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Adaptive training adjusts a training task with the goal of improving learning outcomes.

Adaptive training has been shown to improve human performance in attention, working

memory capacity, and motor control tasks. Additionally, correlations have been observed

between neural EEG spectral features (4–13 Hz) and the performance of some cognitive

tasks. This relationship suggests some EEG features may be useful in adaptive training

regimens. Here, we anticipated that adding a neural measure into a behavioral-based

adaptive training system would improve human performance on a subsequent transfer

task. We designed, developed, and conducted a between-subjects study of 44

participants comparing three training regimens: Single Item Fixed Difficulty (SIFD),

Behaviorally Adaptive Training (BAT), and Combined Adaptive Training (CAT) using both

behavioral and EEG measures. Results showed a statistically significant transfer task

performance advantage of the CAT-based system relative to SIFD and BAT systems of

6 and 9 percentage points, respectively. Our research shows a promising pathway for

designing closed-loop BCI systems based on both users’ behavioral performance and

neural signals for augmenting human performance.

Keywords: electroencephalography, EEG, adaptive training, brain-computer interface, theta-alpha ratio, theta-

alpha ratio percentage (TARP), behavioral adaptive training, combined adaptive training

1. INTRODUCTION

Training is a systematic approach to acquiring skills that improve performance in a task of interest.
Training can be either non-adaptive or adaptive. A key assumption of training is that for any given
skill level, there exists a difficulty of training that will provide the largest skill gains (Mané et al.,
1989). A common kind of non-adaptive training uses a fixed difficulty level. Fixed difficulty training
will be optimal only for individuals within a narrow range of skill. In adaptive training, the difficulty
of the training is based on the trainee’s performance to maintain an optimal difficulty range specific
to the trainee. The main goal of the adaptive system is to set the level of task difficulty to the level
that maintains the optimal level of learning for the trainee.

The impact of adaptive training over fixed training difficulty has been studied in the
past, particularly in attention (Redick et al., 2013; Cuenen et al., 2016), working memory
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capacity (Klingberg et al., 2005; Jaeggi et al., 2008; Holmes
et al., 2009; Karbach et al., 2015; Flegal et al., 2019), and
motor control (Choi et al., 2008). Previous studies (Gopher
et al., 1975; Park and Tennyson, 1980; Tennyson, 1981; Park
and Lee, 2004; Romero et al., 2006; Graesser et al., 2012)
showed that adaptive training is more effective compared
to non-adaptive counterparts. Romero et al. (2006) reported
that students who utilized adaptive training for learning the
theory and content of cardiac life support performed better
in computerized tests than students with non-adaptive content
learning. Tennyson and Rothen (1977) found that students
performed well when the number of concepts presented to the
students depended on their performance rather than being fixed
at all times. Earlier research (Anania, 1982; Bloom, 1984) showed
that adaptive feedback in human tutoring systems generally
promoted learning. Holmes et al. (2009) developed an adaptive
system for children to train a variety of working memory
tasks in a computerized gaming environment. Raybourn (2007)
proposed an adaptive training system based on a simulation
experience in which participants received real-time in-game
performance feedback.

Although behavior-based adaptive training has had
notable successes, behavioral data might be an incomplete
indicator of optimal difficulty. Neurophysiological measures
can provide additional information to adaptive systems, and
electroencephalography (EEG) is one non-invasive way of
measuring electrical potentials of the brain. For example,
research has found a strong correlation between workload
estimated from brain signals and task performance (Maurer
et al., 2015; Dasari et al., 2017; Shoji et al., 2017). Incorporating
neural signals into adaptive training systems may allow us to
improve adaptive training beyond what can be achieved by
incorporating behavioral measures alone.

The motivation to use EEG measurement compared to
other modalities (e.g., GSR, eye movements, HR, and facial
temperature distribution) was based on several reasons. First,
EEG hardware is comparably cheap, has high temporal resolution
and can detect brain responses within milliseconds of the
stimulus presentation (Schneegass et al., 2019). Though it is
difficult to find the best physiological indicators of workload,
many studies showed EEG captures a more promising workload
measurement than other indicators (Taylor et al., 2010;
Hogervorst et al., 2014). Some users might prefer not to
have a camera pointed at their face (eye movements, thermal
imaging), and peripheral recording (GSR, HR) might not be
specific enough to cognitive workload. Additionally, EEG is being
incorporated into newmixed reality headsets, and companies like
Facebook are working to integrate BCI-based technology. Our
technology and research could inform industry and influence the
way these kinds of headsets are used.

