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Objective: After a stroke, patients usually suffer from dysfunction, such

as decreased balance ability, and abnormal walking function. Whole-

body vibration training can promote muscle contraction, stimulate the

proprioceptive system, enhance the muscle strength of low limbs and improve

motor control ability. The study aims to evaluate the effectiveness of whole-

body vibration training on the balance and walking function of patients with

stroke.

Methods: PubMed, CNKI, VIP, CBM, EBSCO, Embase and Web of Science

were searched. According to the inclusion and exclusion criteria, randomized

controlled trials on the effectiveness of whole-body vibration training on the

balance and walking function of patients with stroke were collected. The

search time ranged from the date of database construction to November

2022. The included trials were evaluated by the Cochrane risk-of-bias tool.

The meta-analysis was performed using two software packages, consisting

of RevMan 5.4 and Stata 12.2. If the results included in the literature were

continuous variables, use the mean difference (MD) and 95% confidence

interval (CI) for statistics.

Results: (1) A total of 22 randomized controlled trials (RCTs) with a total of

1089 patients were included. (2) The results of meta-analysis showed that:

compared with the controls, step length (MD = 6.12, 95%CI [5.63, 6.62],

p < 0.001), step speed (MD = 0.14, 95%CI [0.09, 0.20], p < 0.001), cadence

(MD = 9.03, 95%CI [2.23, 15.83], p = 0.009), stride length (MD = 6.74, 95%CI

[−3.47, 10.01], p < 0.001), Berg Balance Scale (BBS) (MD = 4.08, 95%CI [2.39,

5.76], p < 0.001), Timed Up-and-Go test (TUGT) (MD = −2.88, 95%CI [−4.94,

0.81], p = 0.006), 10-meter Walk Test (10MWT) (MD = −2.69, 95%CI [−3.35,

−2.03], p < 0.001), functional ambulation category scale (FAC) (MD = 0.78,

95%CI [0.65, 0.91], p < 0.001), Fugl-Meyer motor assessment of lower

extremity (FMA-LE) (MD = 4.10, 95%CI [2.01, 6.20], p = 0.0001). (3) The results

of subgroup analysis showed that, compared with other vibration frequencies,
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at 20–30 Hz frequency, WBV training had an obvious improvement effect only

in TUGT. (4) The safety analysis showed that WBV training may be safe.

Conclusion: Whole-body vibration training has a positive effect on the

balance and walking function of patients with stroke. Thus, whole-body

vibration training is a safe treatment method to improve the motor dysfunction

of patients with stroke.

Systematic review registration: [http://www.crd.york.ac.uk/PROSPERO],

identifier [CRD4202348263].
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1. Introduction

Stroke is one of the most prevalent cerebrovascular diseases.
According to the most recent data, stroke is the second leading
cause of death worldwide. With a high disability rate, recurrence
rate, and fatality rate, stroke is also the most common cause of
adult disability (Sacco and Rundek, 2012; Khaku and Tadi, 2022;
Yikun et al., 2023). In the world each year, 16 million people
get a stroke, according to a report issued by WHO in 2020.
Recently, stroke incidence has been progressively rising with
each passing year and is inclining to be younger along with the
prolongation of the human life span (Guzik and Bushnell, 2017;
Khaku and Tadi, 2022; Zhang et al., 2022). This is a formidable
challenge for the medical and health systems (Moreno-Segura
et al., 2022). The effects of a stroke on the human body vary
depending on the degree of severity and location of the damage,
but motor dysfunction, which manifests as decreased muscle
strength, muscle spasms, abnormal muscle movement patterns,
joint stiffness, abnormal proprioception, and other symptoms,
is the most frequent symptom (Van Criekinge et al., 2019; Wei
and Cai, 2022). The symptoms above would lead to decreased
balance ability and abnormal walking function. After a stroke,
more than 70% of patients experience varying degrees of lower
limb dysfunction with limited recovery of walking function,
resulting in most of them being unable to maintain a healthy
gait or walking speed (Wist et al., 2016; Virani et al., 2020). The
physical and psychological health of patients, as well as their
quality of life and ability to reintegrate into family and society,
are all significantly impacted by these dysfunctions. For the
recovery of the walking function of stroke patients, the primary
therapeutic methods at present include medication, muscle
paste, PNF, rehabilitation training, machine exoskeletons, and
so on (Wang et al., 2019; Varvarousis et al., 2021; Calafiore et al.,
2022; Moreno-Segura et al., 2022; Nguyen et al., 2022).

Whole-body vibration (WBV) training helps to improve
the dysfunction of the nervous system and musculoskeletal
system diseases (In et al., 2018; Cigdem Karacay et al., 2022;

Wang et al., 2022), to prevent and relieve osteoporosis in the
elderly (Pichler et al., 2013; Cheng et al., 2021), and to
promote sports injury recovery and improve sports performance
(Sierra-Guzmán et al., 2018; Marin-Puyalto et al., 2020; Cheng
et al., 2021). WBV training is a training method to improve
neuromuscular, which uses mechanical vibration and external
resistance load to stimulate the body to cause muscle vibration
and increase the adaptiveness of the central nervous system
(Choi et al., 2017). The patients sit or stand on the vibration
platform, then the exogenous stimuli with various amplitudes
and frequencies are transmitted from the platform to the
whole body through the sole of the foot. The “bone-muscle-
nerve” series connection is established (Jaime et al., 2019). By
causing local or entire body muscles to vibrate, the vibration
stimulation can increase the activation degree of the muscle
spindle, cause high-frequency discharge and recruit more motor
units, thus promoting muscle contraction, stimulating the
proprioception system, enhancing muscle strength of lower
limbs, and improving motor control ability (Marín et al., 2015;
Liu et al., 2022).

