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Our eyes move in response to stimulus statistics, reacting to surprising events, and

adapting to predictable ones. Cortical and subcortical pathways contribute to generating

context-specific eye-movement dynamics, and oculomotor dysfunction is recognized

as one the early clinical markers of Parkinson’s disease (PD). We asked if covert

computations of environmental statistics generating temporal expectations for a potential

target are registered by eye movements, and if so, assuming that temporal expectations

rely on motor system efficiency, whether they are impaired in PD. We used a repeating

tone sequence, which generates a hazard rate distribution of target probability, and

analyzed the distribution of blinks when participants were waiting for the target, but the

target did not appear. Results show that, although PD participants tend to produce fewer

and less temporally organized blink events relative to healthy controls, in both groups

blinks became more suppressed with increasing target probability, leading to a hazard

rate of oculomotor inhibition effects. The covert generation of temporal predictions may

reflect a key feature of cognitive resilience in Parkinson’s Disease.

Keywords: predictions, temporal expectations, eye movements, Parkinson’s disease, hazard rate

INTRODUCTION

Blinks are defined as the temporary closure (≈ 0.3 s) of both eyes via rapid movements of both the
upper and lower lids: the closing and closed phases of the movement are extremely rapid (<0.1 s),
while the opening phase is slower (≈ 0.2 s, Kwon et al., 2013). On average, healthy human adults
blink every 3–5 s (≈ 12–20 blinks per minute, Fatt and Weissman, 1992). Blinks help preserve
the integrity of the ocular surface (lubrication, shielding from light and dirt, relieving eye muscle
fatigue, Hall, 1945). However, blink frequency far exceeds such basic physiological needs, and there
is evidence that arousal and attention drive blink frequency to change depending on whether at
any given moment sensory information processing can be chunked (Wascher et al., 2015), when
a release of attention from external stimulation is required (Nakano et al., 2013), or when fulfilled
expectations indicate the end of cognitive processing (Ichikawa and Ohira, 2004).

In general, spontaneous blink rates decrease when attention is directed to incoming, external
stimuli, particularly during experimental trials (Van Opstal et al., 2016) and when sustained,
continuous attention is required to successfully complete a task (Maffei and Angrilli, 2018). It is
unclear whether the component of attention that modulates blinking probability is strictly under
dopaminergic control (Maffei and Angrilli, 2018; Sescousse et al., 2018), but there is evidence
that Parkinson’s patients with dyskinetic symptoms often exhibit increased eye movement rates
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(Karson, 1983), possibly as a consequence of intracortical
dishibition (Stinear and Byblow, 2003; Ammann et al., 2020).
Indeed, eye movement disorders may present one of the
early symptoms of Parkinson’s Disease onset (Jung and Kim,
2019). However, while the blinking rate is likely a confounded
measure as it could be due to either attentional demands or
fatigue (Maffei and Angrilli, 2018), the temporal distribution
of blink movements or blink timing appears to be a reliable
and unconfounded index of participants’ engagement in a task
(Ichikawa and Ohira, 2004; Nakano and Miyazaki, 2019).

Temporal attention is reflected in the hazard rate distribution,
which normalizes true stimulus probability using the survival
function, that is, the probability that the event has not yet
occurred (Luce, 1986). Recent work showed that blinks and
saccadic movements are suppressed (oculomotor inhibition)
before the onset of predictable targets (Abeles et al., 2020).
For uniformly distributed stimulus onset times, the perceived
probability of target onset is assumed to monotonically increase
as time elapses. It follows that blink probability at each target
position should diminish with increasing temporal expectations.
As cortical beta disorganization in Parkinson’s disease has been
associated with reduced sensitivity to temporal regularities (te
Woerd et al., 2015), and the generation of temporal expectations
has been linked to motor cortical activity (Morillon and Baillet,
2017), we tested the distribution of blinks in Parkinson’s patients
(PD) and a healthy control group (HC) matched for gender,
age, and cognitive performance. All participants completed an
auditory task which required detecting the onset of a target sound
in a continuous attention mode. Auditory stimulation sequences
were composed of the continuous repetition of four standard
tones followed by a fifth non-target, deviant tone. All sounds
were delivered using a fixed stimulus onset asynchrony interval
(isochronous stimulation). Target sounds occurred rarely (20% of
sequences) and unpredictably (randomized distribution) within
the repeating sequence, equiprobably substituting a standard
tone in either position 2, 3, or 4, hence giving rise to the
hazard rate of response times (see stimulus structure section).
We hypothesized that if the orienting of attention in time giving
rise to expectations depends on the functional integrity of motor
cortical, then the distribution of blinks in time in PD and HC
should differentially reflect the temporal statistics of target onset.
Specifically, we expected PD patients to be less efficient than HC
in suppressing blinks with the increasing probability of target
onset as attention moved from position 2 to position 4 within
each sound sequence.

