn library.

2.5.2. Evaluation metrics

The following regression evaluation metrics were assessed to

gauge the model performance as part of this experiment:

2.5.2.1. Root mean squared error (RMSE)

Root Mean Square Error (RMSE) can be defined as the

standard deviation of residual errors as shown in Equation (10).

Hence, RMSE estimates the deviation of actual values from the

predicted regression line. Lower RMSE corresponds to accurate

predictions and smaller residual errors by the model. RMSE

is more sensitive toward outliers than MAE since the error

difference is squared.

RMSE(y, ŷ) =

√

√

√

√

(

1

n

) n
∑

i=1

(ŷi − yi)2 (10)

2.5.2.2. R2 score

R2 score is a statistic that denotes the proportion of

variance in the dependent variable (y) explained by independent

variables (x) of the machine learning model. Higher values of

R2 score correspond to greater ability of independent variables

in explaining the variance in the dependent variable. Since the

R2 score depends on the sample size of the dataset and the

number of predictor variables, the R2 score is not meaningfully

comparable across datasets of different dimensionality (MAR,

2021). R2 score can be computed as:

R2(y, ŷ) = 1−
∑n

i=1
(

yi − ŷi
)2

∑n
i=1

(

yi − ȳ
)2 (11)

2.5.2.3. Mean absolute error (MAE)

Mean Absolute Error or l1 loss is the mean of the

absolute difference between the predicted value (ŷi) and the

actual value (yi) of the dependent variable as shown in

Equation (12). MAE is a popular linear regression metric

that uses the same scale of the observed value. Like

RMSE, MAE is also a negatively oriented metric; thus,

lower values correspond to more accurate predictions by

the model.

MAE(y, ŷ) = 1

nsamples

nsamples −1
∑

i=0

∣

∣yi − ŷi
∣

∣ (12)

2.5.2.4. Explained variance (EV)

Explained variance is a part of total variance that acts

as a measure of discrepancy between the model and actual

data. EV is different from the R2 score in computation

as it does not account for systematic offset and uses

biased variance to explain the spread of data points. Hence,

if the mean error of the predictor is unbiased, the EV

score and R2 score should become equal. EV can be

calculated as:

EV(y, ŷ) = 1− Var{y− ŷ}
Var{y} (13)

where Var{θ} is the variance operator for variable θ .

3. Results

3.1. Electrodes ranking and selection

The electrodes were ranked for the three datasets using

the SelectKBest method, as discussed in Section 2.4, and

the ranks are tabulated for valence and arousal labels in

Table 2. To produce a ranking for Top N electrodes, feature

data for top N electrodes were initially considered. The

resultant matrix was split in the ratio 80:20 for training
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TABLE 2 Electrode ranking for valence label (V) and arousal label (A)

based on SelectKBest feature selection method.

DREAMER DEAP OASIS

Electrode A V A V A V

AF3 10 13 10 8 7 6

AF4 9 11 12 10 8 8

F3 11 10 7 11 5 5

F4 13 14 8 6 6 9

F7 14 12 1 1 1 1

F8 3 5 2 2 4 4

FC5 5 9 14 14 10 7

FC6 6 4 3 4 9 10

O1 12 8 13 7 11 11

O2 8 3 6 9 14 13

P7 4 2 5 3 12 12

P8 7 6 4 5 13 14

T7 1 7 9 13 3 2

T8 2 1 11 12 2 3

and evaluating the random forest regressor model. The

procedure was repeated until all 14 electrodes were taken

into account. The RMSE values for the same are shown in

Figure 3A. It should be noted that, unlike feature analysis,

data corresponding to five features each of DASM and

RASM was excluded from the Top N electrode-wise RMSE

study since these features are constructed using pairs of

opposite electrodes.

3.2. Features ranking and selection

Each extracted feature was used to generate its

corresponding feature matrix of shape (nbChannels,

nbSegments). These feature matrices were then ranked

using the SelectKBest feature selection method. Initially, a

feature matrix for the best feature was generated. The ranks

were tabulated for valence and arousal labels in Table 3. This

data was split into 80:20 train-test data; the training data was

used to perform regression with Random Forest Regressor,

predicted values on test data were compared with actual test

labels, and RMSE was computed. In the second run, feature

matrices of best and second-best features were combined,

data was split into train and test data, the model was trained,

and predictions made by the model on test data were used

to compute RMSE. This procedure was followed until all the

features were taken into account. The RMSE values for the

feature analysis procedure, as described above, are shown in

Figure 3B.

FIGURE 3

Model evaluation for feature and electrode selection. The

random forest regressor was trained on the training set (80%)

corresponding to top N electrodes (ranked using SelectKBest

feature selection method), and RMSE was computed on the test

set (20%) for valence (plain) and arousal (dotted) label on

DREAMER, DEAP, and OASIS EEG datasets as shown in (A). A

similar analysis was performed for top N features for DREAMER,

DEAP, and OASIS EEG datasets, as shown in (B).

