
fnhum-16-799881 March 4, 2022 Time: 14:40 # 1

ORIGINAL RESEARCH
published: 10 March 2022

doi: 10.3389/fnhum.2022.799881

Edited by:
Miseon Shim,

Korea University, South Korea

Reviewed by:
Ling-Li Zeng,

National University of Defense
Technology, China

Mustafa Amin,
Universitas Sumatera Utara,

Indonesia

*Correspondence:
Xiaoou Li

lixo@sumhs.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Brain-Computer Interfaces,
a section of the journal

Frontiers in Human Neuroscience

Received: 22 October 2021
Accepted: 10 January 2022
Published: 10 March 2022

Citation:
Zhu Y, Zhu G, Li B, Yang Y,

Zheng X, Xu Q and Li X (2022)
Abnormality of Functional

Connections in the Resting State
Brains of Schizophrenics.

Front. Hum. Neurosci. 16:799881.
doi: 10.3389/fnhum.2022.799881

Abnormality of Functional
Connections in the Resting State
Brains of Schizophrenics
Yan Zhu1,2†, Geng Zhu1†, Bin Li3, Yueqi Yang1,2, Xiaohan Zheng1,2, Qi Xu1,2 and
Xiaoou Li1,2*

1 College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai, China, 2 College of Medical
Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China, 3 Shanghai Yangpu
District Mental Health Center, Shanghai, China

To explore the change of brain connectivity in schizophrenics (SCZ), the resting-state
EEG source functional connections of SCZ and healthy control (HC) were investigated
in this paper. Different band single-layer networks, multilayer networks, and improved
multilayer networks were constructed and their topological attributes were extracted.
The topological attributes of SCZ and HC were automatically distinguished using
ensemble learning methods called Ensemble Learning based on Trees and Soft voting
method, and the effectiveness of different network construction methods was compared
based on the classification accuracy. The results showed that the classification accuracy
was 89.38% for α band network, 82.5% for multilayer network, and 86.88% for
improved multilayer network. Comparing patients with SCZ to those with Alzheimer’s
disease (AD), the classification accuracy of improved multilayer network was the highest,
which was 88.12%. The power spectrum in the α band of SCZ was significantly
lower than HC, whereas there was no significant difference between SCZ and AD.
This indicated that the improved multilayer network can effectively distinguish SCZ and
other groups not only when their power spectrum was significantly different. The results
also suggested that the improved multilayer topological attributes were regarded as
biological markers in the clinical diagnosis of patients with schizophrenia and even other
mental disorders.

Keywords: EEG, resting state, schizophrenia, functional brain network, machine learning

INTRODUCTION

The high morbidity and mortality of schizophrenia poses a serious impact and economic
burden to society (Samsom and Wong, 2015). Nowadays, psychiatric patients are still diagnosed
by experienced doctors through verbal communication and scale assessment (Kas et al.,
2019). The diagnosis relies on symptomatic criteria and lacks objective biological indicators.
Therefore, the search for landmark biological indicators has become an urgent breakthrough in
psychiatric research.

The EEG originates from the cerebral cortex and reflects brain activity directly (Fornito et al.,
2016). Resting-state EEG is recorded when a participant is awake and not engaged in any specific
task, which can reflect the intrinsic ability of the brain (Duan et al., 2021). Most algorithms about
EEG are interested in the time and frequency domain. In recent years, algorithms for analyzing the
correlation of EEG signals from different channels have gradually become popular. The application
of an EEG-based brain network has gained attention in the interconnected structure of the brain.
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Brain network techniques have been used to analyze the
functional state of the brain in patients suffering from mental
disorders, which are caused by structural damage or dysfunction
of the brain. Zhao et al. (2021) captured abnormal brain changes
in the SCZ by their tools for functional connectivity. Sun et al.
(2017) extracted network features for evoked EEG of SCZ and
HC with support vector machines (SVM) in which classification
accuracy reached 80%, suggesting that the brain regions that play
a major role were concentrated in the frontal and occipital lobes.

It is no doubt that EEG provides a reliable and useful method
for understanding different psychiatric disorders (Newson and
Thiagarajan, 2019). Certainly, EEG-based brain networks are
different in patients with different psychiatric disorders. van
Dellen et al. (2020) characterized functional connectivity and
brain network characteristics in HC, SCZ, psychotic experiences,
and treatment-naïve subclinical psychosis (SCP), and found that
the functional networks of SCZ have many differences compared
with other groups. Psychiatric disorders such as Alzheimer’s
disease (AD) can be compared to each other by brain networks.

