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Virtual reality environments offer great opportunities to study the performance of brain-
computer interfaces (BCIs) in real-world contexts. As real-world stimuli are typically
multimodal, their neuronal integration elicits complex response patterns. To investigate
the effect of additional auditory cues on the processing of visual information, we
used virtual reality to mimic safety-related events in an industrial environment while
we concomitantly recorded electroencephalography (EEG) signals. We simulated a box
traveling on a conveyor belt system where two types of stimuli – an exploding and
a burning box – interrupt regular operation. The recordings from 16 subjects were
divided into two subsets, a visual-only and an audio-visual experiment. In the visual-only
experiment, the response patterns for both stimuli elicited a similar pattern – a visual
evoked potential (VEP) followed by an event-related potential (ERP) over the occipital-
parietal lobe. Moreover, we found the perceived severity of the event to be reflected in
the signal amplitude. Interestingly, the additional auditory cues had a twofold effect on
the previous findings: The P1 component was significantly suppressed in the case of the
exploding box stimulus, whereas the N2c showed an enhancement for the burning box
stimulus. This result highlights the impact of multisensory integration on the performance
of realistic BCI applications. Indeed, we observed alterations in the offline classification
accuracy for a detection task based on a mixed feature extraction (variance, power
spectral density, and discrete wavelet transform) and a support vector machine classifier.
In the case of the explosion, the accuracy slightly decreased by –1.64% p. in an audio-
visual experiment compared to the visual-only. Contrarily, the classification accuracy for
the burning box increased by 5.58% p. when additional auditory cues were present.
Hence, we conclude, that especially in challenging detection tasks, it is favorable to
consider the potential of multisensory integration when BCIs are supposed to operate
under (multimodal) real-world conditions.

Keywords: brain computer interface, event-related potential (ERP), combinational audio-visual stimulus, visual
evoked potential (VEP), virtual reality, support vector machine (SVM)
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INTRODUCTION

Neuroscientists aim to understand the human brain by
deciphering neuronal signals due to different tasks and stimuli
(Adrian and Yamagiwa, 1935; Gross, 1999; Finger, 2001; Strotzer,
2009). Although there are other techniques, most research
up to date is based on non-invasive electroencephalography
(EEG) recordings, where the electrical activity across the scalp
is monitored using distributed electrode arrays (Adrian and
Yamagiwa, 1935; Homan et al., 1987; Cincotti et al., 2008; Nicolas-
Alonso and Gomez-Gil, 2012). In the past, extensive research
focused on unraveling basic neuronal patterns in response
to different isolated conditions (Adrian and Yamagiwa, 1935;
Penfield and Evans, 1935; Davis et al., 1939; Davis, 1939; Hill,
1958). Thus, an extensive collection of experimental paradigms
that evoke specific responses – e.g., event-related potentials
(ERPs), steady-state visually evoked potentials (SSVEPs), and
motor imaginary related activity, among others – has been
established (Ritter et al., 1979; Lines et al., 1984; Alho et al.,
1994; Creel, 1995; Comerchero and Polich, 1999; Stige et al.,
2007; Sur and Sinha, 2009). Nowadays, applied neuroscientists
and engineers use these stimuli–response relations to design
brain-computer interfaces (BCIs) that can automatically read out
and analyze signals for a specific task. For instance, the P300-
speller, a brain-controlled wheelchair, and a brain-controlled
prosthetic arm are common BCI applications in the medical
context (Rebsamen et al., 2010; Belitski et al., 2011; Nicolas-
Alonso and Gomez-Gil, 2012; Abdulkader et al., 2015; Bright
et al., 2016). Furthermore, recent technological improvements
enable EEG recordings not only under “clean” laboratory
conditions but also in natural environments via portable EEG
devices. Hence, there is considerable interest in translating BCI
applications into more complex real-world settings (Zander and
Kothe, 2011). However, in such scenarios, the performance of
BCIs and their discriminatory power are drastically affected
by interfering signals and physiological artifacts (Fatourechi
et al., 2007; Zander et al., 2010; Minguillon et al., 2017). Here,
a combined read-out of multiple cues and/or measurement
modalities – a so-called hybrid BCI (hBCI) – addresses this
issue by providing an enlarged dataset for classification (Allison
et al., 2010; Pfurtscheller et al., 2010; Leeb et al., 2011; Amiri
et al., 2013; Yin et al., 2015; Hong and Khan, 2017). For
instance, ERPs were combined with motor or mental tasks to
design multiple-cue hBCIs (Hong and Khan, 2017). Additionally,
parallel recordings from EEG and electrooculography (EOG) or
functional near-infrared spectroscopy (fNIRS) were reported to
improve performance (Amiri et al., 2013; Hong and Khan, 2017).
Consequently, hBCIs offer great potential in various fields, e.g., in
diagnostics, rehabilitation, machine control, entertainment, and
safety (Allison et al., 2010; Blankertz et al., 2010; Brumberg et al.,
2010; Nicolas-Alonso and Gomez-Gil, 2012; Hong and Khan,
2017). Another promising area of application is in the context of
industry 4.0, where the aim is to operate factories most efficiently
by fusing data streams and monitoring all relevant processes
digitally (Douibi et al., 2021).

