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Relatively little is known regarding the interaction between encoding-related neural
activity and sleep-based memory consolidation. One suggestion is that a function of
encoding-related theta power may be to “tag” memories for subsequent processing
during sleep. This study aimed to extend previous work on the relationships between
sleep spindles, slow oscillation-spindle coupling, and task-related theta activity with a
combined Deese-Roediger-McDermott (DRM) and nap paradigm. This allowed us to
examine the influence of task- and sleep-related oscillatory activity on the recognition
of both encoded list words and associative theme words. Thirty-three participants (29
females, mean age = 23.2 years) learned and recognised DRM lists separated by either a
2 h wake or sleep period. Mixed-effects modelling revealed the sleep condition endorsed
more associative theme words and fewer list words in comparison to the wake group.
Encoding-related theta power was also found to influence sleep spindle density, and this
interaction was predictive of memory outcomes. The influence of encoding-related theta
was specific to sleep spindle density, and did not appear to influence the strength of slow
oscillation-spindle coupling as it relates to memory outcomes. The finding of interactions
between wakeful and sleep oscillatory-related activity in promoting memory and learning
has important implications for theoretical models of sleep-based memory consolidation.

Keywords: EEG, false memory, sleep spindles, theta, encoding, consolidation, generalisation

INTRODUCTION

One proposed function of episodic memory is to store information to allow accurate predictions
about the environment. This is seen in particular through the established role of memory in
influencing future behaviour, as has been shown in the relationship between episodic memory,
long-term planning, and imagination (Hassabis et al., 2007; Szpunar et al., 2013). It should be noted,
however, that consolidation (and the accompanying generation of schemata) must necessarily
rely on both encoded material and encoding processes, although how encoding-related brain
activity may influence consolidation processes has rarely been investigated, at least in terms of
related EEG factors.

Emerging work suggests that encoding-related theta activity is associated with successful
memory consolidation (Sederberg et al., 2003; Hasselmo and Stern, 2014), and that increased theta
activity during learning predicts higher post-learning sleep spindle density (Heib et al., 2015). There
is a body of evidence for a role of encoding theta on memory outcomes: successful recall of encoded
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information has been shown to improve as a function of
pre-stimulus theta amplitude (Guderian et al., 2009; Cohen
et al., 2015; Heib et al., 2015). Similarly, artificially inducing
theta oscillations with transcranial slow oscillation stimulation
during the encoding of information results in better recall
of encoded information (Kirov et al., 2009), and theta power
increases during encoding predict successful consolidation of
episodic memory (Sederberg et al., 2007). Together, this work
suggests that encoding-related neural activity influences memory
consolidation, although the specific relationship between theta
power and neurophysiological aspects of sleep-based memory
consolidation has not been thoroughly investigated. One
perspective is that theta power at encoding may serve a
“tagging” function for subsequent memory processing during
sleep (Heib et al., 2015).

To date, research has largely ignored the role of encoding-
related electrophysiological activity as an influencer of sleep-
based memory consolidation. This study aimed to investigate the
influences of encoding-related theta activity on elements of sleep-
based memory consolidation, such as sleep spindles and slow
oscillation-spindle coupling on both learning and associations
using the DRM paradigm. Theta power was estimated during
the learning phase of the DRM, which was followed by a 2-
h retention period of either typical wakefulness or a nap. It
was predicted that increased theta power at encoding would
result in improved recognition of DRM list words and worsened
performance for associations (i.e., endorsement of critical lures).
It was also hypothesised that greater sleep spindle density
would result in increased veridical memories. We also sought to
replicate the relationship between encoding-related theta activity
and sleep spindles reported by Heib et al. (2015), and to extend
this relationship to determine whether encoding-related theta
interacts with slow oscillation-spindle coupling to influence
memory outcomes.