In essence, networks generally consist of nodes and edges
between nodes (Barabási, 2013). Most EEG-based brain networks
used electrodes to represent different brain regions as nodes
to construct spatial networks. These constructed networks were
mainly devoted to the analysis of the connections, distinctions,
and the degree of lesions between different brain regions
(Micheloyannis, 2012). In addition, the selection of electrode
number is one of the most important elements for constructing
EEG-based functional brain networks. EEG with more than 64
electrodes is recommended for the source connectivity method.
However, the more the electrodes are used, the higher the
clustering coefficient is generated, and it will be easier to
generate weak connections and pseudo connections (Hassan
and Wendling, 2018; Ismail and Karwowski, 2020). In contrast,
some researchers argued that the use of EEG with fewer than
32 electrodes was better for monitoring brain activity. The data
with a small number of electrodes (i.e.,≤16 channels) can be
directly applied to clinical practice in a practical way (Wang et al.,
2018; Li et al., 2019; Ismail and Karwowski, 2020). Racz et al.
(2020) analyzed dynamic functional connectivity for the resting-
state EEG with 19 electrodes of δ band in schizophrenics (SCZ),
which used RF for classification to achieve a maximum cross
validation accuracy up to 89.29%. Here, EEG signals with eight
electrodes were used to study brain networks and to diagnose
neurological diseases.

The edges of the network present the connectivity between
nodes (Barabási, 2002). Various typical algorithms are available
for defining edges in brain networks between two channels,
such as mutual correlations for calculating the amplitude
synchronization in the time domain (Wirsich et al., 2020),
coherence for amplitude synchronization in the frequency
domain (Zhang et al., 2020), phase-locking values (PLV), and
phase-lag indices (PLI). Recently, PLV was widely used to study
the connectivity of brain (Hassan and Wendling, 2018; Peng et al.,
2019). Kim et al. (2020) constructed networks of EEG signals
from different SCZ groups by PLV and the classification accuracy
was 88.10%, which illustrated that SCZ and HC groups could be
successfully classified by their network attributes.

The threshold selection is essential for building a powerless
network. The appropriate threshold selection helps simplify the
complexity of brain network computation by removing edges
with low connection strength or other disturbances partly. On the
contrary, the incorrect threshold selection causes instability and
errors. According to the random graph model proposed by Erdõs
and Rényi (1964), the minimum connection sparsity should be
2 lnN

N to ensure full connectivity of the network, where N is the
number of nodes. Combined with the definition of small-world
networks, small-coefficient, σ, must be much larger than one
when building a small-world network (Watts and Strogatz, 1998),
which determines the upper limit of connection sparsity.

This paper proposes a framework for the analysis and
classification of brain functional networks based on resting-state
EEG together for applying on SCZ, as shown in Figure 1. The
main contributions are summarized as follows:

(i) In this paper, the power spectrum of SCZ shows a
significant increase in θ and α bands, and the results from the
classification based on the single-layer network obtained by PLV–
Filter–ELTS indicate that SCZ differs significantly in α and β1
bands from HC. It points to the possibility that information
processing in the brain of SCZ may be abnormal from the
perspective of energy changes, and the brain network attributes
in the α band could be used as a potential biological marker.

(ii) The framework proposed enables to discover the results
which cannot be obtained by non-network attributes (i.e., power
spectrum analysis), illustrating that brain network attributes can
be competitive candidates for biological markers in the clinical
diagnosis of schizophrenia.

(iii) Applying data of SCZ and AD patients to the proposed
framework, it turns out that the results of the multilayer network
are more generalizable, which is not dependent on the power
spectrum difference between the two groups.