However, the affiliated classification tasks will be very
challenging in most real-world cases depending on the paradigm

and the interfering background signals. Although novel machine
learning approaches help to find common patterns, they
rely on massive amounts of input data. Here, virtual reality
technology (VR) can help to gather consistent training data
by simulating natural environments (Holper et al., 2010; Kober
and Neuper, 2012; Lotte et al., 2012; Tauscher et al., 2019;
Vourvopoulos et al., 2019; Marucci et al., 2021). It has been
shown that VR enhances the feeling of presence and provides
a real-world experience that keeps the subject more engaged
(Kober and Neuper, 2012; Marucci et al., 2021). So far, most
EEG-VR studies focused on 3D visual cues, disregarding the
effect of simultaneous visual and acoustic stimuli in realistic
situations. Previous studies on multimodal audio-visual cues,
(Marucci et al., 2021) revealed that the simultaneous neuronal
processing of vision and sound is strongly dependent on the
exact experiment, determined by the nature, strength, and
synchronicity of the stimulus.

This work aims to reveal the effect of additional auditory
cues on visually-evoked ERPs within a complex naturalistic
scene. To this end, we created an industrial VR environment
and designed two visual stimuli that are different in the
degree of event severity and stimulus strength. In our
experiment, the subject’s vision is a conveyor belt-based
industrial warehouse, where packages are carried along a
unilateral path during regular operation. However, as we target
safety applications, in some instances, the regular operation
is interrupted by either an exploding or an igniting/burning
box.

Since both naturalistic stimuli are visually complex, we first
investigate the neuronal response to such visual stimuli and study
the effect of perceived severity. Then, we compare our previous
findings (visual-only) to a set of experiments, where additional
auditory cues match the subject’s vision (audio-visual). Lastly,
we apply three basic feature extraction methods – variance-,
power-spectral-density- and discrete-wavelet-transform-based –
to evaluate the effect of additional auditory cues on the
classification performance by using a support vector machine
(SVM) classifier. Throughout the study, we focused on hardware
(24-channel portable EEG) and processing methods suitable for
real-world applications.

MATERIALS AND METHODS

Participants
Eighteen subjects (7 females, 11 males) with a mean age of
26 ± 3.4 years participated in this study. Nine subjects were
recorded in a visual-only experiment, and nine participated
in an audio-visual experiment. To avoid interferences and
adaptation, each participant took part only in one of the two
experiments. All subjects had normal or corrected to normal
vision, normal hearing, no history of neurological diseases,
and no previous experience with BCIs or/and EEG recordings.
Subjects that exhibited a skin-to-electrode impedance above
10 kOhm across the parietal-occiptal lobe electrodes were not
considered for further analysis. The study was approved by the
Ethics Commission of the Technical University of Munich.

Frontiers in Human Neuroscience | www.frontiersin.org 2 June 2022 | Volume 16 | Article 809293

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-809293 June 1, 2022 Time: 11:6 # 3

Al Boustani et al. Influence of Auditory Cues on Visual Stimulus

Experimental Setup
The experiments were conducted in a quiet room with a mean
sound pressure level (SPL) of 32.1 ± 2.1 dBA (measured
with a precision sound analyzer Nor140, Norsonic-Tippkemper
GmbH). All subjects were seated comfortably in an idle state in
front of a keyboard, see Figure 1A. The visual scene and stimuli
were designed with Blender v2.81 (The Blender Foundation) and
Unity 2018 (Unity Software Inc.) and displayed via an HTC
Cosmos virtual reality headset (90 FPS). In the case of an audio-
visual experiment, the subjects were facing an active loudspeaker
(8020C, GENELEC) placed at a distance of 1 m in front of the
subject, as shown in Figure 1A.

All experiments were recorded using a portable 24-channel
EEG system (SMARTING, mbraintrain, Serbia) with a sampling
frequency of 250 Hz. The EEG was equipped with passive
Ag/AgCl electrodes from EASYCAP (Herrsching, Germany), and
a chloride-based electrogel was used (Abralyt HiCl, EASYCAP) to
achieve impedance below 10 k�. The system featured a reference
electrode (common mode sense, CMS) at FCz and a driven right
leg electrode (DRL) at Fpz. All electrode locations follow the
10–20 system (see Figure 1B) and mainly covered occipital and
parietal areas. The electrodes at Fp1 and Fp2 were considered to
account for artifacts from eye movements.

Markers that indicate the onset of an (audio-) visual event
were streamed from Unity using the lab-streaming layer for Unity
asset (LSL4UNITY). Furthermore, all streams were recorded and
synchronized using the SMARTING built-in streamer v3.3 for the
lab-streaming layer. The data was further processed and analyzed
via Matlab (Matlab and Statistics Toolbox Release 2020b, The
MathWorks, Inc) combined with the toolboxes EEGlab (Delorme
and Makeig, 2004) and fieldtrip (Oostenveld et al., 2011).

Experimental Procedure and Stimulus
Design
The study was divided into a visual-only and an audio-visual
experiment containing additional auditory cues that matched the
visual scene. In both experiments, the stimuli were simulated at
the same positions in space and time during the trial. Moreover,
the sequence of trials was the same for all subjects.

Each experiment (see Figure 2A) consisted of 8 blocks with a
break of variable duration in between. Each block contained 30

FIGURE 1 | Experimental setup (A) Experimental environment. The subject
wears a VR lens and is sitting in front of the keyboard and the loudspeaker.
(B) EEG electrode distribution over the scalp following the 10–20 System.