MATERIALS AND METHODS

Participants
The experiment was conducted at the Max Planck Institute for
Human and Cognitive Brain Sciences in Leipzig (Germany).
Sixteen participants diagnosed with Parkinson’s Disease (PD, 9
males, 7 females) were selected (mean age = 63.9 years, SD =

6.8). Sixteen healthy adult individuals (Healthy controls, HC),
matched in age (mean = 63.9 years, SD = 7.1) and gender,
were also recruited from the Institute’s database. Education level
was also matched (PD, mean = 5.6 years, SD = 1.2; HC,

mean = 5.7 years, SD = 1.3). HC participants self-reported
no neurological or psychiatric disorders or therapies involving
the central nervous system. All participants signed a written
informed consent complying with the Declaration of Helsinki on
human experimentation. The study was approved by the Ethics
Committee of the University of Leipzig, Germany.

Neuropsychological Profile
The two experimental groups were also cognitively matched on a
battery of neuropsychological tests (see Table 1, reporting means
and standard deviations within parenthesis): Mini Mental Test
(Tombaugh and McIntyre, 1992); Tower of London (Shallice,
1982); Trail Making Test A and B (Tombaugh, 2004); Working
memory–Digit Span Forward, maximal N of numbers recalled
[Wechsler, 1997, Backward, maximal N of numbers recalled
(Wechsler, 1997). For all pairwise comparisons, all ts(30) ≤ -0.73,
all ps ≥ 0.465].

Clinical Profile
The average illness duration in participants with PD was 3.78
years (SD = 2.63), with only two participants having been
diagnosed for more than 6 years (15 and 11 years). Most
patients (11 out of 16) presented with both tremors and akinetic
rigidity, while 3 presented solely with akinesia and 2 with
tremors. The average Höhn and Yahr index (Höhn and Yahr,
1967) was 2.03 (SD = 0.53, range 1–3), suggestive of bilateral
involvement preserved balance functions. Asymmetry in body
symptoms was equally distributed (right side = 8). On the
UPDRS motor scale (Goetz et al., 2007), the mean was 13.5
(SD = 5, range 7–21), indicative of minimal to mild slowness
and movement abnormality. All participants with PD were
pharmacologically treated, predominantly with Levodopa and
Ergot-dopamine agonists.

Stimulus Structure
Stimuli were three 50-ms pure tones (5 ms rise/fall), organized
into continuously repeating five-tone sequences, binaurally
presented via loudspeakers at 80 dB SPL and generated using
Matlab (version 7, Mathworks, Natick, MA). The five-tone
sequence was composed of four standard tones followed by
a non-target deviant tone (Figure 1A). Standards were 440
Hz in pitch (A4 on the equal tempered scale, presented 900
times, 75% global stimulus probability), non-target deviants
were 494 Hz (B4, presented 240 times, 20% global stimulus
probability). A rare target (349 Hz, F4, presented 60 times,
20% of sequences, 5% global stimulus probability) occurred
equiprobably (1/3) at one among standard positions 2, 3, or
4. To detect a target, participants had to attentively listen to
each incoming sequence, whether it contained a target or not;
within each sequence, internal target probability was predicted to
changed with elapsed time, generating a hazard rate distribution
(Figure 1B, upper panel). Denoting the survival probability
(“the event has not yet occurred”) as 1-F(t), where F(t) is the
cumulative distribution function, the hazard function is then: h(t)
= f(t)/(1-F(t)). There was a maximum of one target per sequence,
and minimally two successive sequences without targets before
the next target-containing sequence. Stimulus sequences were
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TABLE 1 | Neuropsychological results.

