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Significant variation in performance in motor imagery (MI) tasks impedes their
wide adoption for brain-computer interface (BCI) applications. Previous researchers
have found that resting-state alpha-band power is positively correlated with MI-BCI
performance. In this study, we designed a neurofeedback training (NFT) protocol based
on the up-regulation of the alpha band relative power (RP) to investigate its effect on MI-
BCI performance. The principal finding of this study is that alpha NFT could successfully
help subjects increase alpha-rhythm power and improve their MI-BCI performance.
An individual difference was also found in this study in that subjects who increased
alpha power more had a better performance improvement. Additionally, the functional
connectivity (FC) of the frontal-parietal (FP) network was found to be enhanced after
alpha NFT. However, the enhancement failed to reach a significant level after multiple
comparisons correction. These findings contribute to a better understanding of the
neurophysiological mechanism of cognitive control through alpha regulation.

Keywords: alpha relative power, motor imagery, performance variation, electroencephalogram (EEG), brain-
computer interface (BCI), neurofeedback training (NFT)

INTRODUCTION

Motor imagery (MI) refers to the mental representation of action without engaging in its actual
execution (Moran et al., 2012). In recent decades, MI has contributed to motor performance and
rehabilitation, as well as to a better understanding of cognition, action, and perception (Munzert
et al., 2009; MacIntyre et al., 2018). MI is also a common task in brain-computer interface (BCI)
research for realizing the voluntary control of external devices (Müller-Putz et al., 2016). MI-BCI
performance refers to the ability of subjects to control an MI-BCI system and is generally assessed
through decoding accuracies. MI-BCI performance shows a significant intra- and inter-subject
variability (Ahn and Jun, 2015; Saha and Baumert, 2020; Zhou et al., 2021), which impedes its wide
adoption for BCI applications. Understanding the neural mechanisms behind such variability is a
promising approach that will aid in solving the problem (Xu et al., 2021).
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Previous studies are inclined to the view that a positive
association exists between alpha rhythm and MI-BCI
performance. An earlier study of 80 subjects used the
sensorimotor rhythm (SMR, including the alpha and beta
bands) from a 2 min resting state to predict MI-BCI performance
(Blankertz et al., 2010). Another intra-subject study reported that
trials with higher SMR power in the 1 s interval preceding the
cue yielded better performance (Maeder et al., 2012). Further,
some researchers found that lower resting-state alpha-band
relative power (RP) may indicate poor MI performers (Ahn
et al., 2013; Kwon et al., 2020). Our previous study suggests that
the positive correlation between alpha-band RP and MI-BCI
performance was consistent in inter-subject and inter-session
analysis, especially over the frontal lobes (Zhou et al., 2021).
These results indicate that the strength of alpha rhythm in the
resting state might reflect an unstable cognitive state, which
results in the variation of MI-BCI performance.

Although understanding how alpha rhythm controls the
cognitive state remains elusive, a positive relationship between
higher resting-state alpha activity and a better cognitive level has
been reported in many studies. An experiment on cognitive task
performance found that resting-state alpha power was positively
correlated with attention-span scores over 82 healthy adults
(Mahjoory et al., 2019). Other studies have reported that people
with amnestic mild cognitive impairment (aMCI) or subjective
cognitive decline (SCD) had a lower resting-state alpha band
RP (Bian et al., 2014; López-Sanz et al., 2016). Some researchers
have suggested that alpha power sustains attention by regularly
purging task-irrelevant information and neural noise (Sadaghiani
and Kleinschmidt, 2016), which may explain the relevance of a
higher resting-state alpha power to better MI or cognitive tasks.

Neurofeedback is an operant conditioning technique
that could help subjects self-regulate targeted brain activity
patterns (Wood et al., 2014; Sitaram et al., 2017). Today,
neurofeedback training (NFT) has been widely investigated for its
possible applications in cognitive enhancement and psychiatric
amelioration (Vernon, 2005; Gruzelier, 2014; Micoulaud-Franchi
et al., 2015). Numerous studies have demonstrated that alpha
NFT can significantly and independently improve resting-state
alpha band power (Wan et al., 2014; Ossadtchi et al., 2017). In
addition, alpha NFT has been proven to enhance attentional
control (Berger and Davelaar, 2018) and has a positive effect on
working memory (WM) or episodic memory (EM) (Hsueh et al.,
2016; Yeh et al., 2021). These results may support the view that
the up-regulation of alpha oscillations contributes to efficient
neurocognitive processing (Berger and Davelaar, 2018).