Previous studies (Gevins et al., 1997, 1998; Smith and Gevins,
2005; Lean and Shan, 2012) found that alpha power (EEG spectral
power in the 8–12 Hz band) is related to overall attention such
that as alpha power increases, focus and attention decrease.
Theta power (EEG spectral power in the 3–7 Hz band) has
been observed to fluctuate in the opposite direction in some
cases so that a positive relationship between theta amplitude
and focus exists. These two spectral bands fluctuate to varying

degrees based on specific situations. An obvious approach would
be to combine these two neural features as a ratio since they
demonstrate negative (denominator) and positive (numerator)
relationships with the behavior of interest (focus). Theta/alpha
ratio (TAR) is one neural measure that showed promising results
in closed-loop feedback systems for learning and several other
cognitive tasks (Clarke et al., 2001; Egner et al., 2002; Egner
and Gruzelier, 2004; Raymond et al., 2005; Koehler et al., 2009).
However, TAR varies substantially from person to person based
on the conductivity of their scalp, their anatomy, and their neural
patterns. Here, rather than using absolute changes in TAR as the
basis for neuro-adaptive training, we used relative TAR changes
over time expressed as a percentage. We refer to this quantity
as the Theta/Alpha Ratio Percentage, or TARP for details, see
Section 2.6, Equation (1).

The relationship between brain activity and behavior as it is
understood in the laboratory environment does not necessarily
translate to real-world. We have created a technology that adapts
training difficulty based on brain signals recorded from EEG.
This technology may improve learning through a closed-loop
brain-computer interface (BCI) that adaptively increases training
difficulty based on pseudo real-time neural readings. In closed-
loop BCI, the monitoring of brain activity can be used to set up
the appropriate difficulty level in the training paradigm which
eventually helps users to improve in subsequent transfer tasks.
While previous studies (Rotenberg et al., 2013; Sitaram et al.,
2017) describe the basic principles behind an online adaptive
training system using different behavioral and neural metrics,
here we designed and tested a closed-loop adaptive system
whereby brain responses are monitored in real-time resulting in
the modulation of training difficulty.

Behavioral features give insight into the relationship between
cognitive workload and performance from one angle while neural
measures may provide insight from another angle. Combining
both features may yield a more accurate predictor of cognitive
workload and its effects on performance. In this study, we explore
the feasibility of adding neural features into behaviorally adaptive
training to boost transfer task (A transfer task is a different
task than the training task) performance. Specifically, we aim to
answer the following question.

Research Question Will adding neural measures into a

behaviorally adaptive training system improve human

performance on a transfer task?

To answer the above question, we designed, developed, and
conducted a user study that compared three training regimens:
Single Item Fixed Difficulty (SIFD), Behaviorally Adaptive
Training (BAT), and Combined Adaptive Training (CAT). The
training methodologies differ only in how and whether the
training difficulty changes. For the SIFD condition, task difficulty
was fixed at the easiest level regardless of performance. For the
BAT condition, task difficulty was varied based on the user’s
behavioral performance. For the CAT condition, task difficulty
was varied based on both behavioral performance and neural
measures. In all cases, the primary outcome of interest was
performance on the transfer task.
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Our results suggest that adding neural measures together with
behavioral performance criteria leads to better learning. Results
showed a statistically significant transfer task performance
advantage of the CAT-based system relative to SIFD and BAT
systems of 6% and 9%, respectively. These findings illustrate the
promise of combining neural and behavioral features in practical
applications of adaptive training.

2. METHOD

The goal of this study was to measure the effectiveness of adding
neural measures within a closed-loop BCI into adaptive training.
To achieve this goal, we designed three variants of a common
training task, along with a shared transfer task. We also describe
the participants, recruitment, apparatus, design, and procedure
for conducting the experiment in this section.

2.1. Go/No-Go Training Task
The training task involved presentation of images (Figure 1B)
that were designated as potential threats (a character holding a
gun) vs. non-threats (a character without a gun). The participant’s
task was to respond to threats by pressing a button and to
respond to non-threats by withholding a button press (go/no-
go paradigm). This training was meant to improve inhibitory
control in speeded perceptual classification of threats and non-
threats. We designed our training task experiment based on a
previous study (Files et al., 2019). The number of character(s)
shown on the screen during each trial was dependent upon the
training condition. For SIFD, there was only one character in
each trial. For BAT and CAT, there were up to 5 characters
depending on the adaptive logic for each trial. For any difficulty
level of go trial, all character(s) were threats. For the no-
go trials, one character was a non-threat. At difficulties two
and greater, all other characters were threat characters. The
characters were presented in random non-overlapping locations
on the screen. The characters were computer-rendered images

isolated from any background. The threat character was a male
character holding a rifle and his face partially covered. The non-
threat character was in similar attire but without a rifle and his
face uncovered.