Group Mini Mental State Tower of London Trail Making Test A and B Digit Span Fw Digit Span Bw

HC 29.12 (0.85) 16.18 (1.42) A: 40.56 (12.06), B: 77.62 (25.32) 6.50 (1.00) 5.06 (0.89)

PD 28.87 (0.99) 15.43 (2.06) A: 39.37 (12.21), B: 82.37 (32.49) 6.68 (1.04) 5.06 (1.39)

FIGURE 1 | Experimental design: (A) Pure tones were isochronously distributed in continuously repeating five-tone sequences, composed of four standard tones (440

Hz) and a final non-target deviant tone (494 Hz). Target tones were lower in pitch (349 Hz), and appeared in 20% of the sequences (= 5% of the tones). (B) Tones

would appear equiprobably either in position two, three, or four within a sequence (upper left panel). Potential rare target position is used as a proxy for elapsed time.

The hazard rate distribution increases target probability with target position (upper right panel).

delivered using Presentation© software (version 12.0, www.
neurobs.com) running on a Windows PC.

Experimental Design
Participants sat in an electrically shielded, sound-attenuated
chamber, and fixated a white cross on a black computer screen
at a distance of 1 meter while listening to the auditory sequences.
They responded to target tone onset by pressing a button on an
external response box, using their preferred hand. Participants
were unaware of target distribution, and were instructed to
respond to the onset of target tones as accurately and fast
as possible by pressing a button on a response box. They
trained in a short block of 60 experimental randomly distributed
tone sequences containing three targets. The training phase
was repeated maximally once. If errors were made (Missing,
False Alarm), the training block was repeated until no errors
were detected. Experimental tone sequences were delivered
with a constant 750-ms stimulus onset asynchrony (SOA),
corresponding to a 1.34 Hz stimulus rate (three 5-min blocks).

EEG Recording
Electroencephalographic (EEG) data were collected using a 26
scalp Ag/AgCl electrode set (BrainAmp, 10–20 system): Fp1,
Fpz, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FC4, FT8, T7, C3, Cz,

C4, T8, CP5, CP6, P7, P3, Pz, P4, P8, O1, O2. Two external
electrodes were placed at right and left mastoid sites, and four
additional electrodes were placed at both eye canthi (leftLateral,
rightLateral), and above and below the right eye (lowerVertical,
upperVertical) to record eye movements (electrooculogram,
EOG). An online reference was placed on the left mastoid
and the sternum served as ground. Electrode impedance was
kept below 5 KOhm. EEG/EOG sampling rate was set to 500
Hz, with online high-pass filtering at 0.01 Hz. The resulting
continuous recordings were visually inspected and pruned from
non-stereotypical artifacts or extreme voltage changes values.
An Independent Component Analysis (ICA, Infomax algorithm,
Bell and Sejnowski, 1995, as implemented in the EEGLAB
toolbox, Delorme and Makeig, 2004) was performed on pruned,
offline highpass-filtered at 1 Hz and lowpass-filtered at 45 Hz
(Kaiser window, Beta 5.6533, filter order points 9056 and 184,
transition bandwidth 0.2 and 10 Hz, respectively), standardized
(z-score) continuous data. Using the SASICA toolbox for
EEGLAB (Chaumon et al., 2015), ICs reflecting blinks/vertical
eye movements and lateral eye movements were identified by a
correlation threshold of 0.7 with bipolarized vertical and lateral
EOG channels. The SASICA toolbox also identified ICs likely
to reflect muscle artifacts, using autocorrelation (lag = 20 s),
as well as those reflecting bad electrodes via a measure of focal
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topography (threshold at 7 standard deviations relative to the
mean across electrodes). The ICA results were then copied
back to the pruned, standardized original continuous EEG data
highpass-filtered at 0.1 Hz (lowpass 45 Hz). Eye-movement-
related ICs, both vertical/blink-related and horizontal, ranged
between 2 and 5 per participant, with at least a vertical/blink-
related component per participant.