MATERIALS AND METHODS

Participants
Forty-three participants enquired, with 33 meeting the eligibility
criteria. The final sample consisted of 35 participants between
the ages of 18 and 33 (29 females, mean age = 23.2 years).
Participants were randomly allocated into two groups, with 17
in the wake condition and 18 in the experimental nap condition.
Sample size was determined through a G∗Power calculation (Faul
et al., 2007), which indicated that in order to obtain sufficient
power (0.80) to detect a large effect size (0.80) at a significance
level of 0.05, a sample of 30 participants was recommended
(Diekelmann et al., 2008). All participants were healthy right-
handed adults, who were not taking medication that could
interfere with EEG, had not engaged in recreational drug use in
the 6 months prior and were not diagnosed with a psychiatric or
sleep disorder. The UniSA Human Research Ethics Committee
granted ethics approval for the study, and all participants
provided informed consent prior to participating. Participants
received a $40 honorarium upon completion of the study.

Screening Measures
The PSQI was used to measure self-reported sleep quality in
the month leading up to participation to screen for poor sleep
quality (Buysse et al., 1989; Gobin et al., 2015). Participants with
a score of 5 or above (maximum possible score of 21) were
excluded from participating. The Finders Handedness Survey
(Flanders) was also completed by participants as a self-report
measure of hand preference. Left handers were excluded from
participating to mitigate handedness-related differences in the
EEG (Nicholls et al., 2013).

Electroencephalography
Electroencephalography data were collected using a BrainAmp
BrainCap MR (Brain Products GmbH, Gilching, Germany),
with 32-channel active DC Ag/AgCl electrodes. Electrodes were
arranged according to the international 10-20 system (Gilmore,
1994). Bipolar electrooculogram (EOG) was also recorded, with
electrodes placed 1 cm diagonally from the outer canthus of
each eye. The EEG was sampled at 1000 Hz with impedances for
electrodes kept below 10 k�. The online reference was located
at FCz, and ground was AFz. EEG was continuously recorded
during the DRM tasks, and during the sleep period.

The Deese-Roediger-McDermott
Paradigm
The DRM was used as a semantic memory association task
(Roediger and McDermott, 1995), and was presented using
OpenSesame (Mathôt et al., 2012). Eighteen themed word lists
were used in order to test for memory for specific items as
well as production of the overall gist of the word-lists. The
DRM lists have been reported to elicit associative memories 77%
(mean of every list) of the time (Stadler et al., 1999). Split-half
measurements of the DRM display high internal consistency
(r = 0.80; Stadler et al., 1999).

Each list consisted of 14 study words and 2 critical lure words
(not presented during the learning phase), with the order of
the words during the learning task arranged from most to least
related to the lures (Roediger and McDermott, 1995). To improve
the quality and accuracy of EEG analysis, the first words from
each list were added as a critical lure, in keeping with Beato and
Diez (2011).

The learning phase involved presenting all 14 words from
the 18 experimental study lists in a serial visual presentation
format. Each word was presented for 1250 ms. Each list word
was followed by a blank screen for 250 ms, then a fixation cross
for 500 ms. The learning phase took approximately 20 min.
The recognition phases included the first, fifth, and eighth word
from each presented list and the same words from unrelated
control lists. Two critical lure words were also included for
recognition from each presented list and the control lists (see
Figures 1A,B for a schematic of the learning and recognition
phases, respectively). Unlike the learning phase, the words were
presented pseudo-randomly, to ensure no words from the same
list were presented in succession. The presentation format and
timing in the recognition phase were identical to that used in the
learning phase. Participants responded to the presented words
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FIGURE 1 | Example learning and recognition trials from the DRM paradigm. (A) The learning phase involved viewing lists of related study words. (B) The recognition
phases involved immediate and delayed recognition, which involved the presentation of study words, their respective lures, and control words, to which participants
made a self-paced old/new judgement.

based on whether they thought the words were presented during
the learning phase (old) or not (new). This was performed with
a keyboard press, and these responses allowed for four outcomes
to be calculated for veridical and association memories: (1) hit;
(2) false alarm; (3) miss, and; (4) correct rejection [see Jano et al.
(2021) for more details].