FIGURE 2 | Experimental design and visual scene. (A) The experiment was
divided into eight blocks of 4 min-recordings. In between, a subject-controlled
break was implemented. The total duration of an experiment ranged from 27
to 37 min. (B) Each block consisted of 30 trials, either stimulus or control, with
a duration of 6 s per trial. Within that period, the box traveled along the
conveyor belt, as shown in panel (C). A short break in between trials (between
disappearance at iv and entering of a new box at i) of 1.3–2 s was
implemented as visual rest time. (C) Visual scenery of the experiment. First,
the box appears at the right part in the subject’s view (i) to subsequently move
along the conveyor-belt pathway. At position (ii), the box is subject to either an
explosion or ignition event (see Supplementary Material), each occurring
with a probability of 15%. As the regular or ignited box travels, it reaches a
junction with a manual separator, where the participant is supposed to discard
the burning box and let all regular boxes pass. Exit points (iv) burning box and
(v) regular box represent the spatio-temporal locations where the box
disappears and the trial ends.

trials with a fixed duration of 6 s per trial, as shown in Figure 2B.
In general, three different conditions for the box’s pathway were
implemented – either the box exploded (a), the box ignited and
kept on burning (b), or the box traveled unperturbed along the
pathway (c). Regardless of the trial condition, the box initially
appeared in the center of the conveyor belt in the right part of
the subject’s field of view (see (i), Figure 2C). Then, the box kept
traveling along the conveyor belt for 2 s until it reached point (ii)
in Figure 2C, where the safety-relevant events occurred with a
probability of 33% (equal probability for either a burning or an
exploding box) following the oddball paradigm. This probability
ultimately leads to 40 stimulus trials for an exploding and 40
stimulus trials for a burning box.

The participants were told to stay seated with a visual point of
view, as shown in Figure 2C. When a box appeared at point (i),
the participant was instructed to track the box along the conveyor
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belt visually. Moreover, a short break in between trials (between
disappearance at iv and entering of a new box at i) of 1.3–2 s was
implemented as visual rest time.

The deviating stimuli were designed to mimic real-world
scenarios, consisting of different visual characteristics (e.g., a light
flash, change in size and shape). For instance, the explosion (see
the video in the Supplementary Material) combined a sudden
rapid change in light intensity, a swiftly propagating spherical
light wave, and a disappearing flying box that occupies the entire
field of view. Contrarily, in case of ignition (see the video in the
Supplementary Material), the box emitted flames of fire from the
center of the box. Compared to the explosion, the ignition only
partially affected the scenery and started with a slower change
in light intensity. While the box was traveling, the fire intensity
increased until a steady state was reached.

For the burning and the control condition, the boxes were
traveling past position (ii) in Figure 2C to reach the manual
separator at location (iii) after 1 s. There, the subject had to
manually discard the burning box toward the waste container
at location (iv) by pressing the right arrow key on the keyboard.
A regular box was directed to the exit (v) by pressing the up arrow
key. Depending on the discarding speed, the trial duration was
∼6 s. Then, the subsequent trial started 1.3–1.5 s after the box
had exited the scene at locations (iv) or (v).

In an audio-visual experiment, sounds matching the
visual impressions were selected from an open-source library
(freesound.org, see Supplementary Material). The sound source
was attached to the traveling box in the virtual scene. However,
reverberations usually stemming from walls were disabled in
order to keep the acoustic scene simple. Before each experiment,
the loudspeaker was adjusted to match a maximum sound level of
67± 0.5 dBA for the explosion and 55± 0.3 dBA for the burning
box sound, respectively. Both sounds featured fast increasing and
slowly decaying characteristics (see Supplementary Material).
In the case of the burning box, the auditory cue was displayed
at a constant level of 50 dBA SPL as long as the box traveled.
Additionally, background noise was added to mimic a conveyor
belt sound (42± 0.1 dBA).

Signal Processing
Eight out of the nine subjects per condition were considered
while one of each group was excluded for hardware issues. The
following signal processing pipeline is depicted in Figure 3.
First, bad channels due to non-working electrodes were excluded.
Thus, all non-working electrode were removed consistently
for all participants. Then, notch filters with 50 and 100 Hz
cutoff frequencies were applied to remove line noise and its
second harmonic. Similar to other work, (Rozenkrants and
Polich, 2008; Wang C. et al., 2012; Putze et al., 2014; Tidoni
et al., 2014; Chang, 2018; Guo et al., 2019) the signal was
subsequently bandpass-filtered using a low-pass FIR filter with
a cutoff frequency of 40 Hz and a high-pass FIR filter with
a cutoff frequency of 0.5 Hz. Consequently, all frequencies
outside the narrow frequency band, such as slow drifts and high-
frequency artifacts, were attenuated (Nicolas-Alonso and Gomez-
Gil, 2012; de Cheveigné and Nelken, 2019). A re-referencing
step was omitted due to the low number of channels and their

FIGURE 3 | Pre-processing pipeline. The pre-processing maximizes the
signal-to-noise ratio by removing bad channels and filtering the signal to a
narrow frequency band. Subsequently, the signal is segmented into epochs
according to markers sent from Unity. Next, the trials are visually inspected
after a local baseline correction and ocular and muscle artifacts are removed
via trial-based ICA. Here, high variance and/or kurtosis trials were rejected
from further consideration. Then, subject-specific and global averages were
computed based on a trial subset.