Blink Modeling
Blinks were individually modeled using the best signal selected
out of a subset comprising the vertical EOG channel (both
lowerV and upperV), a subset of frontal electrodes (in our
case: Fp1, Fp2, Fz, F3, F4) and frontally focused independent
components (ICs) representing blinks or vertical eye movements
according to the Blinker toolbox pipeline (https://github.com/
VisLab/EEG-Blinks; Kleifges et al., 2017). The Blinker algorithm
first bandpasses the signal (1–20 Hz), then determines the
intervals with an SD > 1.5 standard deviations above the signal
mean (min interval = 50 ms, min separation between intervals
= 50 ms). A fitting process follows by first finding specific
landmarks for each blink interval, such as the maximal value
within the interval, and the zero crossings immediately to the
left and right of each max value, and then computing for each
potential blink the best linear fits for the inner 80% of the up-
stroke and down-stroke, respectively. The R2 of left and right
fit lines with the actual blink trajectory measures how close
the potential blink is to a stereotypical blink. Then, the blink-
amplitude ratio (BAR) is computed by dividing the average
amplitude of the signal between the blink left and right zero
crossings by the average amplitude of the positive portion of the
signal comprised between the preceding blink right zero crossing
and the current blink left zero crossing, as well as the current
blink right zero crossing and the following potential blink right
zero crossing (or end of signal if the current blink is the last
one). Potential blinks with a BAR outside the range [3–20] are
not included in the final computation (“used” signal, see below).

Next, Blinker determines “good” blinks (upStroke and
downStroke R2 > 0.90), “better” blinks (upStroke and
downStroke R2 > 0.95), and “best” blinks (up-stroke and down-
stroke R2 > 0.98). To eliminate extraneous eye movements
from actual blinks, two further criteria are satisfied: 1) The
positive amplitude by velocity ratio (pAVR = 3), calculated
from the left zero crossing to the maximal amplitude of each
blink, distinguishes between the sharp rise of saccades (large
velocity) and the more curved one proper to blinks; 2) The
maximum amplitude distribution criterion eliminates blinks
with low R2 and with amplitude vastly away from the “best”
blink median (Threshold = 5 robust standard deviations—1.48
times the median absolute deviation from the median—for
“best” blinks, 2 for for “good” blinks). The resulting blinks
constitute the “used” blinks set, which inform the analysis at
an individual participant level (minimum number of blinks to
stable estimates= 20).

Analysis of Blink Distributions
The Blinker pipeline was run on continuous, clean EEG datasets.
One participant from the PD group was marked as an outlier
as far as blink counts were concerned (N = 556) and thus was

removed from further analysis, together which the gender- and
age-matched HC participant. The final group was thus composed
of 30 participants, 15 per group. Then, blink landmarks were
copied back to the EEG trial structure, and finally epochs were
extracted based on the repeating 5-tone sequences which did not
contain a target (0–3,500 ms). This approach allowed analyzing
the distribution of blinks in time as participants waited for
a potential target, without any confounding effect from target
onset. For each epoch, we marked the positions in time of
blink maximal values (peaks), while the rest of the EEG data
were zeroed out, obtaining vectors of blink peak distributions
in time.

Participants were first compared for the total number of
blinks (counts) and median blink-to-blink interval using a one-
sided Wilcoxon rank sum test for equal medians, with the
assumption that HC would outperform PD participants. The
choice of a non-parametric statistical test was motivated by the
non-gaussian distribution of blink counts (Kolmogorov-Smirnov
test, all ps < 1.645*10-15). Blink counts were subject to a robust
regression analysis with bisquare weighting of the residuals
(Matlab function robustfit.m), to asses the the relationship
between HC and PD blink generators. The effect of age in driving
blink counts was also tested, using both robust regression and
Spearman correlation.