There were 20 blocks in the training task. Each block consisted
of 30 trials. Thus, there was a total of 600 trials per participant
in the training task. The ratio of go and no-go trials was 4:1. In
each block, there were 6 no-go trials and 24 go trials. We pseudo-
randomized the order of go/no-go trials with the constraint
that there were no more than 7 go trials in between two no-
go trials. Each stimulus was presented for 0.4 s on the screen.
The participant had to respond within 1s after stimulus onset
to register a response within the system. The trial feedback was
given for 0.5 s after the response deadline. The duration of each
trial was 1.5 s with a variable (uniform distribution) inter-trial
interval of 1.0–2.0 s. The process flow diagram of the experiment
is shown in Figure 1A.

In our experiment, a participant had to identify threats as
quickly as possible by pressing a button using their dominant
hand for threats (Go) and by withholding a button press (i.e.,
doing nothing) for a non-threat (No-Go). Tomeasure participant
performance, each trial was scored. There were up to 60 points
assigned for go trials and 180 points assigned for no-go trials,
with the participant earning more points for a faster response in
go trials. They got the full 60 points if they respondwithin 170ms,
after which the points gradually decreased based on a piecewise-
linear function of response time. The minimum 30 points was
assigned for responses between 0.5 and 1.0 s. The participant
got 180 points for correctly withholding a response for non-
threat trial. No points were awarded if they responded after
the deadline or responded incorrectly. We provided feedback
indicating whether or not the participant was correct at the end
of each trial by displaying a green check mark for a correct
response and a red X for an incorrect response. The number of
points received was not shown to the participant. The response
marks for non-threat trials were four times larger than those for

FIGURE 1 | Method. (A) A flow chart of the training experiment. (B) Stimuli used in the go/no-go training task. (C) Trained (left column) and untrained (right column)

threat (top row) and non-threat (bottom row) stimuli in the transfer task. (D) A screenshot from the transfer task.
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threat trials. From this common base, we built three versions
of the training that differed in whether and when the difficulty
of training changed. One used a single fixed difficulty, one
adapted based only on behavior, and the third adapted based on
a combination of behavioral and neural measures. The details of
these versions follow.

2.1.1. Single-Item Fixed Difficulty (SIFD)
In the SIFD condition, task difficulty was fixed at the easiest
level (no more than one character on the screen at any
given time), regardless of the user’s performance. SIFD is a
non-adaptive training methodology. The SIFD condition data
was acquired from a previous experiment (Files et al., 2021)
with task parameters, equipment, and stimuli identical to
the BAT/CAT conditions. The SFID condition represented a
conventional approach to oddball training, and it served as a
reasonable alternative to a no-contact control. Other controls
could be used in future work; however, we believe that the
SFID condition presents an adequate baseline to which we can
compare performance.

2.1.2. Behavioral Adaptive Training (BAT)
In the BAT condition, we changed the number of characters
shown on the screen during a trial based on the user’s score
on the preceding block. The theoretical motivation for our
BAT condition comes from well-supported theories in expertise
development, education, and game design. In the study of
expert performance, deliberate practice has been identified as
an important contributor to attainment of expertise (Ericsson
et al., 1993). Deliberate practice entails repetition with the
focused intention to improve with an appropriately set goal.
An appropriate goal is one that targets a difficulty level just
beyond the current mastery so that practice challenges the
user rather than calcifying behaviors that only suffice at the
current level of difficulty. Relatedly, the instructional process
of scaffolding (Wood et al., 1976) entails providing sub-goals
and activities that are within the trainee’s capabilities while
challenging them to learn and grow those capabilities. Finally,
within game design is the concept of a flow zone (Chen, 2007), in
which a game is not too challenging and not too simple in order
to maintain a state of focused engagement. The common thread
among these theories is that appropriately selected difficulty is a
critical element in effective practice. To maintain an appropriate
level of difficulty, we developed a behaviorally adaptive training
rule in which difficulty would increase once the trainee achieved
criterion performance at the current difficulty (Table 1, Top).
The criterion was derived based on average performance in the
SIFD condition. To ensure that difficulty was not set too high,
difficulty was reduced if performance approached what could be
obtained by thoughtless responding (i.e., responding as quickly
as possible regardless of the presence or absence of a target).

2.1.3. Combined Adaptive Training (CAT)
In the CAT condition, task difficulty was varied based on both the
behavioral scores and EEG values. The neural point thresholds
of -5 and +5% used in CAT were based on pilot data from two
users. The difficulty level was adjusted based on the adaptive logic

TABLE 1 | Adaptive logic.