Procedure
Participants arrived at approximately 10:30 a.m. at the UniSA
Cognitive and Systems Neuroscience-Research Hub and
completed screening tools (the Flanders, the PSQI, and a
demographic questionnaire). Participants were asked to reduce
their sleep the night prior to testing by 1 h to ensure participants
experienced adequate sleep pressure for the afternoon nap,
compliance of which was confirmed through self-report.

The EEG cap was then fitted, and participants were seated in
a quiet testing room where the DRM paradigm was completed.
EEG was recorded throughout the DRM task, and participants
were instructed to do their best to commit list words to memory.
Participants also undertook immediate recognition (IR) testing,
in which a sub-list (three items) of each word list was presented
to the participant, including the associative lures from each list.
All conditions of stimuli presentation were consistent with the
encoding phase. The same is true of the delayed recognition
phase, in which the same content as in the immediate recognition
and learning phases was presented in pseudo-randomised order.

Participants were randomly allocated to either the
experimental (sleep), or to the control (wake) group. For
the next 2 h, participants either napped or stayed awake and were
given free time to do quiet study or browse the internet (control;
see Figure 2). The 2-h period was chosen to allow enough time
for one sleep cycle. To align with the post-lunch circadian dip
(Monk, 2005), the nap occurred at approximately 1:00 p.m.

To compensate for sleep inertia (Achermann and Borbély,
1994), all participants were given a break of 1 h following the
nap. Participants then completed the delayed recognition (DR)

phase, which involved presenting the recognition task of the
DRM, which was the same task and stimuli in the IR task, and
participants’ EEG were again recorded. The recognition phase
took approximately 15 min to complete.

DATA ANALYSIS

Deese-Roediger-McDermott Recognition
Accuracy
Participant old/new responses were used to calculate response
accuracy metrics (d’; McNicol, 2005) for both veridical and
associative memories for both IR and DR tasks, as adapted from
signal detection theory (McNicol, 2005). d’ was calculated using
the package Psycho (Makowski, 2018) implemented in R version
3.6.1 (R Core Team, 2021). As per the methods used in Jano et al.
(2021), d’ was calculated (Z-scored hits subtract Z-scored false
alarms) for both list words and associative lures, in order to reflect
our viewpoint that “false memory” measured in the DRM reflects
associative processes, as opposed to memory errors.

Sleep Scoring
An experienced technician followed the guidelines outlined by
the American Academy of Sleep Medicine (AASM; Berry et al.,
2012) to score participants’ sleep recordings in 30 s epochs.
Information regarding total sleep time, sleep onset latency, and
the percentage of time spent in sleep stages N1, N2, S3, and rapid
eye movement (REM) sleep was acquired from this analysis.

Sleep Spindle and Coupling Strength
Detection
Sleep spindles were detected using the YASA toolbox
implemented in MNE-Python (Vallat and Jajcay, 2020).
The EEG signal was filtered between 12 and 16 Hz with a wide
transition bandwidth of 1.5 Hz. The amplitude was calculated
by applying a Hilbert transformation which was then smoothed
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FIGURE 2 | The experimental procedure. Participants were fitted with EEG caps and undertook learning of DRM lists, before being tested for immediate recognition
and, following a sleep/wake retention interval, delayed recognition. Note that both IR and DR periods involved the presentation of associative theme words. Also
note the presence of a misinformation task, which was unrelated to the present analysis.

with a 200 ms moving average. Candidate EEG phenomena
which exceeded calculated thresholds were considered spindles,
where the length of the spindle was determined by the length
of time that absolute sigma power and covariance exceed their
threshold. If the identified event was <0.3 s or >2.5 s, it was
rejected. Slow oscillation-spindle coupling strength was also
detected using the same toolbox, which was based on published
algorithms (Helfrich et al., 2018). Slow oscillations were first
extracted through continuous NREM EEG data and filtered
using a digital phase-true FIR band-pass filter from 0.3 to 2 Hz
with a 0.2 Hz transition band to detect zero crossing events that
were between 0.3 and 1.5 s in length, and that met a 75–500
microvolt criterion. Slow oscillation-spindle coupling was
detected using an event-locked cross frequency coupling metric.
The normalised slow oscillation trough-locked data was filtered
into the slow oscillation component (0.1–1.25 Hz) and extracted
the instantaneous phase angle after applying a Hilbert transform.
The same trials were then filtered between 12 and 16 Hz and
then the instantaneous amplitude from the Hilbert transform
was extracted. For each participant at channel Cz and epoch,
the maximal sleep spindle amplitude and corresponding slow
oscillation phase angle was calculated. The mean resultant vector
length (mean vector length; coupling strength) across all NREM
events was then determined using circular statistics implemented
in the pingouin package (Vallat, 2018). A scale of 0–1 was used
for mean vector length, with 1 indicating that each coupled
spindle occurred at the same phase of the slow oscillation, and 0
indicating that each coupled spindle occurred at a different phase
of the slow oscillation.