To assess the degree to which blink timing was sensitive to the
auditory stimulus rate (1.34 Hz), blink epochs were concatenated
into a single vector for each participant. A Fast Fourier Transform
(FFT) analysis (N = 8192 data points, normalized dividing by N)
was run on a hundred concatenated blink vector per participant
in each group. The average peak power differences between HC
and PD at sequence rate (0.267 Hz), stimulus rate (1.34 Hz), and
first harmonic of the stimulus rate (2.67 Hz) were compared to
their group threshold using a Wilcoxon signed rank test, and
to each other using a one-sided Wilcoxon rank sum test (effect
size r = Z/

√

Samplesize for one sample/paired samples, r =

Z/
√

Samplesize1+ Samplesize2 for independent samples).
Next, we turned to the analysis of median blink distributions

within the repeating sequence. First, for each participant blink
peak latencies were binned using a 20-ms bin size. Then, bin
counts were normalized by the total number of blinks, and
smoothed using a moving median of 5 bins. To obtain a measure
of regularity in blink distribution across the repeating sequence,
we employed the Nelder-Mead simplex direct search algorithm
(Image Analyst, 2021) and optimized the search for the best fit
for 5 Gaussian distributions on the median distributions across
participants in each group, using a sigma of 20 and taking each
tone interval’s middle point as an initial guess for the mean
or peak of each Gaussian. We then calculated the dissimilarity
between HC and PD median histograms using χ

2 are a measure
of distance: sum((xi-yi)2/(xi+yi))/2. We tested the significance
of the distance value using a bootstrapping approach (1,000
randomizations). Then, for each participant we collected the
value at the each grand median fitted Gaussian peak within each
sound interval, and compared them across groups using a series
ofWilcoxon rank sum tests, FDR-corrected. Finally, by regressing
blink frequency against the positional order of potential Target
stimulus onset (positions 2, 3, and 4), we obtained peri-stimulus
estimates of hazard rate effects in blink distributions—from –300
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to+ 300ms relative to potential target onset -, which were tested
for significance using a one-sample permutation test based on
the t-statistic (Groppe et al., 2011; one-sided). Significance was
determined for p= 0.05.

Probabilistic Saccade Estimation
As a partially independent measures of ocolomotor disorders
in participants with PD, we resorted to calculating saccade
probability and duration. An impairment in saccadic initiation,
leading to a more variable onset of saccadic movements than
matched healthy controls, has been shown to characterize
patients PD from early on in the disease progression (Terao
et al., 2011). Furthermore, saccade intrusions—characterized

by involuntary saccades away and back to a fixation point,
characterize oculomotor system functioning in PD (White et al.,
1983), adding to variance in saccade probability distribution.
We selected a probabilistic algorithm which detects saccades—
as distinct from peri-blink saccadic movements—using an
unsupervised training period (between 50 and 200 s), and
uses expectation maximization to learn the parameters of
Gaussian likelihood distributions for saccades (Toivanen et al.,
2015; https://github.com/bwrc/eogert). Two parameters were
selected: saccade probability for each detected event, and
saccade duration. A Wilcoxon rank sum test was used to
detect significant differences in mean variance between PD
and HC.

FIGURE 2 | Blink models: (A) Exemplary blink models for participant number 1 of the HC group. The green line depicts the amplitude distribution of all potential

blinks: Amplitudes are measured in standard deviations, to avoid the confounding effects of differences in mean blink amplitudes across participants. Blink range on

the x-axis: Notice that the right tail of the distribution is interrupted because most large amplitude values were outliers. The blue line depicts the blink distribution

selected for further analysis. For details, see the Materials and Method section. (B) Exemplary blink models for participant #1 of the PD group. The red line depicts the

blink distribution selected for further analysis. (C) There was a tendency to a significant difference favoring HC in total blink counts. There was no significant difference

between HC and PD on mean interblink interval. Notice that the median interval is similar across groups. The largest median blink interval for both groups corresponds

to physiological intervals. (D) A robust regression fit shows a tendency for matched participants from both groups to perform similarly, hinting at possible underlying

common factors driving blink frequency.
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RESULTS