3.3. Incremental learning

As given by the feature analysis described above, the best

features were used to generate a feature matrix for valence

and arousal for each dataset. The feature matrix was then used

to train a random forest regressor as part of the incremental

learning algorithm.

Incremental learning was performed based on the collection

of subject data. Initially, the first subject data was taken, their

trial order shuffled and then split using 80:20 train test size, the

model was trained using train split, predictions were made for

test data, and next 2nd subject data was taken together with the

1st subject, trial order shuffled, again a train-test split taken and

the random forest regressor model was trained using the train

split. Predictions were made for the test split. This procedure

was repeated until data from all the subjects were used for RMSE

computation. RMSE values for each training step, i.e., training

data consisted of subject 1 data, then the combination of subject

1, 2 data, then the combination of subject 1, 2, 3 data, and so on.

Frontiers inHumanNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1051463
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Garg et al. 10.3389/fnhum.2022.1051463

TABLE 3 Feature ranking for valence label (V) and arousal label (A)

based on SelectKBest feature selection method.

Feature DREAMER DEAP OASIS

A V A V A V

B.P.A. 7 5 18 17 25 15

B.P.B. 9 8 8 7 11 13

B.P.D. 22 22 23 22 12 23

B.P.G. 21 18 3 13 5 20

B.P.T. 20 20 19 18 24 17

D.A. 4 11 12 10 16 9

D.B. 12 10 4 4 21 11

D.D. 24 25 16 16 20 21

D.G. 16 16 5 6 14 18

D.T. 13 14 10 9 23 16

H.C. 2 4 20 20 4 4

H.M. 6 3 17 19 1 2

M.F. 14 12 24 25 7 5

R.A. 5 13 21 21 15 12

R.B. 11 9 1 2 19 10

R.D. 23 24 25 24 18 22

R.G. 17 17 2 1 13 19

R.T. 15 15 11 11 22 14

S.E.A. 10 7 13 12 10 24

S.E.B. 3 2 6 5 3 3

S.E.D. 18 19 15 15 8 7

S.E.G. 1 1 9 8 2 1

S.E.T. 19 21 14 14 9 8

S.S.N. 25 23 22 23 17 25

S.D. 8 6 7 3 6 6

The plots generated for RMSE values for the individual steps of

training are shown in Figure 4.

3.4. Leave-one-subject-out
cross-validation

Subject generalization is a crucial problem in identifying

EEG signal patterns. To prevent over-fitting and avoid subject-

dependent patterns. We train the model with data from all

the subjects except a single subject and evaluate the model on

this remaining subject. Hence, the model is evaluated for each

subject to identify subject bias and prevent any over-fitting.

Also, when building a machine learning model, it is a standard

practice to validate the results by leaving aside a portion of

data as the test set. In this work, we used the leave-one-subject-

out cross-validation technique to avoid participant bias and

evaluate the generalization capabilities of the pipeline. Leave-

one-subject-out cross-validation is a k-fold cross-validation

FIGURE 4

Incremental learning performance. Valence and arousal RMSE

readings were obtained with incremental learning for DREAMER

(A), DEAP (B), and OASIS EEG (C) datasets using random forest

regressor (rfr).

technique, where the number of folds, k, equals the number

of participants in a dataset. The cross-validated RMSE values

for the three datasets for all the participants are plotted in

Figure 5.

The mean and standard deviation of RMSE values for

valence and arousal labels after cross-validation has been

summarized in Table 6. The best RMSE values lie within the

standard deviation range for the leave-one-subject-out cross-

validation results. Hence, inferences drawn from them can

be validated.

Table 4 indicates that the optimum values for RMSE, R2

score, MAE, EV obtained on the test set (20%) using the

optimum set of features were 0.905, 0.702, 0.500, 0.702 and

0.749, 0.683, 0.399, 0.683 on the DREAMER dataset; 1.902,
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FIGURE 5

Subject wise performance analysis for valence and arousal labels. Leave-one-subject-out cross-validation performance analysis for valence

label for (A) DREAMER, (C) DEAP, (E) OASIS datasets and arousal label for (B) DREAMER, (D), DEAP (F) OASIS datasets, respectively. In this

cross-validation technique, one subject was chosen as the test subject, and the models were trained on the data of the remaining subjects.

0.247, 1.498, 0.247 and 1.769, 0.273, 1.372, 0.273 on the DEAP

dataset; and 2.728, 0.042, 2.320, 0.042 and 2.300, 0.236, 1.815,

0.240 on OASIS dataset for valence and arousal, respectively.

For leave-one-subject-out cross-validation, we achieved the best

RMSE of 1.35, 1.12 onDREAMER, 2.11, 2.02 onDEAP, and 2.93,

2.64 on the OASIS dataset for valence and arousal, respectively

as shown in Figure 5.