The meta-analyses on WBV training interventions for
stroke patients performed separately by Yang et al. (2015)
and Lu et al. (2015) showed that WBV training has little
role in improving balance and walking function in stroke
patients. Yang and Butler (2020) concluded that controlled
whole-body vibration training may benefit balance and mobility
immediately, but the effects may not persist in stroke patients.
Park et al. (2018) found that the effect sizes of WBV training
for balance and gait function were small, through a comparison
of effect improvement in all aspects of stroke patients after
WBV intervention. After a collated analysis of researches
above, we found that the databases searched were mainly
Embase, PubMed, EBSCO, and Web of Science. The results and
conclusions may be influenced by the inadequacy of the number
of literature searches. In addition, the assessment methods for
gait in the studies above mainly included TUGT, 10/6MWT
and FAC, and no valid evaluation of walking spatiotemporal
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paraments (step length, step speed, and cadence, etc.) was
performed. Therefore, in conclusion, the range of database
searching was increased and the evaluation indicators of walking
spatiotemporal paraments were added for analysis in this study.

Some studies have found that WBV training plays a positive
role in the recovery of balance and walking function in patients
with stroke (Gu and Hwangbo, 2016; Yan et al., 2021; Chuan
et al., 2022), while other studies have shown that there is
no significant difference between WBV training and routine
rehabilitation training (Ijaz Ahmed Burq et al., 2021; Liu et al.,
2022). The objective of this meta-analysis is to ascertain the
effect of WBV training on balance and walking function in the
rehabilitation of stroke patients, compared with routine, sham,
and no treatments. Additionally, it sought to ascertain whether
WBV training can serve as an effective training intervention
method to guide clinical practice.

2. Materials and methods

2.1. Retrieval strategy

This meta-analysis was planned and implemented according
to the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2015). The
protocol was registered on the international prospective register
of systematic reviews (http://www.crd.york.ac.uk/PROSPERO),
registration number: CRD42022348263.

PubMed, CNKI, VIP, CBM, EBSCO, Embase and Web
of Science were searched. The search time ranged from the
date of database construction to November 2022. The last
retrieval date is November 30, 2022. The literature search
was conducted using a combination of subject terms and
free terms. The search terms included “stroke,” “cerebral
apoplexy,” “cerebral infarction,” “encephalorrhagia,” “walk,”
“gait,” “progression,” “balance,” “whole-body vibration training,”
“vibration training,” “vibration,” “VT,” “WBVT.” In order to
get all the randomized control trials related to the whole-body
vibration training intervention on the balance and walking
function of patients with stroke, we also traced the references
of the retrieved literature to supplement the relevant literature.
The full search strategy for each database is presented in
Supplementary material.

2.2. Literature inclusion, exclusion
criteria and outcome indicator

The inclusion criteria: (1) Participants: stroke patients at
any stage and time, regardless of sex, age, race and nationality;
(2) Study design: randomized controlled trials (RCTs); (3)
Primary treatment methods: vibration training alone or in
combination with other treatments; (4) Treatment methods for

the control group: any other interventions, including routine
treatment, sham treatment, and no treatment; (5) Literature
type: journal articles.

The exclusion criteria: (1) Literature not published in
English or Chinese; (2) Literature published repeatedly; (3)
Literature that was unable to effectively extract data and obtain
original texts; (4) Animal studies or cross-sectional studies.

The primary outcome indicators: (1) walking
spatiotemporal parament, consisting of step length (cm),
step speed (m/s), cadence (step/min), single support time (s),
double support time (s), stride length (cm) and step time (s). (2)
Berg Balance Scale (BBS): BBS is a comprehensive scale to assess
balance function in stroke patients, including the combined
abilities of dynamic and static balance in sitting, standing and
center of gravity movement. The scale is consisted of 14 items,
each of which has a score of 0–4, with a maximum score of
56 points. The higher the score, the better the balance ability
of the patient (ICC = 0.92) (Godi et al., 2013). (3) 10-meter
Walk Test (10MWT): 10MWT is a commonly used measure for
assessing dynamic walking function, which evaluating the time
for patients to walk 10 meters at a natural pace (ICC = 0.96–
0.98) (Peters et al., 2013). (4) Timed Up-and-Go test (TUGT):
TUGT is a widely used performance test for the evaluation of
coordination and stability in dynamic walking. TUGT requires
participants to stand up from a chair, walk 3 meters, turn
around, return to the chair, and sit down again (ICC > 0.95)
(Hafsteinsdóttir et al., 2014).

The secondary outcome indicators: (1) Functional
ambulation category scale (FAC): FAC is adopted to assess
the walking ability of stroke patients. The test results of the
scale were divided into 6 grades. The higher the grade, the
better the walking ability (ICC = 0.95) (Mehrholz et al., 2007).
(2) Fugl-Meyer motor assessment of lower extremity (FMA-
LE): FAM-LE was conducted to evaluate the motor ability of
lower limbs, containing contents from five domains (motion,
sensation, balance, joint range of movement and pain) as well
as 17 assessment items, with a full score of 34 (Gladstone et al.,
2002).