BAT

Behavioral → S<1500 1500<=S<=1700 S>1700

- = +

CAT

Behavioral → S<1500 1500<=S<=1700 S>1700

Neural ↓

TARP<-5 - = =

-5<=TARP<=5 = = =

TARP>5 = = +

Top: Behavioral-based adaptive logic for the BAT system. Bottom: Behavioral and neural

based adaptive logic table for the CAT system. The difficulty level increased (+) by one

level, decreased (-) by one level, or remained the same (=). Blue cells show when the

behavioral component recommends a change that is not accepted by CAT.

presented in (Table 1, Bottom). This scheme incorporates both
the neural and the behavioral measure. The adaptive logic was
applied after the second block, where we got the first percentage
of change of TAR value.

2.2. Target Identification Transfer Task
After training, participants engaged in a transfer task
(Figures 1C,D) that has been used previously (Metcalfe
et al., 2015; Files et al., 2019). This transfer task involves the same
perceptual judgment of threat and non-threat as in training, but
it takes place in a naturalistic context and with both trained and
untrained stimuli. The context was a simulated 10-min ride in a
vehicle in a semi-realistic virtual desert village environment. The
untrained stimuli were tables with or without a cloth obscuring
the view beneath the table. Unobscured tables were non-threats,
and obscured tables were threats, because they might conceal
a threat.

The transfer task stimuli were static 3D models added to
the environment. There were 200 stimuli belonging to the four
stimulus categories. The stimuli appeared in randomized order.
The stimulus distance from the center was randomized. The
vehicle speed was fixed. The participants saw each stimulus over
a range of sizes and angles. We added an additional level of
difficulty by displaying an intermittent fog (30 s to 2 min) five
times throughout the transfer task. During the task, one of the
four stimuli appeared on the screen randomly and stayed for 1 s.
The inter-stimulus interval was uniformly distributed within 1–3
s. The participants had to press either one of two buttons within
the 1-s response window. They responded to threats (Human,
Table) stimuli with their dominant hand (based on the Edinburgh
Handedness Inventory test) and to non-threats (Human, Table)
stimuli with their other hand. We provided feedback with a
green letter Y for the correct response, red letter N for incorrect
response, and white letters OO for non-response. We evaluated
users’ performance by measuring the accuracy of detecting the
objects (threat/non-threat) within the transfer task.

2.3. Participants
We recruited 68 healthy adult participants via Craigslist. Subjects
were screened for normal or corrected-to-normal binocular
vision (minimum of 20/40 acuity) using a standard Snellen chart
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and for color vision using a standard Ishihara 14-plate color test.
Individuals were excluded if they reported a tendency for motion
sickness or any brain-related diseases.

One participant failed the vision test. We could not use data
from 12 participants (SIFD = 2, BAT = 6, CAT = 4) due to
technical failures with the equipment and 11 participants (SIFD
= 2, BAT = 6, CAT = 3) who failed to respond to transfer task
stimuli more than 80 responses out of 200 responses. This left
44 total participants: 22 (M 13, F 9, mean age 29.40, SD 11.6)
in the SIFD condition, 10 (M 4, F 6, mean age 33.4, SD 8.7)
in the BAT condition, and 12 (M 5, F 7, mean age 29.83, SD
5.5) in the CAT condition. All participants gave voluntary, fully
informed, and written consent to participate in our study. We
maintained standard procedure for the study protocol approved
by the Army Research Laboratory Institutional Review Board
(IRB) under protocol number 17–166.

2.4. Apparatus
2.4.1. Dell Ultra Sharp 24” Desktop Monitor
We used a 24” standard desktop monitor, keyboard, and mouse
to execute the tasks for our study. It was built and manufactured
by Dell.

2.4.2. ActiveTwo Biosemi System
We recorded EEG using an ActiveTwo Biosemi system (BioSemi,
Amsterdam, The Netherlands), which is a research-grade multi-
channel, high-resolution biopotential measurement device. It has
an electrode cap with 64 pre-amplified, active surface electrodes.
The sensors were placed into the cap holes in accordance with a
modified 10–10 electrode placement system (Jurcak, Tsuzuki, &
Dan, 2007). A water-soluble, saline gel was inserted into the cap
holes before placing the electrodes to ensure better connectivity
with the scalp surface and electrodes. There are four additional
sensors placed onto the skin for monitoring EOG related eye
movements. The Common Mode Sense (CMS) electrode and
Driven Right Leg (DRL) electrode served as a ground. The
sampling rate for our experiment was 512 Hz. The EEG signals
captured through active electrodes and were then converted to
digital format using an AD-box (Analog to Digital box). The
digitized data were then sent to a PC/Laptop. The Biosemi
provides a proprietary software interface named ActiView for
data processing.