Deese-Roediger-McDermott Time
Frequency Analysis
Electroencephalography data were re-referenced to the average
of linked mastoids and bandpass filtered from 1 to 40 Hz.
Independent Component Analysis (fastica) was performed on
EEG data to remove ocular and muscular artefacts. Data were

further cleaned using the autoreject package (Jas et al., 2017).
Spectral activity in the theta range (∼4–7 Hz) was estimated using
a complex Morlet wavelet analysis implemented in MNE-Python
(tfr_morlet). Participants’ theta frequency ranges were adjusted
according to the golden mean algorithm (Klimesch, 2012). Theta
power was estimated from−0 to 1000 ms post-word onset during
the immediate and delayed DRM tasks. Baseline power values in
the pre-stimulus (−200 to 0 ms) window were also measured and
were included in the statistical models to control for pre-stimulus
differences, as recommended by Alday (2019).

Linear Mixed-Effects Models
Linear mixed effects models were constructed using the lme4
package (Bates et al., 2015) in R (R Core Team, 2021) to
assess the interactions between encoding-related theta power
and consolidation-related sleep physiology on the generation
of veridical and association memories. P-values were calculated
through type II Wald tests as implemented in the car package
(Fox, 2011). Visualisation of modelled effects were created
through the effects (Fox et al., 2019) and ggplot2 (Wickham
et al., n.d.) packages. Post hoc testing, when appropriate, was
performed with emmeans (Lenth, 2022), to obtain pairwise
comparisons with Bonferroni-Holm correction applied for
multiple comparisons.

To test hypothesis one (theta power increases at encoding
would lead to an increase in memory for DRM list words and
a decrease in endorsement of associative theme words), we
aimed to predict d’ from task-evoked theta power, condition
(sleep/wake) and memory type (veridical/association), while
controlling for the effects of immediate recognition testing
performance. Models also included mean pre-stimulus theta
power as a scaled covariate in order to control for pre-stimulus
activity (Alday, 2019), and by-channel random intercepts to
account for topographical differences in theta power estimates.
Electrode location across the scalp was also modelled by
specifying sagittality (anterior/central/posterior) and laterality
(left/midline/right) as fixed effects. By-participant random
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intercepts were also specified in each model. More formally, the
LMM equation took the form:

dprimei = β0 + β1thetai∗β2conditioni∗β3typei∗ β4lati∗β5sag+

β6prestimi + β7IRi + subject0i + channel0i + ε,

To explore our second hypothesis (greater sleep spindle
density would result in an increase in memory for DRM list
words), as well as our research questions around the role
of encoding-related theta power as a driver of both sleep
spindle density as well as association of list words across the
retention period, encoding-related theta power, sleep spindle
density and memory type were used as predictors of d’ from
the pre- to post-retention intervals in the sleep condition, once
again, controlling for immediate recognition performance and
encoding for topographical location of electrodes. This LMM
equation took the form:

dprimei = β0 + β1thetai∗β2densityi∗β3typei∗ β4lati∗β5sag+

β6prestimi + β7IRi + subject0i + channel0i + ε,

To test whether encoding-related theta power interacts with
slow oscillation-spindle coupling strength to predict memory
outcomes, we modelled d’ scores across retention period from
theta power at encoding, memory type, slow oscillation-spindle
coupling strength, from participants in the sleep condition.