2.3. Literature screening and data
extraction

Step 1: Import retrieved literature to the literature
management software EndNote X9.1 Step 2: Exclude duplicate
materials. Step 3: Perform the first round of screening by
reading titles and abstracts. Step 4: After downloading full texts,
conduct a second round of screening to determine if inclusion
criteria were met.

Two independent reviewers, ZY and LZ, conducted the
literature screening and data extraction. Then a cross-checking

1 www.endnote.com
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was performed. When a possible disagreement occurred, we
solved it through discussion or negotiation with a third
independent reviewer, HC. In literature screening, we first read
the title to exclude irrelevant literature, and then, we further read
the abstract and the full text to determine whether to include it.
If necessary, we would contact the author of the original research
by email or telephone to obtain the unconfirmed information.

The extracted data: (1) General information of the included
literature: the title, the first author and the year of publication;
(2) General characteristics of the patients: the number of cases
in each group, the age and the duration of the disease; (3)
Treatment specifics and the follow-up time; (4) Key elements of
bias risk assessment; (5) Focused outcome indicators.

2.4. Quality assessment

Two independent reviewers used the Cochrane
Collaboration tool to examine the risk of bias for the included
studies (Higgins et al., 2011; Cumpston et al., 2019), and
cross-checking was conducted. A literature quality grade was
performed according to the Jadad Scale. A score of 1–3 was
considered low quality, and a score of 4–7 was considered high
quality. The grading was also conducted by two independent
reviewers, with the disagreement consulting the opinions of a
third independent reviewer.

2.5. Statistical analysis

The statistical analysis was based on RevMan5.4 (the Review
Manager software 5.4, The Nordic Cochrane Center, The
Cochrane Collaboration). If the results included in the literature
were continuous variables, use the mean difference (MD) and
95% confidence interval (CI) for statistics. The p value and the
I2 index were used as indicators to assess the heterogeneity
among studies. There was no heterogeneity between studies
when p ≥ 0.10, while p < 0.10 indicates that there was
heterogeneity between studies. The I2 index represented the
degree of heterogeneity between studies. If I2 < 50%, it indicates
that there was slight heterogeneity between the studies, and the
fixed effect model was used for analysis. If I2

≥ 50%, there was
heterogeneity in the study, and the random effect model was
used for analysis (Cochrane et al., 2021). The α value was set at
0.05 and Stata 12.0 software was used to conduct the publication
bias analysis and sensitivity analysis of Begg’s test for the studies
with more than 5 included outcome indicators. The threshold
for statistical significance was set at p < 0.05.

Considering differences in WBV training frequencies, a
subgroup analysis was conducted. When the vibration frequency
was set at 20–50 Hz or 20–45 Hz, higher EMG activity was
induced (Rittweger, 2010; Alam et al., 2018). Thus, muscle
strength was enhanced and muscle training was more effective

and several studies (Cardinale and Lim, 2003; Rittweger et al.,
2003; Liu et al., 2022) have found vibration frequencies between
20 and 30 Hz to be more effective in stroke patients. Therefore,
we planned to divide into two subgroups by frequency of WBV
training: a subgroup of vibration frequencies at 20–30 Hz, and
another subgroup of the other vibration frequencies.

And the safety analysis was also conducted to confirm the
safety of WBV training, through the observed changes in blood
pressure and heart rate or some terrible symptoms such as
headache and nausea in stroke patients during WBV training in
the included studies.

3. Results

The initial search resulted in a total of 673 studies, and 8
studies were selected in other ways. EndNote X9 was used to
remove duplicate documents, and there were 487 studies left.
After reading the titles and abstracts, 122 studies were selected.
Then, after reading the full texts, 98 studies were discarded
because they did not meet the inclusion and exclusion criteria,
and 22 studies were finally included (van Nes et al., 2006;
Brogårdh et al., 2012; Chan et al., 2012; Guo et al., 2015; Choi
et al., 2016, 2017; Gu and Hwangbo, 2016; Qianhao et al., 2018;
Lee, 2019; Zhanyu et al., 2019; Zhen-hua et al., 2019; Sade et al.,
2020; Xin-xin et al., 2020; Ijaz Ahmed Burq et al., 2021; Jin-Ming
et al., 2021; Kim and Lee, 2021; Xie et al., 2021; Yan et al., 2021;
Chuan et al., 2022; Le et al., 2022; Wei and Cai, 2022; Zhenying
et al., 2022). The process is shown in Figure 1.

3.1. Characteristics of included studies

A total of 1,089 patients were included in the 22 studies. The
age ranged from 31.8 to 78.31 years old. The sample size of each
study ranged from 20 to 130 patients. 15 articles were published
in the past five years, accounting for 68%. In most studies,
the intervention in experimental groups was WVT combined
with routine rehabilitation training. And in three studies, the
experimental groups only used WVT intervention. In addition,
the experimental groups in the other articles respectively
added lower limb weight bearing training, basic walking
training, extracorporeal shock wave therapy, music therapy,
virtual reality technology, neuro-developmental treatment and
treadmill training to routine rehabilitation training. For the
control groups, in most studies, WVT was removed. However,
there were five studies using the sham WVT intervention. The
details of the research characteristics are shown in Table 1.