MATERIALS AND METHODS

EEG Recordings and Pre-processing
Twenty SCZ (8 women and 12 men, mean age 34.20± 4.74 years)
and twenty AD patients (10 women and 10 men, mean age
65.25 ± 4.94 years) came from Shanghai Yangpu Mental
Health Center. Twenty HC (9 women and 11 men, mean age
23.65 ± 3.31 years) had no personal history of neurological or
psychiatric illness. All subjects involved in the research were
screened by the Positive and Negative Syndrome Scale (PANSS),
after providing informed consent. The Structured Clinical
Interview for DSM-IV-TR (First et al., 2002) was administered by
a psychiatrist (MJP) to assess psychiatric diagnoses of patients.
Exclusion criteria for all subjects were identifiable neurologic
disorders, substance use disorders within the last 6 months, or
diagnosed sleep disorders. The study was approved by Shanghai
Yangpu District Mental Health Center.

All experimental data were recorded in a quiet and closed
room with no strong light, moderate temperature and humidity,
good ventilation, and no electromagnetic interference. The
subjects were kept awake and at resting state. EEG signals were
recorded with a NeuroScan SynAmps2 Amplifier (Compumedics
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FIGURE 1 | The framework proposed in this paper. (A) Collection of SCZ as well as HC resting-state EEG for 2 min followed by pre-processing. (B) Construction of
single-layer brain networks with δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β1 (13–20 Hz), β2 (20–30 Hz), and multilayer brain networks. (C) Statistical analysis of
networks, including the degree, clustering coefficient, local efficiency, and connectivity robustness. (D) Using classifiers for accurate discrimination of psychiatric
disorders to find potential biological markers of SCZ depending on the classification results.

USA, Charlotte, NC, United States). The sampling rate was
1,000 Hz. Every electrode impedance was kept below 10 k�,
and the electrodes were placed over the scalp according to
international 10–20 system.

The EEG signals were average-referenced and bandpass-
filtered with 0.1–30 Hz to obtain the desired frequency range
and remove eye movements (Zhang et al., 2018). Furthermore, it
was normalized to select 80-s data with high signal-to-noise ratio
(Adamos et al., 2018). Each sample with 80 s was divided equally
into four segments in the experiment. The first and second
segments were classified with the third and fourth segments by
SVM, K-Nearest Neighbor (KNN), Bayesian belief network (BN),
and RF. The results obtained, as shown in Figure 2A, suggested
that there was no significant difference, which indicates that the
selected data are reasonable. Since the subsequent algorithm of
functional connectivity (PLV) is only sensitive to phase and the
number of our electrodes is low, it is not necessary with many
pre-processing methods, and the volume conduction problem in
EEG can be negligible.

Referring to the clinical recommendations of physicians, the
EEG signal with 8-channel (FP1-2, C3-4, T3-4, O1-2) and the
EEG signal with 32-channel after removing useless channels
manually were constructed as brain network by PLV (threshold
was chosen as 0.71, features were calculated as degree, clustering
coefficient and local efficiency without extracting). As it is shown
in Figure 2B, it is observed that the classification accuracy
obtained with 8 channels is closer to those obtained with 32
channels, and the consumption with 8 channels can increase the
running speed significantly compared with 32 channels. Thus, the
EEG signal with 8-channel is selected for subsequent processing.

Connectivity and Network Analysis
Functional Connectivity
The PLV was used to calculate the connection strength between
nodes. Here, the instantaneous phase of a node (electrode) is
calculated by wavelet transform. The PLV between electrode

x and electrode y is PLV =
∣∣∣〈eiθW

xy
〉∣∣∣ , θW

xy = θW
x (t)− θW

y (t),

where θW
xy is the phase difference between x and y, and t

refers to the time.
To find the best threshold in unweighted network, the

threshold values of 0.11–0.91 are selected in steps of 0.1 to obtain
the corresponding accuracy, which are listed in Figure 3A. The
threshold is chosen as 0.71, which has the highest accuracy. The
example mappings of brain networks for HC, SCZ, and AD
patients are shown in Figure 3B.

Analysis of Single-Layer Network
The node degree di of a node i is the number of edges connected
to the node. The clustering coefficient measures the denseness
of the network. In an unweighted network, the global clustering
coefficient Ci can be described as di(di−1)

2 .
The local efficiency reflects the defense capability of the brain

network, and to some extent the robustness of the brain network.
It is calculated as follows Ei =

1
N
∑

i∈Gi
1

NGi (NGi−1)

∑
j∈Gi,j6=k

1
lj,k

,
where Gi refers to the subgraph formed by the neighbors of node
i, and lj,k is the shortest path between nodes j and k.