RESULTS

d’ scores per condition are reported in Table 1. These results
indicate adequate behavioural performance based on SDT
measures. Sleep parameters from the experimental condition are
reported in Table 2; broadly speaking, these values represent that
participants obtained adequate sleep during the nap in order to
provide valid data for subsequent analyses.

Behavioural results indicate a significant relationship between
condition (sleep/wake) and type of memory (list word or
associative lure) in determining memory for list words and
associative lures [χ2(1) = 13.65, p < 0.001], such that associative
lures were recognised with slightly greater accuracy than list
words (see Figure 4A), consistent with classic findings that
“false” memories are better remembered than veridical memories

TABLE 1 | Mean (SD) d’ scores across task, condition, and memory type.

Condition Immediate recognition Delayed recognition

List words Theme words List words Theme words

Sleep 1.58 (0.64) 1.24 (0.37) 1.28 (0.64) 1.28 (0.50)

Wake 1.50 (0.43) 1.22 (0.43) 1.14 (0.44) 1.13 (0.55)

SD, standard deviation.

TABLE 2 | Time spent asleep, sleep spindle, slow oscillation, and spindle\SO
coupling strength as means, standard errors, and ranges.

Sleep parameters Mean (SEM) Range

TST 102.71 (2.00) 77.5–117.5

S1 17.50 (1.85) 2.50–43.00

S2 56.04 (3.37) 22.50–85.00

S3 9.58 (1.95) 0–36

REM 14.33 (1.58) 2.50–39

Spindle density 1.80 (2.49) 0.25–6.83

Slow Oscillation density 10.75 (0.53) 0.38–27.23

SO-spindle coupling strength (ndPAC) 0.22 (0.003) 0.19–0.26

TST, total sleep time; S1, stage 1; S2, stage 2; S3, stage 3; REM, rapid eye
movement; SO, slow oscillation.

(Seamon et al., 2002). Given this, we turn our analyses to
understanding the topographic distribution of theta power, with
frontal theta in particular being noted to play a role in encoding
and related mnemonic processes (Heib et al., 2015). To do this,
LMM was used to predict differences in theta power, accounting
for condition, memory type and including a fixed factor of pre-
stimulus theta power, as well as random effects of subject and
channel. This model took the form:

thetai = β0 + β1conditioni∗β2typei∗ β3lati∗β4sag + β5prestimi+

subject0i + channel0i + ε.

This analysis indicated a significant laterality by condition
interaction [χ2(2) = 15.35, p < 0.001]. Post hoc testing revealed
that, for both wake and sleep conditions and true and false
memory types, midline theta values were higher compared to
both left and right lateralised locations (see Supplementary
Materials); these values are plotted in Figure 3; tables of
estimated marginal means are presented in appendices 1 and
2 in Supplementary Material. Subsequent analyses of the
role of encoding-related theta power therefore focussed on
midline electrodes.

Testing of hypothesis 1 indicated a significant interaction
of theta power at encoding × condition × memory type
interaction in producing memory outcomes, [χ2(1) = 43.81,
p < 0.001], such that midline theta power increases at encoding
resulted in the recognition of fewer list word memories for the
wake condition but greater successful recognition for the sleep
condition. This analysis demonstrated the opposite relationship
for the endorsement of theme words (i.e., associations): relative
theta decreases at encoding led to more endorsement of theme
words and lower recognition of list words in the context of sleep
(see Figure 4B).

Statistical analysis to test hypothesis 2 revealed a significant
interaction between theta power and spindle density in
determining memory for list words and associative lures, such
that theta increases in conjunction with lower spindle density
was associated with an increase in theme word recognition and
a decrease in list word recognition [χ2(1) = 15.51, p < 0.001]
(see Figure 5A). Similarly, we observed a significant interaction
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FIGURE 3 | Theta power differences plotted by scalp region of interest for laterality. Significant effects of condition by laterality are driven by differences between
midline vs. other locations.