In 11 of the included studies, the walking spatiotemporal
parament was evaluated (step length, step speed, cadence, single
support time, double support time, stride length and step times).
In 13 of the included studies, Berg Balance Scale (BBS) was used.
And TUGT, 10MWT, FAC, and FMA-L were respectively used in
10, 7, 4 and 4 studies.
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FIGURE 1

Study selection represented by PRISMA flowchart.

The risk of bias assessment was performed through
RevMan5.4 software, according to the Cochrane Handbook for
Systematic Reviews. The results are shown in Figures 2, 3.
The quality of the literature was graded according to the Jadad
scale, with two studies judged to be of low quality and the
remaining studies considered to be of high quality. The details
are presented in Supplementary material.

3.2. Results of the meta-analysis

3.2.1. Walking spatiotemporal parament
A total of seven studies (Choi et al., 2017; Qianhao et al.,

2018; Lee, 2019; Zhen-hua et al., 2019; Sade et al., 2020;
Chuan et al., 2022; Zhenying et al., 2022) reported the effect
of WBV training on step length in stroke patients, with non-
heterogeneity among them (p = 0.62, I2 = 0%). A fixed effects

model was used to analyze the data (MD = 6.12, 95%CI [5.63,
6.62], p < 0.001; Figure 3A). A total of nine studies (Choi
et al., 2017; Qianhao et al., 2018; Lee, 2019; Zhen-hua et al.,
2019; Sade et al., 2020; Yan et al., 2021; Chuan et al., 2022;
Le et al., 2022; Zhenying et al., 2022) reported the effect of
WBV training on step speed in stroke patients, with substantial
heterogeneity among them (p < 0.001, I2 = 83%). A random
effects model was used to analyze the data (MD = 0.14, 95%CI
[0.09, 0.20], p < 0.001) (Figure 3B). A total of six studies
(Chan et al., 2012; Choi et al., 2017; Lee, 2019; Sade et al., 2020;
Xin-xin et al., 2020; Chuan et al., 2022)reported the effect of
WBV training on the cadence in stroke patients, with substantial
heterogeneity among them (p = 0.06, I2 = 52%). A random
effects model was used to analyze the data (MD = 9.03, 95%CI
[2.23, 15.83], p = 0.009) (Figure 3C). A total of three studies
(Lee, 2019; Zhanyu et al., 2019; Sade et al., 2020) reported the
effect of WBV training on the single support time in stroke
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TABLE 1 The details of research characteristics.

No. References Sample size
(Male/female, N)

Mean age, years Course of disease Description of
intervention

Dosage Outcome Follow-up

T C T C T C T C

1 Qianhao et al.,
2018

9/6 11/4 49.33 ± 7.34 50.93 ± 8.19 60.73 ± 11.93 d 61.53 ± 11.10 d F = 7 Hz, A = ± 4 mm
and I

I 1 time/d, 10 min/time,
6 time/week, 4 weeks

No

2 Chuan et al.,
2022

14/9 14/10 60.35 ± 11.63 62.42 ± 9.34 3.41 ± 1.48 m 3.23 ± 1.76 m F = 5–8 Hz, A = 2 mm
and I

I 1 time/d, 15 min/time,
5 time/week, 4 weeks

No

3 Zhen-hua et al.,
2019

18/17 16/19 55.0 ± 4.8 55.0 ± 4.7 63.7 ± 6.0 d 63.5 ± 5.0 d F = 20 Hz, A = 3 mm
and I,II

I,II 1 time/d, 5 time/week,
6 weeks

No

4 Xin-xin et al.,
2020

16/4 15/5 55.15 ± 11.65 56.40 ± 10.92 2.60 ± 1.47 m 2.75 ± 1.77 m F = 25 Hz, low A and I I 1 time/d, 5 time/week,
4 weeks

Ä No

5 Yan et al., 2021 18/7 12/13 62.64 ± 7.02 61.92 ± 5.64 53.68 ± 8.88 d 53.28 ± 11.72 d F = 12 Hz and I I 1 time/d, 1 min/time,
5 time/week, 8 weeks

No

6 Zhanyu et al.,
2019

9/6 8/7 48.1 ± 11.8 46.7 ± 10.9 82.5 ± 16 d 84.5 ± 17 d F = 3–5 Hz and I, III I,III 1 time/d, 15 min/time,
6 time/week, 8 weeks

No

7 Le et al., 2022 13/12 14/11 63.53 ± 5.26 63.62 ± 4.21 130.35 ± 18.37 d 125.33 ± 20.32 d A = 4 mm and I,IV I,IV,V 1 time/d, 15 min/time,
5 time/week, 4 weeks

No

8 Jin-Ming et al.,
2021

25/23 28/20 55.11 ± 4.36 54.90 ± 4.72 2.05 ± 0.89 m 2.06 ± 0.91 m F = 12–20 Hz,
A = 2.0–4.0 mm and I,VI

I 1 time/d, 9 min/time,
5 d/week, 6 weeks

No

9 Zhenying et al.,
2022

28/15 30/13 63.51 ± 7.56 62.67 ± 7.28 3.36 ± 1.52 m 3.76 ± 1.32 m F = 20 Hz, A = 4 mm and
I