heterogeneous distribution across the scalp (see Supplementary
Figure 1). After the filter stage, the recordings were segmented
into epochs according to the respective markers sent from Unity
at the onset of the stimulus (position (ii) in Figures 2B,C).
This segmentation resulted in a structural dataset containing
all epochs ranging from t(ii) –0.5s ≤ t ≤ t(ii) + 1s for all
three conditions, explosion (a), burning box (b), and control (c).
A local baseline subtraction based on the mean signal before
the onset accounted for offset differences. Then, an independent
component analysis (ICA) was applied using the logistic infomax
approach provided by the fieldtrip toolbox to decompose the
signal (Donchin, 1966; Oostenveld et al., 2011; Chang, 2018).
Subsequently, the independent components that stem from
artifacts such as eye blinking and eye movement, electrode-
pops, and muscle movements were visually rejected (Xue et al.,
2006; Zhang et al., 2017). Here, the rejected independent
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component frequency spectrum and the mixing topographical
matrix was inspected to decide which component was identified
as an artifact. Lastly, a visual trial rejection removed trials that
significantly deviated from the ensemble in terms of variance
and/or kurtosis (Oostenveld et al., 2011). In general, the signal
processing pipeline was established to maximize the signal-to-
noise ratio and, at the same time, to avoid large signal distortions
by amplification or attenuation.

In order to be consistent, subject-specific averages were
computed based on 38 out of 40 stimulus trials per subject.
Similarly, 38 control trials per subject were randomly selected out
of 200 trials. Finally, the global responses shown in the results
section were calculated as mean and standard deviation based
on the subject-specific characteristics. Hence, the global average
indicates the mean neuronal response of the population, whereas
the standard deviation visualizes the variability between subjects.
Finally, the average control condition was computed based on a
random selection of 304 out of 1500 possible trials.

Finally, a statistical analysis on the difference between visual-
only vs. audio-visual experiments was performed using a Welch’s
t-test with a 5% significance level. The evaluation is based on
the maximum (P1, P3b) and minimum (N2c) for each subject’s
average (channel O2) and there latencies. The t-test assumes that
both ensembles are sampled from a normally distributed dataset
with unequal variance.

Feature Extraction and Offline
Classification
In order to assess the influence of additional auditory cues on the
classification performance, different feature extraction methods,
see Figure 4, – based on the variance (VAR), the power at
a specific frequency band (PSD), and specific time-frequency
characteristics acquired by a discrete wavelet transform (DWT) –
are compared using a SVM classifier. The task of the SVM
classifier was to detect the safety-relevant event – explosion (a)
or ignition (b) – compared to the control condition (c), where
the box was regularly traveling the pathway.

The feature extraction methods were evaluated based on the
same dataset that was used for averaging. The feature vectors were
computed based on channels covering the parietal and occipital
lobe, namely PO3, PO4, PO8, O2, Pz, P3, P4, CPz, CP1, CP2, and
Cz. Unfortunately, the channels O1 and PO7 had to be excluded
due to inconsistency across subjects. The three methods were
applied to the previously selected epochs for averaging with yet
a smaller timeframe ranging between t(ii) ≤ t ≤ t(ii) + 660 ms.
Each feature extraction method resulted in a dataset of feature
vectors, as described in the following. The VAR method computes
the variance in four different windows that have been chosen to
capture the specific characteristics of the response signal, leading
to a 44-element (4 values per channel, 11 channels) feature
vector per trial. The first window evaluates the entire epoch
from 0 ms ≤ t ≤ 660 ms, whereas the other windows split the
entire interval into three successive segments of 220 ms without
any overlap. Thereby, the VAR method is supposed to extract
information of the entire signal and the variance of early and
late potential fluctuations. The PSD feature vector of the trial

FIGURE 4 | Feature extraction and classification pipeline. A subset of
channels (PO3, PO4, PO8, O2, Pz, P3, P4, CPz, CP1, CP2, and Cz) was
selected to compute features based on variance (VAR), power spectral
density (PSD), and the discrete wavelet transform (DWT). Each feature vector
was fed to an individual SVM classifier with a linear kernel. The respective
vectors were normalized between –1 and 1 and concatenated to be
subsequently fed into another SVM model with a linear kernel to investigate
different combinations of feature vectors.

was computed using the Welch-method from Matlab. Since we
expect stimulus-related frequency information between 1 and
30 Hz,38 all other frequencies outside this window were removed,
leading to a vector of length 275 (25 frequency components per
channel). The third feature extraction approach, DWT relied
on a Matlab discrete wavelet transform decomposition method
(Bostanov, 2004; Amin et al., 2015; Cheong et al., 2015; Yahya
et al., 2019). In particular, a 3-level decomposition (mother
wavelet db8, window size 660 ms) was used to separate the
signal in an approximate coefficient vector that extracts low-
frequency information and a detail coefficient vector including
the high-frequency components. The DWT vector had a length
of 341 (31 approximate features per trial). The considered
features were normalized and concatenated into a single vector
to investigate different feature vector combinations amongst the
three approaches. Here, e.g., in the case of the combined VAR-
PSD-DWT feature, the vector had a length of 660 elements
and ranges between –1 and 1. Subsequently, the feature vectors
were individually fed to a support vector machine classifier with
a linear kernel to investigate the different extraction methods
(Oskoei et al., 2009; Putze et al., 2014; Li et al., 2018). Here, k-fold
cross-validation (k = 10, 80% training data, 20% testing data)
was applied to subject-independent input data stemming from a
random selection across the entire dataset. To calculate subject-
specific results, an individual SVM classifier for each subject was
trained on the combined VAR-PSD-DWT data. Here, similar trial
selection and k-fold cross-validation approaches were used as
mentioned earlier.