2.4.3. Instrument Control Toolbox
We used an Instrument Control Toolbox for TCP/IP
communication between Matlab instance in stimlus PC
and ActiView in Biosemi data recording PC. Here, ActiView
software configured as TCP/IP server and one of the Matlab
instance in stimulus PC configured as TCP/IP client. The Matlab
program parsed incoming data packets, and stored the data from
all channels.

2.5. Procedures
In this step, the devices were prepared for starting the training
and testing session. Participants were fit with a 64-channel
cap using a modified 10–10 electrode placement with external
electrodes placed at the external canthi of the eyes, above and

below the left eye, and on the mastoids. Once the cap was
on the participant’s head, the participant was asked to fill out
the questionnaires on a laptop. The operator was gelling each
electrode while the participant was completing the questionnaire.
The participant was then taken into a soundproof room after
the completion of sensors preparation and questionnaire. The
operator then calibrated the EEG laptop in ActiView software
interface. Electrode offsets were maintained at or below 30 uV.
The participant was told to read all the on-screen instructions
carefully during the whole duration of the experiment. The
participant was instructed to maintain consistent eye distance to
the monitor and to keep their legs uncrossed and both feet on
the floor. The participant had the chance to ask any questions for
clarification. The operator then closed the soundproof room door
and turned on a video camera for observation and a microphone
to speak with the participant if needed.

2.5.1. System Setup
We used two computers for the experiment: the stimulus
computer and Biosemi data recording computer. Two Matlab
instances were running on the stimulus computer. One instance
was for displaying the stimulus, and other instances were for
communicating with Biosemi ActiView via TCP/IP connection.
We used PsychToolBox (PTB) as our stimulus presentation
software. During the training task, PTB sends the stimulus onset
trigger signals to the Biosemi equipment simultaneously using
Biosemi USB Trigger Interface Cable. The delay of Biosemi
USB Trigger Interface Cable is less than 200 microseconds. A
photodiode was installed into the bottom left corner on the
stimulus onset computer for accurate timing of stimulus onset.
The participant responded to the go task using an RT-box
installed connected with stimulus onset computer.

2.5.2. Task Execution Session
After the preparation session, the training task started and lasted
for an average of 30 min followed by the participant filling out
a questionnaire. The transfer task started with the completion
of that questionnaire set. The duration of the transfer task was
always fixed at 10 min. By the end of the transfer task, there was
an exit questionnaire.

2.6. EEG Data Processing
We recorded EEG data using the 64-channel high-end Biosemi
data acquisition system and usedMATLAB (version-9.1.0.441655
R2016b) to analyze the EEG data. The sampling rate was 512
Hz. We received the continuous EEG data from the ActiView
Biosemi software device over TCP/IP channel. We synchronized
the stimulus and its EEG recording using a photo-diode in
the USB2 receiver. We performed a column-wise Fast Fourier
Transform across all 64 channels to calculate the theta (3–7 Hz)
and alpha (8–12 Hz) power of the EEG in the 1s following the
stimulus onset. We computed the ratio of theta to alpha for
each electrode, and these ratios were averaged over all channels
to obtain a single-trial whole-head TAR value. These single-trial
TAR values were averaged over all trials in a block to obtain a
block-level TAR. We then calculated the percentage change in
block-level TAR from the previous block using Equation (1). We
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refer to this theta/alpha ratio percentage change as TARP.

TARP =
TARblock(i) − TARblock(i−1)

TARblock(i−1)
∗ 100 (1)

For offline processing, continuous data were high-pass filtered at
1.0 Hz, low-pass filtered at 40.0 Hz, average referenced, and then
submitted to ICA with PCA reduction to 40 dimensions using
standard PICARD with up to 500 iterations (Ablin et al., 2018).
The resulting independent components were classified using
ICLabel v.1.2.2, (Pion-Tonachini et al., 2019) and components
classified as having a greater than 0.7 of belonging to a non-brain
class (Muscle, Eye, Heart, Line Noise, Channel Noise, or Other)
were removed from the data. Data thus cleaned were submitted to
TAR and TARP calculation. Data from 4 participants (1 control,
3 CAT) were not usable for offline re-analysis due to errors
during saving.

3. RESULTS

The main goal of this study was to measure the effectiveness of
adding neuro-adaptivity into adaptive training. As a measure of
training effectiveness, we examine transfer task performance. The
different training conditions varied in difficulty, so comparisons
of performance during training are less meaningful. Specifically,
we evaluated the effectiveness of our training regimens by
measuring the accuracy (percentage of the correct response)
of the post-training transfer task. In this study, we had three
separate training tasks (one for each condition) along with a
shared transfer task. Average transfer task accuracy for each
condition is shown in Figure 2.