4. Discussion

4.1. Generalization and overfitting

The dimension of the feature vector is dependent on the

number of electrodes and features used for training the machine

learning model. Training the model with high-dimensional data

requires a proportional sample size to avoid over-fitting. Limited

training data and participant bias are classic drawbacks of EEG

datasets, especially in the case of emotional state recognition.

Therefore determination of the optimum number of electrodes

and features is a critical step.

4.1.1. Sample size

For analysing the subject generalization capability of

the proposed methods, two experiments were conducted:

incremental learning, as shown in Figure 4, and leave-one-

out cross-validation, as shown in Figure 4 and Table 6. As

shown in Supplementary Figure 2, the incremental learning

(IL) error is lower than leave-one-out cross-validation (LOCV)

for most of the participants. For the DEAP dataset (32

participants), the performance improves when increasing

the number of participants considered to train the model
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TABLE 4 Regression evaluation metrics values for valence and arousal labels on the test set (20%) of DEAP, DREAMER, and OASIS datasets for the

optimum set of features.

Dataset Feature RMSE R
2 MAE EV Label

DREAMER 11 0.905 0.702 0.500 0.702 Valence

DREAMER 9 0.749 0.683 0.399 0.683 Arousal

DEAP 8 1.902 0.247 1.498 0.247 Valence

DEAP 9 1.769 0.273 1.372 0.273 Arousal

OASIS 2 2.728 0.042 2.320 0.042 Valence

OASIS 1 2.300 0.236 1.815 0.240 Arousal

TABLE 5 Regression evaluation metrics values for valence and arousal label on the test set (20%) of DEAP, DREAMER, and OASIS dataset for the

optimum set of electrodes.

Dataset Electrode RMSE R
2 MAE EV Label

DREAMER 14 0.914 0.700 0.500 0.700 Valence

DREAMER 14 0.759 0.675 0.406 0.675 Arousal

DEAP 14 1.938 0.219 1.540 0.219 Valence

DEAP 14 1.806 0.237 1.418 0.237 Arousal

OASIS 7 2.765 0.020 2.357 0.020 Valence

OASIS 14 2.417 0.182 1.917 0.185 Arousal

(Figure 4B). For DREAMER and OASIS EEG datasets, while

the performance worsens while increasing the number of

participants (Figures 4A,C), the IL performance is substantially

better than LOCV performance (Supplementary Figure 2),

indicating participant bias is higher in these two datasets.

Moreover, IL learning error saturates after 10 participants in

DREAMER and 5 participants in the OASIS EEG dataset.

Therefore, the model overfits when trained with data from a

few subjects and the generalization capabilities of the proposed

model scale with sample size.

4.1.2. Length of feature vector

The optimum number (N) of electrodes (Table 5) and

features (Table 4) are the ones that produce minimum RMSE in

during model evaluation, while the increasing N, as shown in

Figures 3A,B. In Figure 3A, a general decline could be seen in

the error when increasing the number of electrodes, indicating

the importance of high electrode density.

For the number of features, the downward trend saturates,

and even reversal could be observed (Figure 3B) when increasing

the number of features beyond a limit. This is also indicated

in Table 4 with N being less than half the total features for all

the datasets. Interestingly, the lowest RMSE was observed with

just a single feature for decoding arousal for the OASIS EEG

dataset. This might be explained by the fact that OASIS EEG

data is smaller than the other two datasets, and increasing the

feature-length leads to over-fitting.

TABLE 6 Mean and standard deviation (Std. Dev.) of RMSE values for

valence and arousal label data after leave-one-subject-out-cross-

validation.

Dataset Label Mean Std. Dev.

DREAMER Valence 1.356 0.130

Arousal 1.126 0.190

DEAP Valence 2.112 0.416

Arousal 2.025 0.519

OASIS Valence 2.933 0.582

Arousal 2.642 0.845

The subject generalization capabilities of the learned model

can be estimated by comparing leave-one-out cross-validation

(Table 6) and standard 80-20 split (Table 4). The former error is

higher than the latter by 50, 14, and 9% for DREAMER, DEAP,

and OASIS EEG datasets, respectively. The number of selected

features is also highest for DREAMER and lowest for the OASIS

EEG dataset, indicating that more features increase participant

bias and hence should be carefully determined.

4.2. Electrode placement analysis

As shown in Tables 2, 3, three rankings were obtained from

three datasets for each label. For the valence labels, out of the top

25% electrodes, 33% were in the frontal regions (F3, F4, F7, F8,
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AF3, AF4, FC5, FC6), 33% in the temporal regions (T8, T7), 22%

the parietal regions (P7, P8), and 11% in the occipital regions

(O1, O2). Of the top 50% electrodes, 57% were in the frontal

regions, 19% in the temporal regions, 19% in the parietal regions,

and 4% in the occipital regions.