Finally, a statistical analysis on the difference between visual-
only vs. audio-visual k-folds classification results was performed
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using a Welch’s t-test with a 5% significance level. The evaluation
is based on the accuracy performance for all folds. The t-test
assumes that both ensembles are sampled from a normally
distributed dataset with unequal variance.

RESULTS

Combined Visual Stimuli
The explosion and the ignition event are implemented as a
combination of visual effects, see videos in Supplementary
Material. Thus, we first want to study the neuronal response to
such a combinational visual input. For instance, the explosion
was mimicked by an upwards flying box and a bright white
spherical wave starting at the box and rapidly propagating
through space until the entire field of view is filled. Then, the
white flash faded out, the box fell downwards until it disappeared
at the floor, and the scene stayed blurry until all smoke had
vanished. In total, the entire explosion event lasted ∼2 s. Hence,
we expect the explosion event to be a spatio-temporal mix of
different effects leading to an early visually evoked potential
(VEP) induced by the flash at the onset and an event-related
potential (ERP) in response to the change of the visual scenery.
The global responses to the visual-only exploding and burning
box are depicted in Figures 5A,B, respectively.

As visualized in Figure 5A for channel O2, we found
deviations at different time instances in the global average
response for an explosion compared to the control condition.
First, there was a positive rise in amplitude (P1) at O2 in
Figure 5A, which started at stimulus onset and peaked with
11.5 ± 9.9 a.u. at ∼125 ms. Then, a negative dip followed,
beginning at ∼200 ms and peaking at ∼310 ms to –15 ± 6.9
a.u. Subsequently, a smaller positive rise was observed until a
plateau of 4.3 ± 2.8 a.u was reached at ∼430 ms, which decayed
slowly afterward. This finding was robust across trials, as the
trial colormaps for a single subject show in Supplementary
Figure 2. The high standard deviations in the global response,
especially for the first peak P1, were caused by the subjects’
large variability in terms of latency and amplitude, as depicted
in Supplementary Figure 3. The first rise in amplitude for O2
was also present at the entire parietal-occipital lobe, but with
higher amplitude over the primary visual cortex, see topoplots in
Figure 5A and the average response for all channels of a single
subject in Supplementary Figure 4.

In contrast to the explosion, the burning box (see videos in
Supplementary Material) is designed as a progressive rather than
a sudden event. Furthermore, it is modeled as less severe since
the flames gradually evolve originating at the traveling box. The
burning box stimulus was terminated when the box disappeared
in the waste container after discarding. The global response to a
burning box is visualized in Figure 5B. Here, we find a pattern
similar to the explosion – a small P1 between 50 and 100 ms, then
a N2c at∼280 ms, followed by a P3b at∼520 ms.

Additional Acoustic Stimuli
As real-world events naturally lead to a combination of visual and
auditory cues, we further investigated the influence of additional

sounds that match the visual experience in the experiment. To
this end, background noise (42 dBA SPL) related to the running
conveyor belt was implemented. Furthermore, the explosion and
the burning box events were synchronized with suitable audio
signals (sounds see Supplementary Material). Here, we complied
with the hierarchical approach and implemented different
loudness levels for the explosion and the burning box event. The
explosion audio signal had a peak level of ∼65 dBA and faded
slowly toward the conveyor belt noise floor, correlating with the
visual impression. The burning box audio stimulus consisted of
a transient signal (lighting a match) that reached a steady state
of 50 dBA (fire) until the subject discarded the box. Apart from
the additional sound, the experiment was the same as previously
described. The global responses to the audio-visual exploding and
burning box are depicted in Figures 5C,D, respectively.

In case of an explosion, five characteristic fluctuations at O2
are visible: a positive peak with ∼4 a.u. between 70 and 140 ms
(P1), two small-amplitude peaks around 220 ms, followed by a
prominent negative peak with −13.0 ± 7.1 a.u. at 320 ms (N2c),
and a subsequent positive peak with 7.4 ± 5.2 a.u. at ∼530 ms
(P3b). The global response to a burning box with additional
auditory cues is shown in Figure 5D. Here, three peaks, P1 with
2.6 ± 2.1 a.u. at ∼80 ms, N2c with –4.4 ± 3.9 a.u. at ∼330 ms
and P3b with 4.9 ± 2.0 a.u. at 550 ms are visible, similar to the
fluctuations in Figure 5B.