I 1 time/d, 5 days/week,
8 weeks

No

10 van Nes et al.,
2006

16/11 14/12 59.7 ± 12.3 62.6 ± 7.6 38.9 ± 9.2 d 34.2 ± 11.1 d F = 30 Hz, A = 3 mm and
I,VII

I,V,VII 1 time/d, 20 min/time,
5 d/week, 6 weeks

Yes

11 Gu and
Hwangbo, 2016

10 10 73.46 ± 3.94 73.46 ± 3.94 18.11 ± 13.04 m 18.11 ± 13.04 m Vibration for 10 s and I I 3 time/week,
16 min/time, 6 weeks

No

12 Brogårdh et al.,
2012

13/3 12/3 61.3 ± 8.5 63.9 ± 5.8 37.4 ± 31.8 m 33.1 ± 29.2 m F = 25 Hz, A = 3.75 mm V 2 time/week, each
time<45 min, 6 weeks

No

13 Wei and Cai,
2022

L: 23/3
H: 21/5

21/5 L: 72.42 ± 5.89
H: 70.19 ± 5.07

71.85 ± 6.03 L:
33.65 ± 15.75 m

H:
36.69 ± 20.32 m

31.23 ± 19.33 m L:F = 13 Hz and I
H: F = 26 Hz and I

I,V 5 d/week, 6 min/time,
5 weeks

No

(Continued)
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TABLE 1 (Continued)

No. References Sample size
(Male/female, N)

Mean age, years Course of disease Description of
intervention

Dosage Outcome Follow-up

T C T C T C T C

14 Ijaz Ahmed
Burq et al., 2021

21/11 19/13 54.56 ± 8.85 55.06 ± 11.48 14.46 ± 12.14 m 10.82 ± 5.15 m F = 120 Hz and I I 6 d/week, 15 min,
2 weeks

No

15 Chan et al., 2012 10/5 11/4 56.07 ± 11.04 54.93 ± 7.45 30.40 ± 25.80 m 38.87 ± 38.22 m F = 12 Hz, A = 4 mm V 20 min, a single time no

16 Sade et al., 2020 14/12 9/8 46.8 ± 15 51.6 ± 10 34.5 ± 25 m 35.5 ± 20 m F = 35–40 Hz, A = 2 mm
and I

I 10 min, 3 weeks no

17 Choi et al., 2016 8/3 7/4 50.9 ± 8.2 52.2 ± 12.3 12.3 ± 10.1 y 10.6 ± 6.8 y F = 25 Hz, A = 5 mm and
VIII

VIII 5 d/week, 10 min,
4 weeks

no

18 Kim and Lee,
2021

8/12 7/11 57.20 ± 11.00 55.70 ± 10.40 31.60 ± 15.18 d 28.00 ± 8.72 d F = 16 Hz and I I 5 d/week, 20 min,
2 weeks

no

19 Choi et al., 2017 8/7 11/4 51.93 ± 8.35 53.67 ± 7.38 25.13 ± 9.25 m 22.53 ± 10.27 m F = 5–30 Hz (add 5 Hz
each 2 weeks), A = 3mm
and IX

IX 3 time/week, 6 weeks no

20 Lee, 2019 6/3 8/4 59.78 ± 5.78 61.25 ± 10.06 84.11 ± 10.76 m 98.42 ± 22.76 F = 116 Hz, A = 3 mm
and I

I 3 d/week, 30 min,
6 weeks

no

21 Guo et al., 2015 15 15 53.8 ± 6.0 54.3 ± 6.8 66.9 ± 42.9 d 59.4 ± 61.4 F = 6 (1–2 w), 8 (3–5 w),
10 (6–8 w) Hz; A = 4 mm

V 8 weeks no

22 Xie et al., 2021 32/33 33/32 60.42 ± 6.39 59.82 ± 6.62 3.22 ± 1.35 m 3.09 ± 1.01 m F = 20 Hz, A = 5.2 mm
and I

I 6 d/week, 22 min,
4 weeks

no

T, experimental groups; C, control groups; I, routine rehabilitation training (active and passive limb activities, muscle strength training, neuromuscular facilitation techniques, balance training, and physical factor therapy etc.); II, weight bearing training
of affected lower limb; III, basic walking training; IV, extracorporeal shock wave therapy; V, sham WBV training; VI, virtual reality technology; VII, music therapy; VIII, neuro-developmental treatment; IX, treadmill training. step length; step speed;

cadence; single support time/double support time; stride length; step time; Berg Balance Scale (BBS); Timed Up-and-Go test (TUGT); 10-meter Walking Test (10MWT); functional ambulation category scale (FAC); Fugl-Meyer motor
assessment of lower extremity (FMA-LE). F, frequency; A, amplitude; L, low-frequency group; H, high-frequency group; d, day; m, month; y, year.
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FIGURE 2

The risk assessment of bias by Cochrane. (A) This figure summarized the quality assessment of all included studies and presented an overall
study quality assessment and risk of bias. Green means low risk of bias, red means high risk of bias, and yellow means ominous risk of bias. (B)
This figure was presented separately for each included study and intuitively presented the quality assessment and risk of bias of each study. “+”
Means low risk of bias, “–” means high risk of bias, and “?” means unknown risk of bias.