Blink Models
Figures 2A,B display illustrative blink modeling results for
participant number 1 of both groups. In both cases, the right
tail of the distribution contains outliers that are eliminated based
on the distance from the best blinks distribution (up-stroke
and down-stroke R2 > 0.98). A Wilcoxon rank sum test of
the difference between the number of blinks in HC and in PD
failed to reach significance: Z = 1.61, p = 0.052, HC median
number of blinks = 163, PD median number of blinks = 116.
We then checked for the physiological realness of the interblink
intervals, and found that values for both groups were comparably
within expected values: HC median interblink interval = 1,037
ms (range: 650–3,638), PDmedian interblink interval= 1,419ms
(range: 422–4,125), Z = –1.41, p = 0.920. With the exception of
one participant in each group, all medians were below 3,500 ms,
likely reflecting the chunking effect of attention to the repeating
tone sequence (see Figure 2C). The concentration of individual
median values at the lower portion of the range suggests an
attractive effect of stimulus rate on blink rate. A robust regression
fit between HC blink counts and PD blink counts failed to reach
significance [t(13) = 1.959, p = 0.071] (see Figure 2D). When
we averaged blink counts across groups and regressed the results
against age in years, we found no significant fit (Spearman ρ =

–0.215, p = 0.503), suggesting that in our samples age did not
appear to be driving changes in blink frequencies.

Blink Distribution Reflects Stimulus
Structure
To explore how stimulus structure influenced the temporal
distributions of blinks, we concatenated all selected epochs and
submitted the resulting vector to a Fast Fourier Transform
(FFT) analysis. Using a Wilcoxon signed rank test, we found
a significant peak at stimulation frequency (1.34 Hz) in each
group: HC, Z = 2.89, p = 0.002, r = 0.74 (reference power
= 3*10-05); PD, Z = 1.98, p = 0.047, r = 0.51 (reference
power = 2*10-05). However, there was a significant difference
in peak power between the groups: HC median = 1.098*10-04,
PD median = 4.644*10-05, Z = 1.825, p = 0.034, r = 0.33.
There was no significant group peak, nor a group difference
at the first harmonic of the stimulus rate (2.67 Hz): all
ps ≥ 0.079. Similarly, there were no significant findings at
the repeating sequence frequency (0.266 Hz): all ps ≥ 0.187
(see Figure 3).

Blink Rates Encode Temporal Predictions
The Nelder-Mead algorithm allowed us to optimally fit 5
Gaussians on the median of the median blink distributions for
each group. For HC, the number of iterations was 719, with a
mean residual of 6.447*10-4. For PD, the number of iterations
was 1228, with a mean residual of 7.515*10-4 (see Figures 4A,B,
respectively). We measured histogram similarity using χ

2 as
a distance measure, and found that—globally—the distribution
of blinks across the repeating sound sequence did not differ
(distance = 1.494, p = 0.73, bootstrapping distribution, 1,000
repetitions). However, when we tested the differences in blink

FIGURE 3 | Auditory regularities in the eyes: FFT results on concatenated

epochs show a significant effect of stimulus rate in both groups, but larger for

healthy control participants (blue line) than participants with Parkinson’s

Disease (red line). The first harmonic processes (H1) were not significant.

frequency (pristine values, that is before applying the moving-
average smoothing) at fitted curve peak within each sound
interval, using the fitted values for HC as reference also for
participants with PD, we then found that the two groups differed
in the S3 interval, that is at the center of the sequence (original
p = 0.007, FDR p = 0.01), which corresponds also to the
middle point in the attentive searchlight for a potential target
onset (Figure 4C).

We then used a robust linear fit approach to calculate, for each
peristimulus bin point, the slope of values across the onset of
sounds at S2, S3, and S4. For both groups, we found a significant
hazard-rate effect on blink frequency in the pre-stimulus period
only (Figure 4D): all cluster Ts leq –2.79, all cluster ps leq 0.029;
HC –220 to 200 ms, PD –180 ms; negative slopes indicate
the amount of decrease with each potential Target interval.
Pre-stimulus oculomotor activity became more inhibited with
increasing waiting time across positions S2, S3, and S4.