Offline Classification
Since experiments based on virtual reality nowadays offer a great
tool to study the applicability of BCIs, we lastly investigate the
detectability of events based on visual-only and audio-visual
input. This is particularly interesting, as real-world training
data is not always easily accessible – especially if the event is
rare and/or severe. Moreover, the implementation of multiple
modalities in VR settings can be challenging as well. Thus, we
aim to evaluate if the classifier that uses bimodal training data
is outperforming the classifier based on unimodal input only.
To this end, we tested different feature extraction methods –
variance-based (VAR), power-spectral density-based (PSD), and
discrete-wavelet-transform based – and performed an offline
classification using support vector machines on a subject-
independent dataset. Here, all subjects’ data was merged to
randomly select training and cross-validation trials afterward.
The VAR method calculates the variance of four different
windows containing the response in the P1-, the N2c- and the
P3b-part, and the entire epoch as shown in Figure 5. The PSD
method analyzes the power within the frequency band of 1–
30 Hz. In the DWT method, we used a Daubechies mother
wavelet to decompose the signal. Additionally, all three methods
were combined by concatenation into a single feature vector
(DVP) and assessed. The performance of the methods was
evaluated with three indicators: (i) the average accuracy across
folds indicating the overall model performance, (ii) the average
specificity indicating the model performance toward detecting
the control condition, and (iii) the average sensitivity that
represents the model performance toward detecting the stimulus.
The offline detection results are shown in Table 1.
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FIGURE 5 | Stimulus-response to complex audio-visual stimuli. All four temporal plots represent the EEG response at the occipital channel O2. The temporal signals
are shown as the global average across eight subjects. The standard deviation indicates the variability between the subject-specific average responses. The
topoplots represent the global average amplitude distribution across the scalp at three different time points (120, 320, and 540 ms), indicating P1, N2c, and P3b.
(A) Response to an explosion in a visual-only experiment. (B) Response to a burning box in a visual-only experiment. (C) Response to an explosion in an audio-visual
experiment. (D) Response to a burning box in an audio-visual experiment. Note the different y-scale for the exploding and the burning box in the temporal plots.

TABLE 1 | Classification results for the subject-independent dataset.

Exploding box Burning box

Visual-only Audio-visual Visual-only Audio-visual

Variance method (VAR) accuracy/% 86.18 87.09 74.01 76.89

specificity/% 86.5 89.08 79.85 79.27

sensitivity/% 86.09 85.40 68.39 76.3

Power-spectral density method (PSD) accuracy/% 82.16 85.58 67.56 76.42

specificity/% 83.90 87.58 72.6 80.47

sensitivity/% 80.83 83.02 61.91 72.6

Discrete wavelet transform method (DWT) accuracy/% 91.16 90.82 78.45 78.73

specificity/% 90.07 92.36 78.65 79.55

sensitivity/% 91.70 89.7 79.46 78.66

Feature Fusion Method (DVP) accuracy/% 94.56 92.92 80.78 86.36

specificity/% 96.10 94.25 84.22 89.47

sensitivity/% 92.84 91.71 78.32 84.25

A support vector machine with a linear kernel was used to detect either the exploding or the burning box with respect to the control condition. The results are provided
as mean across 10 folds. The Bold values represent the highest achieved accuracy.
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DISCUSSION

In the following, we will first discuss the neuronal activity in
response to the combinational visual stimuli of an explosion and
burning box (see Section “Combined Visual Stimuli”). Afterward,
the changes in neuronal activity for experiments with additional
auditory cues are presented in Section “Additional Acoustic
Stimuli”. Focusing on an industrial BCI application, we lastly
compare in Section “Offline Classification” the detectability of an
explosion or ignition event based on different feature extraction
methods using a support vector machine classifier.

Combined Visual Stimuli
For the explosion box stimulus, we assign this first response P1
to a VEP stemming from a sudden change in light intensity
(Connolly and Gruzelier, 1982; Lines et al., 1984; Creel, 1995;
Kazai and Yagi, 2003; Sharma et al., 2015; Guo et al., 2019).
Further, we associate the negative peak at ∼310 ms with the
N2c component of an ERP-response, as it is distributed across
the occipital/posterior region (see Supplementary Figure 4A).
The N2c component is generally related to visual attention and
the processing of stimulus characteristics, which aligns with our
expectations of an early primary reaction (P1) and a later activity
that reflects the interpretation of the visual scene (N2c and
further peaks) (Ritter et al., 1979, 1982; Folstein and Petten,
2008). Lastly, we identify the positive response at ∼430 ms to be
a late P300 signal being evoked by the oddball paradigm. Here,
the processing in the visual cortex leads to a delayed response,
called P3b, which is usually observed after an N2c component
(Comerchero and Polich, 1999; Stige et al., 2007). Consistent with
other published work, (Katayama and Polich, 1998; Comerchero
and Polich, 1999; Stige et al., 2007; Folstein and Petten, 2008)
we observed the P3b component to be higher in the posterior
region than in the anterior region of the brain, see topoplots in
Figure 5A and Supplementary Figure 4A as well.

In the burning box stimulus, the absolute amplitudes are
notably reduced to a range of approx.± 5 a.u., reflecting the lower
degree of severity and/or lower attention accumulation compared
to the explosion. Interestingly, the P1 amplitude for the burning
box was in the same range as its N2c-P3b complex, which is
in stark contrast to the explosion stimulus, where the P1 was
significantly higher than the P3b. This difference might be firstly
explained by the gradual increase of fire, secondly by its bounded
extent, and thirdly by the red-orange color scheme of the fire
animation compared to a full-screen white flash for the explosion.

The high standard deviations for both global responses can be
explained by significant differences in amplitude and – even more
critical – latencies across individual subjects (see Supplementary
Figures 3A,B). Here, the response variation might also be
affected by adaptation and/or the subjects’ engagement and
focus throughout the experiment. In summary, we observed a
similar neuronal activity – a combination of an early visually
evoked potential (P1) and a delayed event-related potential
(N2c-P3b complex) – in response to our virtual explosion and
burning stimuli. Here, the degree of severity is reflected in
the signal amplitudes, leading to a generally reduced response
for the burning box compared to the explosion. Both events,
however, showed clearly differentiable global average responses

compared to the control condition where the box simply travels
along the pathway.