patients, with substantial heterogeneity among them (p = 0.02,
I2 = 75%). A random effects model was used to analyze the
data (MD = −0.04, 95%CI [−0.16, 0.08], p = 0.54) (Figure 3D).
There were only two studies (Lee, 2019; Sade et al., 2020)
reported the effect of WBV training on the double support
time in stroke patients, with substantial heterogeneity among
them (p = 0.12, I2 = 58%). A random effects model was
used to analyze the data (MD = −0.07, 95%CI [−0.30, 0.15],
p = 0.52) (Figure 3E). A total of five studies (Choi et al., 2017;
Lee, 2019; Xin-xin et al., 2020; Yan et al., 2021; Le et al., 2022)

reported the effect of WBV training on the stride length in
stroke patients, with non-heterogeneity among them (p = 0.56,
I2 = 0%). A fixed effects model was used to analyze the data
(MD = 6.74, 95%CI [−3.47, 10.01], p < 0.001) (Figure 3F).
Finally, a total of two studies (Sade et al., 2020; Xin-xin et al.,
2020)reported the effect of WBV training on the step time
in stroke patients, with substantial heterogeneity among them
(p = 0.03, I2 = 79%). A random effects model was used to
analyze the data (MD = −0.20, 95%CI [−0.67, 0.27], p = 0.40)
(Figure 3G).
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FIGURE 3

Forest plot of the effects of WBV training on walking spatiotemporal parament. (A) Step length (cm); (B) step speed (m/s); (C) cadence
(step/min); (D) single support time(s); (E) double support time (s); (F) stride length (cm); and (G) step time (s).

3.2.2. Berg Balance Scale (BBS)
A total of 13 studies (van Nes et al., 2006; Brogårdh et al.,

2012; Gu and Hwangbo, 2016; Qianhao et al., 2018; Sade et al.,
2020; Xin-xin et al., 2020; Jin-Ming et al., 2021; Kim and
Lee, 2021; Xie et al., 2021; Yan et al., 2021; Le et al., 2022;

Wei and Cai, 2022; Zhenying et al., 2022)reported the effect
of WBV training on BBS in stroke patients, with substantial
heterogeneity among them (p < 0.001, I2 = 80%). A random
effects model was used to analyze the data (MD = 4.08, 95%CI
[2.39, 5.76], p < 0.001; Figure 4).
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FIGURE 4

Forest plot of the effects of WBV training on BBS.

3.2.3. Timed Up-and-Go test (TUGT) (s)
A total of 10 studies (Chan et al., 2012; Choi et al., 2016; Gu

and Hwangbo, 2016; Sade et al., 2020; Ijaz Ahmed Burq et al.,
2021; Jin-Ming et al., 2021; Kim and Lee, 2021; Xie et al., 2021;
Chuan et al., 2022; Zhenying et al., 2022) reported the effect
of WBV training on TUGT in stroke patients, with substantial
heterogeneity among them (p < 0.001, I2 = 78%). A random
effects model was used to analyze the data (MD = −2.88, 95%CI
[−4.94, −0.81], p = 0.006; Figure 5).

3.2.4. 10-meter Walk Test (10MWT) (s)
A total of seven studies (Chan et al., 2012; Guo et al., 2015;

Zhanyu et al., 2019; Ijaz Ahmed Burq et al., 2021; Kim and Lee,
2021; Xie et al., 2021; Chuan et al., 2022) reported the effect
of WBV on 10MWT in stroke patients, with no-heterogeneity
among them (p = 0.21, I2 = 29%). A fixed effects model was
used to analyze the data (MD = −2.69, 95%CI [−3.35, −2.03],
p < 0.001; Figure 6).

3.2.5. Functional ambulation category scale
(FAC)

A total of four studies (Zhen-hua et al., 2019; Jin-Ming
et al., 2021; Kim and Lee, 2021; Zhenying et al., 2022) reported
the effect of WBV training on FAC in stroke patients, with no
heterogeneity among them (p = 0.93, I2 = 0%). A fixed effects
model was used to analyze the data (MD = 0.78, 95%CI [0.65,
0.91], p < 0.001; Figure 7).

3.2.6. Fugl-Meyer motor assessment of lower
extremity (FMA-LE)

A total of four studies (Guo et al., 2015; Zhanyu et al.,
2019; Jin-Ming et al., 2021; Le et al., 2022) reported the effect
of WBV training on FMA-LE in stroke patients, with substantial
heterogeneity among them (p < 0.001, I2 = 86%). A random

effects model was used to analyze the data (MD = 4.10, 95%CI
[2.01, 6.20], p = 0.0001; Figure 8).

In summary, the results showed that the improvements in
step length, step speed, cadence, stride length, BBS, TUGT,
10MWT, FAC and FAM-LE in the experimental groups were
better than those in the controls, and the improvements in
single support time, double support time and step time in
the experimental groups were not obviously better than those
in the controls.

3.3. Subgroup analysis

It had been suggested that the frequency of WBV training
set from 20 to 30 Hz may be more beneficial in stroke patients
(Cardinale and Lim, 2003; Rittweger et al., 2003; Liu et al.,
2022). Thus, a subgroup analysis was conducted. The results
showed that a 20–30 Hz vibration frequency was not conducive
to the improvement of step length, BBS and FAC. However, in
terms of the results of TUGT, the 20–30 Hz vibration frequency
was better than other frequencies. The details are presented in
Supplementary Figures 1–4.