The average transfer task accuracy scores in the SIFD, BAT,
and CAT conditions were 55.93, 52.56, and 61.57%, respectively.

FIGURE 2 | Average transfer task performance for the three training

conditions. The combined adaptive training (CAT) resulted in better transfer

task performance compared to behavior adaptive training (BAT) and fixed

difficulty (SIFD) conditions. The large dots show the sample average, and the

small dots show individual data points. Error bars show 95% confidence

intervals from bias corrected, accelerated percentile bootstrap.

The CAT system improved transfer task performance 10%
relative to SIFD (6% point improvement) and 17% relative to
BAT (9% point improvement). We conducted two sample t-tests
with unequal variance adjustment and corrected p-values for
multiple comparisons using the Benjamini and Hochberg (1995)
procedure for controlling false discovery rate (FDR) to be 0.05.
The results indicated a statistically significant advantage of the
CAT condition over the SIFD condition, t(31.85) = -2.25, M = -
5.63 percentage points, 95% CI [-10.7, -0.5], p = 0.047. There
was also a statistically significant advantage of the CAT condition
over the BAT condition, t(17.98) = -3.63, M = -9.0 percentage
points, 95% CI [-14.2, -3.8], p = 0.006. Accuracy under BAT was
lower than under SIFD, but this difference was not statistically
significant, t(25.48) = -1.21,M = -3.4 percentage points, 95%CI [-
9.1, 2.3], p = 0.236. These results show that participants in the
CAT training condition performed better on the transfer task
than those in the BAT and SIFD conditions.

Group-average scalp maps of alpha power, theta power, and
TAR appear in Figure 3, top row. The online calculation of
TAR included raw EEG data from all sensors using no special
filtering or data exclusion. This potentially included eye, muscle,
and other artifacts. To better understand the impacts of those
artifacts, we conducted an offline re-analysis of the EEG data.
Group average scalp maps of alpha power, theta power, and TAR
for the offline re-analysis appear in Figure 3, bottom row. To
assess the effect of artifact rejection on TARP, we computed TARP
for all blocks (regardless of experimental condition) both with
and without artifact rejection. The correlation between TARP
with and TARP without artifact cleaning was r(778) = 0.67.
Considering only the participants in the CAT condition and only
on those blocks in which the behavioral score was in a range
that would permit a difficulty change (i.e., only those blocks in
which the TARP had a unique effect on the difficulty change),
offline and online TARP agreed in 83.8% of cases. Although we
cannot know how transfer task performance might have been
affected if difficulty changes followed the recommendations of
the offline reprocessed data rather than the online, we view
the high agreement as indicating the TARP was not dominated
by artifacts.

In what follows, we examine some possible explanations
for the transfer task performance advantage of CAT relative
to BAT and SIFD. The CAT condition training was the only
one to include a neuro-adaptive training rule. This led to
differences in the training experienced by participants assigned
to the CAT condition. Here, we examine whether differences
in training difficulty, training performance, or difficulty stability
could account for the CAT advantage. The general approach
is to look at whether controlling for difficulty, performance, or
stability eliminates the performance advantage of training under
the CAT condition.

Training difficulty level does not account for CAT’s

advantage on transfer task performance. We observed that the
CAT regimen led to a greater average difficulty level during
training, as compared to the BAT. This suggested that perhaps
training at higher difficulty accounts for the transfer task
advantage of CAT. If difficulty level fully accounts for transfer
task performance, then a model with training difficulty and
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FIGURE 3 | Scalp maps of online and offline data. The upper row shows scalp maps (one dot per electrode) for theta-band power, alpha-band power, and TAR

(left-to-right, respectively) from the original data. The lower row shows the same maps computed from the offline data after artifact rejection. Note the differences in

scale.

FIGURE 4 | Differences in training difficulty do not account for the transfer

performance advantage of CAT. Here, we excluded SIFD condition as it was

fixed at easiest level. Dashed lines show 95% confidence intervals of the fit.

training condition as predictors would be expected to find a
significant coefficient of difficulty level and a condition coefficient
to be close to zero. To examine whether the difference in average
difficulty could account for the better transfer task performance
with CAT training, we fit a linear model (Figure 4) with transfer
task accuracy as the outcome variable and average training
difficulty level and training condition as predictors. Condition
was dummy-coded with BAT as the reference level. Continuous
variables were mean-centered prior to model fitting. Training in
the CAT condition was associated with a transfer task accuracy

improvement of 6.64, 95% CI [0.55, 12.72] percentage points,
t(18) = 2.29, p = 0.034 relative to training in the BAT condition.
The effect of difficulty level in the BAT condition was 2.53,
95% CI [-0.64, 5.70] percentage points per level, t(18) = 1.67,
p = 0.11. The interaction of condition with difficulty level,
representing the difference in the effect of difficulty level in CAT
relative to BAT was 0.07, 95% CI [-7.96, 8.09] percentage points
per level, t(18) = 0.02, p = 0.99. There was a marginal association
between difficulty of training and transfer task accuracy, but
the transfer task performance advantage associated with CAT
remained when controlling for this marginal effect.