Additional Acoustic Stimuli
In case of an explosion, we find the characteristics of N2c and
P3b to be stable, yet their latencies and amplitudes differ (see
Supplementary Figure 5A). Surprisingly, the VEP P1 is reduced
by a factor of ∼3, whereas the N2c component is similar in
amplitude. The P3b component is delayed by ∼70 ms and
increased by a factor of ∼2. Consequently, the additional sound
had two effects, the primary visual cue is drastically suppressed,
and the ERP components are robust (N2c) or enhanced and
delayed (P3b) compared to the visual-only findings. Whereas
the suppression of the VEP response P1 are suprising, the ERP
enhancement seems plausible, as the additional sound provided
congruent supplementary information to the subjects’ visual
impression. Furthermore, the enhanced N2c signals could also
be attributed to increased attention during the experiment since
participants (that took both experiments in an initial pilot study)
reported the audio-visual experiment to be more engaging in the
burning box stimuli. Lastly, two new fluctuations around 220 ms
appeared in the global averages, see Figure 5C. Therefore, in
line with our hypothesis, the additional small-amplitude peaks
could be interpreted as the N1 and P2 components of a strongly
enhanced ERP and were not caused by the additional auditory
cues. Generally, the N1 and P2 fluctuations of an ERP can be
assigned to sensation-seeking behavior, thus reflecting a stronger
focus of the participants (Sur and Sinha, 2009). A closer look
at the individual responses (Supplementary Figures 5A, 6A)
reveals the presence of N1 and P2 in 6 out of 8 subjects that
participated in an audio-visual experiment. Surprisingly, the
additional P2 is in most cases in the same amplitude range as
the visually evoked P1 (see Supplementary Figure 6A), which
is not visible in the global averages due to latency differences
across subjects. However, we found N1-P2 components also in
the visual-only experiment for some subjects (see Supplementary
Figure 3A), yet with smaller amplitude compared to an audio-
visual experiment. Thus, we conclude that the additional peaks
most probably stem from the ERP, which might be altered in
amplitude by attention, focus, severity, and congruent input.

The global response to a burning box with additional auditory
cues compared to the visual-only experiment, we find the P1
component also to be suppressed by a factor of ∼1.3. However,
the N2c and the P3b components are again enhanced by a
factor of ∼1.25 and 1.5, respectively. Additionally, we also
observed a delayed ERP response. This result is in line with the
previous findings for the explosion. Moreover, large standard
deviations around 300 ms indicate the presence of additional
small-amplitude peaks as well, which is supported by inspecting
the individual responses in Supplementary Figures 5B, 6B.

Statistical analysis based on Welch’s t-tests revealed a
significant amplitude difference in the mean responses for the
P1 (p = 0.0393) in the case of the explosion stimulus, and
further for the N2c (p = 0.0412) in case of a burning box at
channel O2. However, the P3b component for both conditions
did not yield statistical significance as we calculated p = 0.0764,
p = 0.0704 for the exploding box and burning box, respectively.
Moreover, all other differences in amplitude and latencies did
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FIGURE 6 | Differences in classification performance parameters (A) accuracy, (B) specificity, and (C) sensitivity for an audio-visual compared to a visual-only
experiment.

not provide statistical significance, which can be also explained
by the small dataset and large deviations across subjects (see
Supplementary Table 1).

In summary, we noticed two different effects on the neuronal
responses if additional matching auditory cues were present (see
Supplementary Figure 7). Firstly, different levels of severity –
explosion versus burning box – were again visible as differences
in amplitude. Consistently for both stimuli we found the VEP
or primary reaction in the visual cortex to be diminished,
whereas the ERP components N2c and P3b were enhanced by
the sound. Moreover, two other fluctuations, N1-P2, occurred
around 220 ms, which we assign to ERP components prior to the
large-amplitude peaks N2c and P3b.

Based on our observations, we conclude that additional
auditory cues lead to a suppression of the VEP by inhibitory
pathways. This was surprising, as we did not expect the sound
to induce changes in the early processing stages of primary
visual information. However, recent studies shed light on the
complex interplay of the neuronal processing of multisensory
input (Driver and Spence, 2000; Calvert, 2004; Marchant and
Driver, 2013). Indeed, it has been demonstrated that there is
“crosstalk” between modality-specific pathways in the associative
cortex (Calvert, 2001; Hidaka and Ide, 2015) as well as the
primary sensory cortices (Talsma et al., 2007; Senkowski et al.,
2011) leading to an early audio-visual integration (Driver and
Noesselt, 2008; Wang Y. et al., 2008; Iurilli et al., 2012; Ide
and Hidaka, 2013; Hidaka and Ide, 2015). In line with our data,
other groups demonstrated e.g., a decreased fNIRS response
in the visual cortex (Wiggins and Hartley, 2015) as well as
a suppressed visual perception (Hidaka and Ide, 2015) when
sound is presented in a spatially and temporally consistent
manner. However, we did not only observe the suppression of
the primary reaction in the visual cortex (VEP) but also an
enhancement and a delay of the following ERP response for
additional sound. This could be caused due to differences in
the population for both experimental conditions. However, we
experienced the phenomenon on single subjects in pilot studies
to be robust. In fact, various effects – both, facilitatory and
inhibitory – have been reported for multimodal audio-visual
input (Stein et al., 1996; Shams et al., 2005; Hidaka et al., 2009;
Meredith et al., 2009; Romei et al., 2009; Gleiss and Kayser, 2013).