3.4. Publication bias and sensitivity
analysis

The publication bias analysis was conducted for the outcome
indicators included in five or more studies through Begg’s test.
The results showed step length (t = 0.44, P = 0.681, P > 0.05),
step speed (t = −2.14, P = 0.07, P > 0.05), cadence (t = −1.11,
P = 0.328, P > 0.05), BBS (t = 1.43, P = 0.180, P > 0.05), TUGT
(t = 1.56, P = 0.157, P > 0.05) and 10MWT (t = 1.61, P = 0.151,
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FIGURE 5

Forest plot of the effects of WBV training on TUGT.

FIGURE 6

Forest plot of the effects of WBV training on 10MWT.

P > 0.05), indicating no significant publication bias. The details
are presented in Supplementary Figures 5–11.

A sensitivity analysis was conducted on the results of the
meta-analysis with substantial heterogeneity and significant
differences through one-by-one elimination. The results showed
that there was no heterogeneity after excluding two studies
(Zhen-hua et al., 2019; Zhenying et al., 2022) in the
sensitivity analysis for the indicator of step length. The
heterogeneity may be caused by the different measurement
methods for the step length, with respectively using the
footprint measurement method and gait analysis system in
the two studies. In addition, in the sensitivity analysis for the
indicators of step speed, cadence, stride length, BBS, TUGT
and 10MWT, there was no obvious change when excluding
any one of the studies. It indicated that the result was
robust.

3.5. Safety analysis

Safety and adverse reactions were mentioned in three studies
(Sade et al., 2020; Chuan et al., 2022; Wei and Cai, 2022). No
adverse reactions occurred in the study. In general, the whole-
body vibration training was safe.

4. Discussion

After a stroke, patients usually suffered from decreased
muscle strength, abnormal muscle tension, limb coordination
disorder, and sensory abnormality, caused by the injury of upper
motor neurons (Zhen-hua et al., 2019), leading to the decline of
gait stability, which will seriously affect the lower limb balance
and walking function. For 85% of patients with stroke, the
primary rehabilitation target is the recovery of walking function
(Candelise et al., 2007), reducing the time required for patients
to return to family and society, and improving their quality of
life. Therefore, the main goal of the treatment is to improve gait
stability and enhance the walking function of stroke patients.

WBV training has been widely used to promote the
rehabilitation of stroke patients, and its effectiveness in the
recovery of dysfunction in neurological diseases has been
demonstrated to a certain degree (Alizadeh-Meghrazi et al.,
2014; Kim and Lee, 2021; Tekin and Kavlak, 2021). However,
previous studies may have been limited by insufficient literature
searches and evaluation indicators. And a small part of the
research showed that WBV had no positive effect on balance
and gait improvement in stroke patients (Ijaz Ahmed Burq et al.,
2021; Liu et al., 2022). Therefore, according to the disadvantage
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FIGURE 7

Forest plot of the effects of WBV training on FAC.

FIGURE 8

Forest plot of the effects of WBV training on FMA-LE.

in the previous research, we added the search range of the
database and evaluation indicators of walking spatiotemporal
paraments to the analysis. And 22 randomized controlled trials
(RCTs), which were called studies with the highest reliability and
quality of research data (Barton, 2000), were finally included. In
addition, adverse events were also considered because safety was
an important component of treatments.

The decreased muscle strength in the lower limbs is a major
cause of the unhealthy gait in stroke patients (Lau et al., 2011).
The muscle strength in lower limbs was positively associated
with spatiotemporal variations in stride length, stride time,
stance time and double support time in old adults (Abdul
Jabbar et al., 2021). The meta-analysis revealed that different
changes in walking spatiotemporal parameters occurred after
the intervention of WBV training for stroke patients. The
improvement of step length, step speed, cadence and stride
length was significant (p < 0.05). The impact stimulation
produced in WBV training transfers to the whole body,
stimulates proprioception receptors such as muscle spindles
and tendon spindles, increases the excitability of sensory nerve
fiber endings, and induces the stretch reflex in skeletal muscle.
Therefore, the degree of muscle activation is increased, and
the latent motor units are further activated. In this way,
muscles recruit more motor units (Fallon and Macefield, 2007;
Miyara et al., 2022). The improvement of muscle recruiting
efficiency is beneficial to enhance the strength of muscles
and improve sports performance (Sohrabzadeh et al., 2022).

Several studies (Lau et al., 2011; Sitjà-Rabert et al., 2012; Alam
et al., 2018) have shown that WBV training can enhance
electromyography (EMG) signals in the lower limbs, improve
muscle activation, and increase muscle strength, flexibility,
burst force, and balance ability in the elderly. WBV training
can also improve musculoskeletal health by increasing the
production of fibronectin type III domain-containing protein
5 (FNDC5) and regulating the expression of key markers like
myostatin, which has effects on both muscle and bone tissue
(Cariati et al., 2022). Furthermore, the meta-analysis revealed
that WBV training improved single support time, double
support time, and step time, but not significantly (p > 0.05)
when compared to controls. Stroke patients mostly suffer from
damage to one cerebral hemisphere, which leads to dysfunction
of the contralateral limb (Sacco and Rundek, 2012). Therefore,
there was a large variation in the amplitude of the left-right
movement of the body’s center of gravity during walking. To
provide adequate stability, the unaffected side requires greater
autonomic control (Song et al., 2018). Besides that, because of
abnormal proprioception in stroke patients, the compensatory
phenomenon occurs during body postural control, which then
triggers symptoms such as abnormal gait posture (Dingwell and
Cavanagh, 2001). Song S et al. found that an 8-week WBV
training could improve the sensation, stability, and motility
in the feet and ankles, with single support time and double
support time decreasing (Song et al., 2018). This is inconsistent
with the results of the meta-analysis. The different intervention
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cycles could be the cause of this occurrence. The WBV training
intervention cycle was 3 or 4 weeks in the included literature in
the meta-analysis.