The connectivity robustness refers to the strength of the
remaining nodes after some nodes of the networks are damaged.
Meanwhile, the importance of node i in the network can be
understood by calculating the network attributes after removing
node i. Dodds et al. (2003) proposed that the connectivity
robustness ri is dmax

N−Ni
, where dmax is the maximum degree

value in the network after removing Ni nodes. The connectivity
robustness depends largely on degree distribution. Thus, to
analyze the global attributes of brain networks, the connectivity
robustness in this paper is calculated as Ri =

davg
N−1 , where davg is

the average degree value in the network after removing node i.

Analysis of Multilayer Network
Multilayer networks fuse several single-layer networks, which
allows the discovery of many hidden information that cannot be
found by single-layer networks (Bianconi, 2018). In this paper,
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FIGURE 2 | According to different consumption and a different number of channels, the EEG signals are recognized by a variety of classifiers. The classification
accuracy was obtained and the consumption was calculated. (A) Comparison chart of data classification at different segments. (B) Comparison of classification
results and consumption for different channels.

the multilayer networks based on EEG signals were constructed
by different bands.

Buldyrev et al. (2010) proposed that the degree of node i in a
multilayer network Dmi is

∑M
a = 1 Da

i , where Da
i is denoted as the

degree of node i at layer a in the M-layer network. The clustering
coefficients, local efficiency, and robustness of the multilayer
network are defined as the following:

Cmi =
∑M

a = 1 Ca
i

Rmi =
∑M

a = 1 Ra
i

Emi =
∑M

a = 1 Ea
i

(1)

During the calculation of the multilayer network, Dmi, Cmi,
Rmi, and Emi are validated by combining the power spectrum in
different frequency bands, which are different between patients
that of HC. Based on the results shown in Figure 3, the
power spectrum of different bands is used as the weight of the
single-layer network as Dmi =

∑M
a = 1 ∂Da

i , where ∂ is the
power spectral ratio of the network in that layer band. The
power spectral density is estimated based on Welch periodogram

method (Hamming window), with different values of ∂ for
each sample. The clustering coefficients, local efficiency, and
robustness of the improved multilayer network (IMN) are
defined as follows: 

Cmi =
∑M

a = 1 ∂Ca
i

Rmi =
∑M

a = 1 ∂Ra
i

Emi =
∑M

a = 1 ∂Ea
i

(2)

Extracts Important Features and
Classification
Different classification algorithms were employed to distinguish
network features from different groups (HC, SCZ, and AD),
such as RF, SVM, K-nearest neighbor (KNN), and Bayesian
belief network (BN). SVM uses the kernel function to map
feature values to high-dimensional space, which is effective in
solving small sample binary classification problems. KNN is a
lazy learning algorithm for classification based on the distance
between different feature values, which is suitable for the set
of samples to be classified with more crossover or overlap. BN
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FIGURE 3 | To find the best thresholds and features, it is classified for different threshold values and different feature selection methods. (A) Classification accuracy
with different thresholds. (B) Brain network mapping. (C) Accuracy obtained by different feature extraction algorithms.

uses Bayesian formula to calculate the probability of the samples
to be classified belong to each category, and finally selects the
category based on the probability, which is simple in logic and
easy to implement. As a newly emerged and highly flexible
machine learning algorithm, RF consists of the final results of
multiple decision trees, which allows for higher accuracy and
generalization of the results.

Cross validation can repeatedly utilize samples to compose
different training and testing sets to evaluate the goodness
of model prediction, which is especially suitable for the
case of small sample size. In this paper, the 10-fold cross-
validation method was used to divide the training and test
sets without repeated sampling, which can fully reduce the

model overfitting phenomenon and improve the stability
and generalization.

As shown in Figure 3A, comparing the results obtained by
RF, SVM, KNN, and BN, it is suggested that the classification
accuracy of RF has the highest accuracy and the most stable
results. Therefore, tree models like RF are applied on the
classification proposed.

The proposed classification is ELTS voting method, which
is an ensemble learning method based on three tree models
comprising of RF, light gradient boosting machine (LGBM), and
gradient boosting survival tree (GBST). LGBM used the negative
gradient of the loss function as the residual approximation of
the current decision tree to fit the new decision tree, which is
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different from RF (Fan et al., 2019). GBST extends the survival
tree models with a gradient-boosting algorithm, which is learned
by minimizing the negative log-likelihood in an additive manner
(Bai et al., 2021). The classification accuracy of RF, LGBM, GBST,
Ensemble Learning based on Trees and Harder voting method
(ELTH), and ELTS are listed in Figure 3C, which suggests that
the classification accuracy of ELTS has the highest accuracy.