For the arousal labels, out of the top 25% electrodes, 55%

were in the frontal regions, and 44% in the temporal regions. Of

the top 50% electrodes, 57% were in the frontal regions, 19% in

the temporal regions, 19% in the parietal regions, and 4% in the

occipital regions.

Therefore, the frontal region was the most significant brain

region for recognizing valence and arousal, followed by the

temporal, parietal, and occipital. This is in accordance with

previous works on EEG channel selection (Alotaiby et al., 2015;

Shen J. et al., 2020).

4.3. Feature analysis

The optimum set of features was obtained using feature
rankings and model evaluation results present in Tables 3,

4, respectively. For the DREAMER dataset, this set was

observed to be (S.E.G, S.E.B, H.M, H.C., B.P.A, S.D, S.E.A,
B.P.B, R.B, D.B, D.A) for valence and (S.E.G, H.C, S.E.B,
D.A, R.A, H.M, B.P.A, S.D, B.P.B) for arousal respectively.

The minimum RMSE values obtained using these optimal
features on the DREAMER dataset were 0.905 and 0.749

for valence and arousal dimensions, respectively, as evident
from Table 4. Therefore these features were critical for

recognizing emotional states and can be used in future

studies to evaluate classifiers like Artificial Neural Networks

and ensembles.

As shown in Table 3, band power and sub-band information

quantity feature for gamma and beta frequency bands performed

better in estimating valence and arousal than other frequency

bands. Hence the gamma and beta frequency bands are the most

critical for emotion recognition (Wang X.-W. et al., 2011; Zheng

et al., 2017).

It can be inferred from Table 3 that H.M. was mostly ranked

among the top 3 features for predicting valence and arousal

labels. Similarly, H.C. was ranked among the top four features.

This inference is consistent with the previous studies that claim

the importance of time-domain Hjorth parameters in accurate

EEG classification tasks (Cecchin et al., 2010; Türk et al., 2017).

In the past, statistical properties like standard deviation

derived from the reconstruction of EEG signals have been

claimed to be significant descriptors of the signal and provide

supporting evidence to the results obtained in this study (Panda

et al., 2010; Malini and Vimala, 2016). It was observed that SD

was ranked among the top 8 ranks in general.

Additionally, spatial filtering through optimizing the

covariance matrices with training data using common spatial

patterns (CSP) and Riemannian geometry (Barachant et al.,

2011) have been used to aid better classification results (Simar

et al., 2020). However, such methods are only applicable for

classification tasks, and extension to regression problems is not

in the scope of this study. Lastly, the classifier could be further

optimized using advanced ensemble learning techniques (Fang

et al., 2021) or using deep networks, often referred to as a bag of

deep features (Asghar et al., 2019).

5. Conclusion and future scope

EEG is a low-cost, noninvasive neuroimaging technique

that provides high spatiotemporal information about brain

activity, and it has become an indispensable tool for decoding

cognitive neural signatures. However, the multi-stage intelligent

signal processing method has several indispensable steps

like pre-processing, feature extraction, feature selection, and

classifier training. In this work, we propose a generalized

open-source neural signal processing pipeline based on

machine learning to accurately classify emotional index on

a continuous valence-arousal plane using these EEG signals.

We statistically investigated and validated artifact rejection,

automated bad-trial rejection, state-of-the-art spatiotemporal

feature extraction techniques, and feature selection techniques

on a self-curated dataset recorded from a portable headset

in response to the OASIS emotion elicitation image dataset

and two open-source EEG datasets. The static images also

reduce demographic bias like language and social context and

enable generalized benchmarks of different feature extraction

for emotional response detection across various recording

setups. This published dataset could be used in future studies

for intelligent signal processing methods like deep learning,

reinforcement learning, and neuromorphic computing. The

published simplistic python pipeline would aid researchers in

focusing on innovation in specific signal processing steps like

feature selection or machine learning without the need to

recreate the entire pipeline from scratch. In accordance with

neuroscience literature, our proposed system could identify the

optimum set of electrodes and features that produce minimum

RMSE during emotion classification for a given dataset. It also

validated the claim that beta and gamma frequency bands are

more effective than others in emotion classification. The OASIS

EEG dataset collection was limited to 15 participants due to

the COVID-19 pandemic. In future, we plan to collect the

data for at least 40 participants to draw stronger inferences.

Future work would also include the analysis of end-to-end

neural networks and transfer learning for emotion recognition.

The published dataset can further advance machine learning

systems for emotional state detection with data recorded from

portable headsets. The published EEG processing pipeline of

artifact rejection, feature extraction, feature ranking, feature

selection, and machine learning could be expanded and adapted

for processing EEG signals in response to a variety of stimuli.
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