The meta-analysis showed that WBV training had an
obvious positive effect on balance, walking function and
dynamic stability in stroke patients. The vibration could
influence the activity rhythm of spinal anterior horn neurons,
activate the cerebral motor cortex excitability, promote the
remodeling of neural function in injured regions, and improve
the postural control ability of patients with stroke (Mouchnino
and Blouin, 2013; Lapole et al., 2015; Jammes et al.,
2018). The vibration stimulus will induce the presynaptic
inhibition of Ia afferents and/or a neurotransmitter depletion
in presynaptic terminals. This may decrease the monosynaptic
reflex excitability, reduce the abnormal spinal reflex excitation,
restrain the stretch and H reflexes of the muscles, and regulate
muscle spasm. Therefore, the balance and walking function of
patients with stroke were improved (Miyara et al., 2014; Gu
and Hwangbo, 2016). And studies (Kipp et al., 2011; Kim and
Lee, 2021), showed that amplitudes of H reflexes of the soleus
and gastrocnemius in the lower leg were significantly reduced
after WBV training in patients with stroke. The main feature
of WBV training, as a relatively passive exogenous stimulus,
is effective training achieved with a smaller load intervention,
which reduces the cardiopulmonary burden, compared with
other rehabilitation training methods (Muir et al., 2013). WBV
training has also been shown to increase oxygen consumption by
itself in stroke patients and to promote the release of vasodilators
without additional effects on heart rate or blood pressure
(Zhang et al., 2022). And the vibration stimulation can promote
osteoblast differentiation and subsequently osteogenesis and
increase bone mass by activating the Wnt signaling pathway
of bone marrow stromal cells (Yu-Han et al., 2013), thereby
preventing and alleviating osteoporosis in the elderly (Cheng
et al., 2021).

The subgroup analysis revealed that, after WBV training at
20–30 Hz, only the improvement of TUGT was better than at
other frequencies, while that of step length, BBS and FAC was
not. It has been found that, even for healthy individuals, early
muscle fatigue is induced when the WBV vibration frequency
exceeds 30 Hz. And for patients with stroke, a similar situation
will happen when the WBV training frequency is set at equal to
or less than 30 Hz with a 3 mm amplitude (van Nes et al., 2006;
Tihanyi et al., 2007; Rittweger, 2010; Pujari et al., 2019). It
has also been found that WBV training at a frequency of 20–
45 Hz produces a positive muscle training effect (Rittweger,
2010). And when the WBV training frequency is set from 20 to
50 Hz, the variation of EMG signals is great, thereby enhancing
muscle strength (Alam et al., 2018). However, at present, there
is no guideline for recommended frequencies and amplitudes of
WBV training for patients with stroke. It is suggested that the
research should focus on this, to identify a suitable treatment
strategy for stroke patients.

WBV training can induce the expression of brain-derived
neurotrophic factor (BDNF) and FNDC5 in the cerebellum and
hippocampus of the mouse to stimulate learning ability and
cognitive memory (Cariati et al., 2021). And WBV training can
improve brain health and cognitive function, as well as slow
the problem of muscle wasting and motor decline associated
with aging and/or a sedentary lifestyle (Cariati et al., 2022).
Therefore, in future studies, it is possible to explore the effects
of WBV training on cognitive impairment in stroke patients
or those with other neurological injuries, and further explore
the potential physiological and molecular mechanisms of WBV
training.

5. Conclusion and suggestion

The meta-analysis revealed that whole-body vibration
training has a positive effect on the balance and walking function
of patients with stroke. Whole-body vibration training is also
a safe treatment method for recovering from the walking
dysfunction of patients with stroke.

Due to the fewer follow-ups in the included RCTs,
the lack of long-term treatment effect observation and
the differences in intervention protocols, the results of
the included RCTs were insufficiently consistent. Thus,
further studies for the conclusion of the meta-analysis
are required. It is suggested that a more unified and
standardized research design and intervention protocol
should be established in future studies, while the potential
mechanism of the impact of the intensity and physical
parameters of WBV training on the efficacy of stroke
patients should be further researched. And, to further
verify the authenticity of the efficacy, objective instruments
should be added to evaluate the indicator such as walking
spatiotemporal parament.

6. Limitation of meta-analysis

1) The included studies were only in two languages: Chinese
and English. And the sample size of the included
studies was relatively small, which may have made
the results biased.

2) Overall, the heterogeneity among some studies was
substantial, which may have had effects on the reliability
of the meta-analysis.

3) The vibration frequency, amplitude and time of the
included studies were not sufficiently identical. And the
intervention methods for the controls were also not
identical enough. Therefore, these may influence the
accuracy of the results of the meta-analysis.

4) The difference in the measurement method of the walking
spatiotemporal parament may result in a measurement
bias, thus affecting the analytical results.
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