The data extracts important features through Kolmogorov–
Smirnov Statistic (KS), Chi-square test, filter, tree model, l2
penalty term, and PCA. KS quantifies a distance between
the empirical distribution function of two samples. In this
paper, features are extracted from two samples when the
empirical distribution function is lower than 0.001. What is
different between KS and Chi-square test is that Chi-square test
determines statistically significant differences by the expected
frequencies and the observed frequencies from the two samples.
Filter extracts important features based on the scores in various
statistical tests and the various indicators of correlation. Tree
model can extract the average of feature importance of all random
trees and get the overall feature importance of the model, which
can be used for feature selection and extraction. The operation
of l2 penalty term in this paper is to combine l2 regularization
and linear regression model, in other words, the l2 norm of
coefficient w is added to the loss function as a penalty term
when training the linear regression model, which forces the
coefficients corresponding to those weak features to become 0
due to the non-0 regular term. Thus l2 penalty term becomes
a good feature selection method. As the most commonly used
data dimensionality reduction method, PCA reduces the data
dimensionality while maintaining the features that contribute
the most to the variance. The results are shown in Figure 3C,
which shows that the highest accuracy is obtained by Filter–ELTS.
Therefore, filter is selected to extract the more significant features
before classification.

RESULTS

Schizophrenics-Related Frequency Band
The comparison of the mean power spectra of all the channels for
the three groups is shown in Figure 4A. Shaded area represents
the standard error of mean. The difference between SCZ and
HC is mainly concentrated between 0 and 16 Hz. The mean
power spectra of SCZ is significantly higher in δ and θ bands and
significantly lower in α band than that of HC. The power spectra
of AD in θ band is less significant than that of SCZ, and the power
spectra of AD in α and β bands is significantly higher than that of
SCZ. Thus, it is illustrated that the power spectra in α band could
be used as a potential biological marker between SCZ and HC.

The power spectral density ratios of the different channels
are shown in Figure 4B. It suggested that the disparity in the
prefrontal part (FP1-2) is more obvious in SCZ.

Schizophrenics-Related Binary Network
The power spectrum, single-layer networks in different bands,
and multilayer networks are used to classify between SCZ and
HC. The classification accuracy is listed in Figure 5, which

indicate the classification accuracy of power spectrum (PS),
single-layer network attributes (δ, θ, α, β1, and β2), original
multilayer network attribute (MN), and IMN without δ and θ

bands and taking into account the power spectral density ratio.
As can be seen from Figure 5, the classification accuracy

obtained by PS–Filter–ELTS between SCZ and HC was as high
as 91.25%. The classification accuracy according to the single-
layer network attributes obtained from different bands showed
that SCZ and HC had the highest classification accuracy in α

band, indicating that the network attributes in α band were more
different. Besides, the classification accuracy in both δ and θ

bands was about 10% lower than those in α bands. Since the α

and β bands of resting-state EEG in patients with mental illness
have been the hotspot of research (Li et al., 2017; Zhang et al.,
2021), the multilayer network in this paper only selected α, β1,
and β2 bands to build the multilayer network while introducing
power spectrum to adjust the parameters among each layer.
The classification accuracy of IMN is up to 86.88%, which is
4.33% higher than MN.

Generalization About the Proposed
Framework
To verify the feasibility and generalizability, the proposed
framework was also applied to the data of SCZ and AD patients.
The classification accuracy between SCZ and AD is listed in
Figure 5.

Between AD and SCZ, the accuracy of single-layer networks
shows that accuracy in α band is 10% lower compared to the
accuracy between SCZ and HC, which is in accordance with the
power spectra that the difference in α band between AD and
SCZ is not as obvious as between SCZ and HC. Moreover, it can
be seen that the highest classification accuracy is 80.62% (PS)
without using networks, and the highest classification accuracy
is 88.12% (IMN) among all singe-layer networks and multilayer
networks. The classification accuracy obtained from IMN was
higher than that of PS, suggesting that brain network attributes
are more generalizable between diseases or conditions in which
the differences in α band are not obvious enough and brain
network attributes can be explored further.