Training score does not account for CAT’s advantage

on transfer task performance. We also observed differences
in training task performance among the different training
conditions. To examine whether the difference in average
training task score could account for the transfer task accuracy
advantage associated with CAT, we fit a linear model (Figure 5)
with transfer task accuracy as an outcome variable and average
score and condition as predictors. Condition was dummy-coded
with SIFD as the reference category. At an average score, BAT
increased accuracy by 0.82, 95% CI [-6.55, 8.20] percentage
points, t(38) = 0.23, p = 0.82. CAT increased accuracy by 7.6,
95% CI [2.24, 13.09], t(38) = 2.81, p = 0.008. The effect of a one
point increase in average score on accuracy was 0.03, 95% CI
[0.005, 0.048] percentage points, t(38) = 2.48, p = 0.018. The
interaction of BAT with score was -0.008, 95% CI [-0.05, 0.03],
t(38) = -0.40, p = 0.69, and with CAT was -0.006, 95% CI
[-0.05, 0.04], t(38) = -0.28, p = 0.78. This demonstrates that
higher training task score was associated with better transfer
task performance, but the transfer task performance advantage
of the CAT condition remained when controlling for training
task score.
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FIGURE 5 | Differences in training task scores do not account for the transfer

performance advantage of CAT. Curved lines show 95% confidence intervals

of the fit.

TABLE 2 | Percentage of block scores in adaptive logic categories.

BAT

Behavioral → S<1500 1500<=S<=1700 S>1700

Total % of block 37.00 28.00 35.00

CAT

Behavioral → S<1500 1500<=S<=1700 S>1700

Neural ↓

TARP<-5 6.25 6.25 12.95

-5<= TARP<= 5 6.70 15.18 25.89

TARP>5 4.90 7.59 14.29

Total % of block 17.85 29.02 53.13

Top: Overall percentage of scores (S) in the three categories defined by the adaptive

rule in the behavior adaptive condition. Bottom: Overall percentage of scores in the nine

categories defined by the adaptive rule in the combined adaptive condition. Blue cells

show when the behavioral component recommended a change that was not accepted

by CAT.

Training difficulty stability does not account for CAT’s

advantage on transfer task performance. In the CAT condition,
difficulty changes were less frequent compared to the BAT
condition. This was a consequence of the construction of
the BAT and CAT difficulty change logic. Table 2 summarizes
the percentages of blocks that triggered the rules to increase,
decrease, or keep difficulty the same. The table also highlights
blocks in the CAT condition where the BAT rules would have
triggered a difficulty change but the CAT rule did not (i.e., CAT
was stabilizing, 50.4% of blocks).

To check whether this stabilizing effect might account for the
difference in transfer task accuracy, we ran a simple linear model
with the number of novel blocks as the only predictor. The effect

of the number of novel blocks on accuracy was marginal, B = -
0.78, 95% CI [-1.60, 0.03], t(20) = -2.0, p = 0.059. A linear model
with condition, number of novel blocks, and their interaction
found a significant effect of the CAT condition, B = 9.23, 95% CI
[2.01, 16.46], t(18) = 2.69, p = 0.015, but the effect size of
number of novel blocks and the interaction were not statistically
significantly different from zero (both p >0.2). However, the
strong correlation between the number of novel blocks and
condition (r(20) = 0.69) makes these coefficients difficult to
interpret. These results show that the effect of difficulty stability
did not have a major impact on transfer task performance,
and controlling for stability did not eliminate the transfer task
advantage of the CAT training condition.

4. DISCUSSION

We developed a multi-modal adaptive training system by
combining both behavioral and neural features and compared
it with a non-adaptive and a behaviorally adaptive training
system. We found that compared to the non-adaptive and
the behavior-adaptive conditions, the combined neuro- and
behaviorally adaptive training yielded significantly improved
target classification performance on a near transfer task. In
follow-up analyses, we considered some possible explanations for
the advantage of CAT relative to BAT and SIFD conditions on the
transfer task.

The different difficulty adjustment rules led to different
average training difficulties, different training task scores, and
different frequencies of difficulty change among the three
conditions. Average training difficulty and training task score
were both positively associated with transfer task performance,
but these associations by themselves were not sufficient to explain
the advantage of the CAT on transfer task performance.