For instance, it was shown that a multimodal (e.g., visual,
acoustic, and tactile) compared to unimodal (visual) stimulation
can lead to a drastic enhancement of the P300 signal. (Wang
W. Y. et al., 2012; Marucci et al., 2021). Interestingly, an
additional delay of the ERP, as visible in our data, was not
explored. One could attribute the ERP delay to originate
from weak inhibition effects that eventually lead to longer
responses (Wang W. Y. et al., 2012). Yet, we found the ERP
responses to be more prominent and robust in the audio-visual
experiment. Thus, we conclude that a multimodal stimulus leads
to an increased certainty about visual perception. Especially
in the case of the burning box, where the unimodal visual
perception is less clear, the additional (informative) sound
supports the understanding and discrimination of the scene
(Stein et al., 1996; Talsma et al., 2007; Senkowski et al., 2011;
Gleiss and Kayser, 2013).

Offline Classification
Last, we investigated the effect of multimodal stimuli on their
classifiability by using offline classification. In this way, we are
able to test different extraction methods in a time effifient manner
and apply our findings to online classification schemes.

As expected, detecting an explosion is less challenging than
detecting a burning box; see absolute values of all criteria in
Table 1, both in a visual-only and in an audio-visual experiment.
Here, we observe significant amplitude differences between the
explosion and the burning box responses. The best single-
method detection performance for both a visual-only and audio-
visual experiment was achieved with the DWT approach (e.g.,
91.16 % for an explosion and 78.45 % for the burning box
in a visual-only experiment). In contrast, PSD and VAR-based
detection performances were substantially lower. This can also be
partially explained by correlations between the mother wavelet
of the DWT and the neuronal response (Samar et al., 1999).
Furthermore, the concatenation of all three feature vectors (DVP)
led to an improvement in both conditions (visual-only and audio-
visual) for both stimuli compared to DWT. Again, this was
partially expected since a larger feature vector can provide more
information to the classifier. In the subject specific classification,
we achieved an average detection accuracy of 96.06 and 79.96 %
for the explosion and burning box, respectively.
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The effect of additional auditory cues on the detectability
based on different features is shown in Figure 6. Here, the
accuracy for the explosion (Figure 6A) improves by 0.91 and
3.42% p. for VAR and PSD, whereas the DWT and DVP-based
performance decreased by –0.34 and –1.64% p., respectively. In
case of the burning box, additional auditory cues lead in all cases
to an improvement, most prominent for the PSD (8.86% p.)
and the combined DVP (5.58% p.). Similarly, the specificity and
sensitivity for the burning box are also increased in all but one
method, if additional auditory cues are present. In case of the
explosion, there is not always an improvement. Mainly if the
extraction method relies on the strong P1-contribution in the
visual-only experiment (VAR, DWT, and DVP), the performance
is slightly decreased in case of additional sound. Similar to
ensemble values, we observed a slightly decreased subject-specific
classification accuracy (based on DVP) of 94.53% for the audio-
visual explosion compared to the visual-only. Again, the burning
box led to opposite results. Here, the accuracy increased to
85.18%.

Statistical analysis based on Welch’s t-tests revealed a
significant classification accuracy difference in case of the burning
box stimulus for the VAR, PSD, and DVP feature extraction
methods (p = 0.0044, p < 0.001, p = 0.0050). Moreover,
the exploding box stimulus classification accuracy did not
yield statistical significance, which can be explained by the
small increase or decrease in performance and the overlapping
standard deviation between folds.

The results for the burning box highlight that multimodal
input can lead to more robust and enhanced ERP patterns
that guarantee an enhanced classification performance. In fact,
future real-world detection tasks will resemble most likely the
burning box-type of situation, where isolated sensory inputs
are less severe, hence, attention-grabbing. Here, the consistent
multisensory experience leads to a stronger attentional shift
and an increased certainty about the (complex) situation.
Consequently, we expect that BCIs trained on multimodal input
will show an enhanced classification performance in real-world
settings compared to BCIs that consider only unimodal input.

CONCLUSION

Within this work, we studied neuronal responses to two
complex stimuli – an exploding box and a burning box –
with different perceived severities. The response consisted of
a strong early VEP component and a smaller delayed ERP
complex in the explosion. The burning box evoked a similar
pattern consisting of a minor VEP component and the following
ERP complex, but significantly smaller amplitudes than the
explosion. Thus, the effect of different severity levels was reflected
in the signal amplitudes. Surprisingly, the effect of additional
auditory input was not consistent for all response components.
Most prominently, for the exploding box, the initial VEP
was significantly suppressed in the audio-visual experiment.
Moreover, we observed additional small-amplitude peaks around
220 ms after stimulus onset, which we attribute to the early
small-scale ERP fluctuations N1 and P2. Hence, we conclude that

congruent multimodal sensory input leads to greater attention
and/or a more confident evaluation of the input data, resulting
in a robust ERP signal.

In summary, experiments in a virtual environment offer great
potential to test the potential of BCIs in different applications.
However, stimuli that mimic real-world situations elicit complex
neuronal patterns that highly depend on the exact stimulus
and environment. As shown in this work, step-by-step VR-EEG
studies provide means to bridge the gap from experiments under
“clean” lab conditions toward specifically tailored BCI systems.
Here, we demonstrated that inhibition and facilitation effects
alter the signal for a combined audio-visual input. Based on a
SVM classifier, we showed an improvement in the detectability of
a bimodal audio-visual stimulus compared to a unimodal visual
input. As real-world experiences are multimodal by nature, the
early integration of multisensory input has a significant impact
on the design of future VR BCI studies.
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