DISCUSSION

This paper shows that the power spectrum of SCZ increases
significantly both in θ and α bands. According to the results of
the single-layer network classification from the different bands
obtained by PLV, Filter and RF, it is evident that SCZ differed from
HC in the α and β1 bands. Both the non-network and network
attributes suggest that abnormal brain function occurs in α band
of SCZ. Similar results have been reported in several previous
studies, such as Goldstein et al. (2015) proposed a defect in
α-band activity in the EEG of SCZ, which was verified by Murphy
and Öngür (2019). Newson and Thiagarajan (2019) reviewed
various EEG studies of SCZ to point that SCZ had increased
power in δ and θ bands and decreased power in α band, which
was highly consistent with the findings of this paper.
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FIGURE 4 | The power spectra were analyzed in HC, and in patients with SCZ, and AD, respectively, together with extracted power spectral density ratios of
different brain regions. (A) Comparison of power spectrum. (B) Distribution of different power spectral densities ratio.

The results from brain network attributes were different
from those from non-network attributes (power spectra),
suggesting the feasibility of exploring potential biomarkers
between patients and HC using brain network attributes.
A study combining brain network attributes and classification

has been extensively explored. Jo et al. (2020) used the
network attributes obtained from resting-state MRI data of
SCZ and HC to classify by machine learning and verified
that SCZ has impaired connectivity in the frontal–temporal–
parietal regions.
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FIGURE 5 | PS, δ, θ, α, β1, β2, MN, and IMN are used to classify by ELTS
between the data of HC and SC. To verify the feasibility and generalizability, it
was also applied to the data of AD patients and SCZ.

The results of the proposed framework applied to the
data of SCZ and AD patients estimated that the highest
classification accuracy obtained by PS was 80.62%, and the
highest classification accuracy of all singe-layer networks
and multilayer networks was 88.12% (IMN). It means more
generalizability of IMN–Filter–ELTS in diseases or between
diseases where the difference in α band is not significant enough.
Danjou et al. (2019) proposed that the variability in β and γ

bands was more obvious in EEG of SCZ compared to EEG of
AD patients during reviews of electrophysiological assessments
between patients with SCZ and AD, which was in accordance with
the findings of this paper.

The proposed framework is the classical “feature engineering
+ machine learning”; however, nowadays it is popular for “end-
to-end” (Zeng et al., 2018). In contrast to those frameworks
for “end-to-end,” “feature engineering + machine learning” can
reflect the validity of features extracted through classification,
which is exactly necessary to verify the importance of brain
networks. In addition, since there are various features, it is
no promise that the classification accuracy of a combination
of multiple features can be higher than the single one. Hou
et al. (2019) proposed a safe classifier that incorporates the
idea of “ ensemble learning,” which can solve this type of
issue by combining multiple classical classifiers and different
features. In this paper, the proposed classification also used
an ensemble learning method based on three tree models
comprising of RF, LGBM, and GBST by Soft voting method,
which has a higher accuracy compared with RF, LGBM, and
GBST. Furthermore, the study about improved classifiers will
always be in progress.

The IMN–Filter–ELTS can be applied to the data between
different diseases where the difference in α band is not significant
enough, but it is also a challenge for the study of brain
network attributes between different diseases with significant α

band. It will be explored during pre-processing of EEG signals,
functional connectivity of brain network, network attributes of
brain network, classifier of different features, and other areas to
solve this issue.

CONCLUSION

In this paper, PLV is applied to construct the brain functional
network of the resting-state EEG signals. The degree, local
clustering coefficient, local efficiency, connection robustness, and
the topology of the multilayer network constructed based on
different bands are analyzed by statistical methods in the brain
functional network. Moreover, the network attributes of both
SCZ and HC are classified by ELTS.

Findings of brain network attributes implied that several
significant differences exist between SCZ and HC, and machine
learning can be used to appropriately classify patients with mental
illness and HC as well as patients with different mental illness.
Furthermore, the results of validating the proposed framework
by data from AD suggest the generalizability of multilayer
network attributes. It indicates that the multilayer network can
be extended to diseases or disorders with insignificant differences
in the α band, which has great research significance for the
classification of a psychiatric patient.
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