FIGURE 4 | Behavioural (A) and power spectral (B) results in determining memory for list words and associative lures. In panel (A) behavioural results indicate a
slight increase in accuracy in the recognition of associative lures across sleep and wake retention intervals. In panel (B) results indicate a complex relationship
between theta power at encoding, memory type, and sleep/wake. Dashed line in (A) indicates chance performance.

between slow oscillation-spindle coupling, memory type and
theta power in determining outcomes [χ2(1) = 7.12, p = 0.008],
such that theta power increases were differentially associated with
memory for list words and lures across coupling strength levels
(see Figure 5B). List word recognition was not modulated as
a function of the interaction between slow oscillation-spindle
coupling and theta power.

DISCUSSION

Here, we examined how encoding-related theta activity
influences memory consolidation across sleep to facilitate
learning and memory. We sought to test the idea that theta
power at encoding would influence recognition of DRM list
and theme words, potentially through the modulation of sleep-
related oscillatory microstructure. To this end, we tested the
relationship between encoding-related theta power and both
sleep spindle density and slow oscillation-spindle coupling
strength. Contrary to the first hypothesis (that relative theta

power increases would lead to an increase in recognition of
list words and a decrease in endorsement of associative theme
words) we note an effect of midline theta decreases which
differentially impacted memory between the wake and sleep
conditions: wake resulted in improved recognition of list words
and a decrease in endorsement of associative lures, both of
which were tracked by encoding-related theta. Sleep was related
to a decrease in recognition of list words and an increase in
theme word endorsement, both linked to midline theta power
decreases. This suggests that midline theta at encoding relates
to both memory for experienced episodes and the association
thereof and that this is differentially modulated by sleep and
wake. As such, our results expand previous work on the role
of encoding-related brain activity and how it may relate to
sleep-based consolidation mechanisms.

Theta power during the encoding of information appears
to play an important role in subsequent memory outcomes
(Sederberg et al., 2003; Hasselmo and Stern, 2014). Our results
indicate that theta power decreases at encoding differentially
effects both recognition of previously seen, as well as gist
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FIGURE 5 | Relationships between sleep microstate variables and memory for list words and associative lures. (A) Interaction between theta power at encoding
(x-axis), memory type (association in blue, veridical in grey), and sleep spindle density (facets) in predicting d’ (y-axis); (B) Interaction between theta power at
encoding (x-axis), memory type (association in blue, veridical in grey), and sleep spindle-slow oscillation coupling strength (facets) in predicting d’ performance
(y-axis). Ribbons indicate the 83% confidence interval.

memories, and has differential effects as a function of wake vs.
sleep. These results are conceptually similar, but directionally
different to those published in previous EEG studies, which
have found that theta power increases, not decreases, relates to
successful encoding of episodic memories (Kirov et al., 2009;
Heib et al., 2015). This difference in findings can be explained
by methodological differences between our study and previous
literature. We have used a more direct measurement of theta
power during encoding, whereas Heib et al. (2015) calculated the
change in theta power from before to after a cued list word, and
used this measure in their analyses. The cognitive implications
of this difference may be that we have measured brain activity
related to encoding a memory trace, whereas Heib et al. may have
measured activity related to reconsolidation or other subsequent
mnemonic activity. Similarly, our results focus around midline
theta, whereas previous literature has noted an effect of frontal
theta in general. Whether task or other non-specific functional
differences relate to this discrepancy is an area for future research.

Previous literature (Heib et al., 2015; but more so Kirov et al.,
2009) elegantly demonstrates that encoding theta power relates
to memory outcomes across sleep. Typically, these findings
are explained through an influence on hippocampocortical
communication at theta frequency during wakeful encoding. Our
study is unable to comment on whether this is specifically a
“tagging” mechanism, as we did not include a manipulation
to differentiate between memories to be consolidated and
those to be ignored. Despite this, our results can still
be interpreted through similar mechanisms as previously
published, through the idea that theta may prime circuits for
subsequent consolidation during sleep, and thus increase sleep
spindle activity at these local sites during post-learning sleep
(Petzka et al., 2021).