Saccadic Movements
The similarity in blink temporal distribution between
participants with PD and HCs becomes more relevant on the
background of the significant difference between the two groups
in saccadic movements estimated from electrooculographic
data. Average saccade probability displyed larger variance in
participants with PD (mean = 0.014) than in HCs (mean =

0.011): Z = 2.13, p = 0.032, r = 0.54. However, average saccade
duration did not differ: Z = 0.43, p = 0.663. This suggests a
disorder in saccade initiation in participants with PD, detectable
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FIGURE 4 | Temporal organization of blink onset: (A) Median of blink frequency medians estimates across time for HCs. The Gaussian fit highlights the regularity in

blink peak distribution following entrainment to stimulus regularity. (B) The same approach for PD participants displays a less organized structure. (C) The main

difference between the two distribution lies with how blinks reflect the onset of S3. (D) The gray shade indicates mean blink frequency slopes for both HC and PD

which display significant oculomotor inhibition effects; colored shaded areas indicate standard error of the mean.

even in the context of isochronous auditory stimulation driving
entrainment in blink onset.

DISCUSSION

When stimulus statistics in the environment drive our attention
toward the potential onset of a target event, changes occur at
both central and autonomic nervous system levels, thereby
modulating all motor effectors, not just those required to
press a button. Indeed, recent work suggests that temporal
predictions are reflected by eye movements, such as saccades
and blinks (Abeles et al., 2020), that are partially under
voluntary and partially under involuntary control. When we
approach the probable onset time of a target event, ocular
movements are suppressed, in order to avoid diverting attention
to other stimuli (saccades) or suppressing sensory input
(blinks). However, in everyday situations the uncertainty
about when a target event will occur adds to the uncertainty

about whether a target will occur at all. We tested whether
oculomotor inhibition occurs for targets whose chance
is globally very low (20%). Furthermore, by comparing

the performance of healthy controls (HC) and gender-
and age-matched Parkinson’s Diseases (PD) patients, we
measured the extent to which temporal predictions conveyed

via oculomotor inhibition depend on general oculomotor
fitness, which is impaired in PD. Overall, PD participants
tended to produce less blinks than HCs, but the temporal

organization of inter-blink-intervals is similar to that of
healthy controls. Previous work showed that, in spontaneous
blinking conditions and for a cohort between 40 and 89 years,
mean blink amplitude and peak velocity decreased with age,
but blink rate as such was not affected (Sun et al., 1997).
In our case, age was not a significant factor in determining
blink counts, although the effect of age on blink counts
might have been overridden by the entraining effects of the
stimulation structure.
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We also found that inter-blink-intervals in both groups
tend to follow the regular auditory stimulation rate (750 ms,
1.34 Hz, Figure 3), although HC outperformed participants
with PD. This finding suggests that motor impairment in our
sample of participants with PD, including oculomotor saccadic
impairments, did not prevent the locking of blink frequency
to stimulus statistics. However, oculomotor impairment in PD
partially affected the organization of blink peak distribution
(Figures 4A–C). Although the sequence-based distance between
blink histograms for HC and PD was not significant, we found
that in participants with PD blinks were significantly less likely
to occur in response to the third sound of each repeating
sequence. Previous work showed that spontaneous blinks in
PD participants with mild and moderate severity were either
abnormally reduced or increased relative to HC (Korosec et al.,
2006). PD participants in that study displayed a more advanced
motor impairment (UPDRS motor scale score) than in our
patient sample, and participants were tested offmedication, while
the patients in our sample were tested on medication. The lack
of an off medication condition is a limit to our findings, as
it would have provided a test for blink entrainment. However,
our study assesses oculomotor functionality within a continuous
attention condition, that is under under stressful attentional
demands (Maffei and Angrilli, 2018), suggesting resilience in
patients’ performance.

When we regressed blink probability across potential Target
positions (S2, S3, S4), we found evidence of a hazard
rate organization of blink onset probability in both groups.
Oculomotor inhibition progressively increased while waiting
for a potential target (Figure 4D). Importantly, as our analysis
was run on the repeating sequences that did not contain a
target, oculomotor inhibition was purely driven by cognitive
expectancies for future target onset. The “hazard rate” of
oculomotor activity is evident in the prestimulus period only,

consistent with previous findings (Tavano et al., 2019; Abeles
et al., 2020). Motor disorganization as a consequence of PD—
at least in as far as it affects the oculomotor system—did not
prevent the computation of evolving target probability in time,
which is a key component of the processes generating temporal
expectations. This likely preserves in patients a sufficient fit with
the environment, whose statistics are inherently time-dependent.
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