One major effect of adding the neural component was
to stabilize the difficulty level of training. In 50.4% of
blocks, the CAT system over-rode the behavioral component’s
recommendation to change difficulty, so difficulty was more
stable under CAT compared to BAT. However, we did not find
convincing evidence that the frequency of difficulty changes
during training was associated with better or worse performance
on the transfer task. Based on this observation, adjusting the
behavioral rule to recommend changes less frequently seems
unlikely to reproduce the transfer task performance advantage
of CAT.

We find no evidence supporting the possibility that the
advantage of CAT is due to some artifact of the construction
of the task or rule, leaving us with the explanation that the
neural features captured in the CAT usefully supplemented
the behavioral adaptation rule to maintain a task difficulty
that promoted more successful learning. In what follows, we
consider the theoretical implications of using percentage change
in theta/alpha ratio as a neural feature, the practical implications
of combining neuro- and behaviorally adaptive training, and
future directions for related work.

Value of neural features. The difficulty change rules in the
BAT condition were designed to keep the training at a difficulty
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level that was not too easy to be disengaging but not too difficult
to be overwhelming. This choice was motivated by theoretical
accounts that posit optimal difficulty selection is key to learning
and engagement. However, training task performance is not
necessarily a perfect indicator of the workload or mental effort
the trainee was under. In other words, subjective difficulty does
not necessarily align with objective difficulty. This suggests an
explanation for the advantage of CAT over BAT, that it provided
a more detailed indication of the subjective difficulty of training.

It is possible that a behaviorally adaptive rule could be
designed that captured a better indicator of subjective difficulty.
Our results suggest that average difficulty, average performance,
and difficulty stability are not promising targets for a better
behaviorally adaptive rule. If such a rule were developed, it would
create an opportunity to test whether the neural features used
here no longer improved training effectiveness.

Implications and Applications of Our Work. We believe
our study advances the field in a few ways. Our method is,
especially applicable in learning studies, because it is based on
estimating percentage change in the theta/alpha ratio, rather than
estimating an absolute objective or subjective workload level.
Also, our EEG measure requires no task-specific or user-specific
tuning. The absence of tuning to the task allows us to hope it
might generalize more than some highly fit model of workload.
Finally, rather than documenting a relationship between TARP
and difficulty, we close the loop and focus on the effect of
our neuro-adaptive training approach on training outcomes.
Our developed technology has potentially wide relevance, as it
can be applied to virtually any computer-based human learning
experience. However, more work is required to characterize
the generalizability of the combined behavioral and neural
training approach. Different training contexts will likely require
adjustments to the parameters of the adaptive rules. Moreover,
a CAT applied to other training contexts might benefit from
additional or different neural or other physiological measures.

Although behavioral adaptive training has had notable
success, including neural signals for adaptation provides
additional insight. The benefits of our novel approach are
broad within the context of interactive training (e.g., game-
based cognitive training) and could allow for improved transfer
performance, reduced training times, and reduced training costs.

Applications.Neuroadaptive technology can be used in many
areas (Fafrowicz et al., 2012), such as decision support, human-
robot teams, learning, and memory. We observed performance
improvement in a stimulus recognition transfer task, following
CAT training in a go/no-go inhibitory control task. Future
work should examine how robust this finding is to other
training and transfer tasks, and how robust this finding is when
compared to other, perhaps more sophisticated, forms of BAT.
The general approach of incorporating TARP into adaptive
training systems could be applied to existing adaptive training
of perceptual or cognitive tasks in which blocks of practice
are subject to an adaptive difficulty modification (e.g., tutoring,
exercise, simulated training). Virtual reality (VR) based adaptive

training could be a particularly fruitful area to explore, because it
needs to satisfy similar constraints. Our system uses laboratory-
grade EEG, but the same principle could be applied using
consumer-grade EEG. The incorporation of EEG into Virtual
Reality (VR) headsets opens the door for combined adaptive
training to be used in VR. This substantially expands the range
of applications for our work. Whether adaptive training takes
place with conventional or VR hardware, the addition of neural
measures to such systems might result in better learning.

5. CONCLUSION

We have explored a novel approach of designing an adaptive
training by incorporating both behavior and a neural measure
(Theta/Alpha Ratio Percentage, TARP) as the performance
metrics feeding the adaptive logic. We evaluated this newly
designed adaptive training using an abstract threat/non-threat
training task and a contextualized transfer task. We found
that participants trained with the CAT system had higher
accuracy in the transfer task compared to those trained with the
other two systems. The experimental results showed that CAT
improvement was 6% relative to SIFD and 9% relative to the
BAT system. Future work can determine whether these results
could be replicated in a revised behaviorally adaptive system, or if
these advantages are uniquely attributable to the inclusion of the
neural measure.
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