Our findings also demonstrate a clear relationship between
encoding-related theta power and sleep spindle density. This
partially supports the findings of Heib et al. (2015), with a
difference of the directionality of theta power. These results
further support the proposed effect of theta oscillations on
consolidation through modulation of sleep spindle density

(Heib et al., 2015). Encoding-related theta may potentially
be an important marker of relevant encoding-related activity,
which serves to prime circuits for subsequent consolidation,
in much the same way that topographical overlap between
encoding-related brain activity and sleep spindle density may
relate to consolidation and memory outcomes across sleep
(Petzka et al., 2021). Previous research can be updated based
on this, mainly looking at a sleep spindle specific role
in the consolidation of different types of memory (Fogel
et al., 2007), such that gist processing is supported via
higher spindle density along with theta power increases at
encoding, and recognition of previously seen items showing
the opposite trend. Sleep spindles have been implicated with
integrating new information into existing knowledge (Tamminen
et al., 2010), suggesting that their function reflects a more
general process of learning as well as the hippocampocortical
communication of encoded memory traces. It may be informative
to consider the mechanisms through which encoding-related
theta power and spindle density in subsequent sleep may
lead to both improvements in memory, and the generalisation
of encoded traces. Both mechanisms could be accounted for
through statistical regularities in encoded information leading
to greater replay for shared components over individual
components, as is theorised in the competitive trace and IoTa
accounts of memory (Lewis and Durrant, 2011; Yassa and
Reagh, 2013). This idea has also been examined in memory
literature to explain attributes of memory such as selective
consolidation, item integration and associations, along with
how consolidation binds that information together (Walker
and Stickgold, 2010; Stickgold and Walker, 2013). A common
mechanism to explain the capacity of the human brain to
both use pattern separation processes to store veridical aspects
of our experience, as well as to use pattern completion
processes to extract meanings and rules therefrom would seem
to be efficient. Our finding that different polarities of theta
power at encoding may predict outcomes in terms of both
memory and learning should be investigated more fully in
future research, potentially through causal manipulations using
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associative memory paradigms, naps and non-invasive brain
stimulation techniques, or different training modalities.

There are several limitations to the present study which
should be considered in the interpretation of results. Considering
that the DRM is fairly artificial, the generalisability of these
findings should be tempered. Additionally, the DRM scores
observed are higher than noted in other DRM studies (Pardilla-
Delgado and Payne, 2017), which may be due to the shorter
time frame between encoding and recognition, along with
the effect of including more trials and an additional critical
lure. Additional, nonspecific effects such as this may have
influenced participants in their encoding and generalisation of
information. This should not exert a marked influence on the
EEG, although a more standard and controlled behavioural
procedure would be of benefit in fortifying the present results.
Further, considering that sleep loss prior to learning can
negatively impact memory ability (Mander et al., 2008; Alberca-
Reina et al., 2015), our manipulation of requiring participants
to restrict their sleep by 1 h prior to encoding may have
influenced their capacity to encode the material, although
it is unlikely that any effects of this procedure were of a
significant nature.

Future research could also focus on other mechanisms,
in addition to the sleep-based oscillatory linkages we have
described herein. For instance, modulations of cross-frequency
coupling linked to measurable changes in task-related EEG
could be another factor that could be investigated, as could
how these metrics may be influenced by related sleep-based
EEG phenomena. Research has also suggested that the aperiodic
activity directly following a spindle may also be important for
consolidation (Helfrich et al., 2021). The authors suggest the role
of a sleep spindle is similar to that of being a messenger signal
rather than the producer of consolidation itself, as is currently
theorised. That is, by not analysing aperiodic activity around
sleep spindles, we may have missed an important factor in sleep-
based memory consolidation. This is a clear area of importance
for future research.

With the idea that theta acts a tagging mechanism, the
relationships found in the present study demonstrates that
encoding-related theta activity can influence specific aspects
of memory-related sleep neurophysiology, and highlights the
connection between encoding and consolidation process in
episodic memory. Consolidation is clearly impacted by processes
tagged by theta power during encoding, and if models wish to
develop a comprehensive view of memory consolidation, then

extant theories of sleep-based memory consolidation should
expand to include the neurobiological mechanisms underlying
successful memory encoding.
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