Some studies have reported that alpha NFT can enhance
cognitive performance assessed by a mental rotation test (MRT)
(Hanslmayr et al., 2005; Zoefel et al., 2011) or matrix rotation
task (Reis et al., 2016). MRT scores were found to be strongly
correlated with MI-BCI performance (Jeunet et al., 2015).
Researchers explain that the MRT score reflects the user’s spatial
ability, which is one of the potential MI-BCI performance
predictors (Jeunet et al., 2016). In addition, some researchers
found that alpha NFT can be used to enhance the event-related
desynchronization (ERD) of a motor execution task in healthy
subjects (López-Larraz et al., 2012) and motor attempts in

spinal cord injury patients (López-Larraz et al., 2019). ERD is a
common neurological manifestation in both motor imagery and
motor execution, and it is also an important feature of MI-BCI
performance decoding. These findings suggest that alpha NFT
may be a promising way to improve MI-BCI performance.

A previous study showed the feasibility of improving MI-BCI
performance through alpha NFT (Bamdadian et al., 2015). In
their study, subjects achieved better MI-BCI performance and
higher resting-state alpha RP compared to the control group
after a 4-week NFT. However, a limitation of this study was its
relatively small sample sizes and inadequate analysis. Besides,
the alpha-band indicators used in training and evaluation
were inconsistent, the power of extracted alpha spatial-spectral
decomposition (SSD) components was used for training whereas
alpha RP was used for evaluation. Further, neural feedback
inefficacy was a significant problem in the previous study. In
the experimental group, 2 out of 6 subjects showed almost no
improvement in MI-BCI performance. A review in the previous
paper has discussed this inefficacy problem of NFT, which is
much more widespread than currently realized and warrants
further exploration (Alkoby et al., 2018).

Alpha-band RP has been proved to be a promising stable
neurophysiological indicator for MI-BCI performance in our
previous work (Zhou et al., 2021). However, few studies have
used alpha-band RP as the target signal of NFT. Therefore, the
purpose of this study is to develop a novel NFT system based on
alpha-band RP and explore: (1) the effectiveness of enhancing
resting-state alpha power and improving MI-BCI performance
through alpha NFT, (2) individual differences and the problem
of NFT inefficacy, and (3) the physiological mechanism of the
impact of alpha rhythm on cognitive control.

MATERIALS AND METHODS

Subjects
Eighteen healthy subjects (8 males, mean age: 23.46± 1.51 years,
range: 21–28 years, all right-handed) participated in our study.
None of the participants reported a history of psychiatric or
neurological disorders. One of them had participated in MI
studies before. The study was designed and conducted according
to the Declaration of Helsinki and approved by the Human
Research Ethics Committee of the Second Affiliated Hospital of
Zhejiang University School of Medicine. All subjects were asked
to read and sign an informed consent form before the experiment
and received financial compensation after the experiments for
their time and effort.

Experimental Protocol
During the experiment, subjects sat in a comfortable chair in
front of a computer screen and were instructed to relax their
arms and minimize any physical movement or eye blinking
throughout the electroencephalogram (EEG) recording process.
Each subject participated in a seven-session experiment in 1 day.
The participants could take a short rest between sessions. The
total experimental time of each subject was less than 1.5 h,
excluding the preparation time before the experiment. Figure 1A
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FIGURE 1 | (A) The experimental procedure. (B) Mental rotation test (MRT) session paradigm. (C) Motor imagery (MI) session paradigm. (D) The electrodes (gray)
which were recorded in the international 10–20 system – the 16 electrodes circled by a dotted orange line were chosen as the target training area from the frontal
lobe.

illustrates the procedure of the experimental paradigm and the
separate time of each session. The seven-session experiment
consisted of two MRT sessions, two MI sessions, two baseline
sessions, and an alpha NFT session.

Each of the two MRT sessions comprised ten items, and one
item comprised four options, two of which were correct. One
point was counted only when both correct options were selected.
Subjects were asked to read and answer each item in 8 and 20 s,
respectively (Figure 1B). After the “answer” cue, subjects could
submit their answers by pressing corresponding buttons on a
keyboard. No point was counted if no submission was made
when the timeout occurred. In this study, a modified-version
MRT composed of two equally difficult parts was used (Moè,
2021), respectively, assessing mental rotation abilities before and
after the alpha NFT.

For the two MI sessions, each session was organized into 3
runs, each run lasting 5 min. During each run, subjects were asked
to perform left-hand MI, right-hand MI, or idle tasks according to
the on-screen cue. At the beginning of each trial, a white fixation
cross appeared in the middle of the black screen and stayed for 1
s. During the left/right-hand MI task, a 3D simulation graph of
the left/right hand was shown on the corresponding side of the
cross, and subjects were instructed to perform kinaesthetic MI.
During the idle task, the white cross turned green, and subjects
were instructed to relax and to not think about anything. Each
trial lasted 8 or 9 s (Figure 1C). There were 12 trials per task, a
total of 36 trials in each run, and 108 trials in each session. The
tasks were presented in random order. No feedback was provided
to the subjects during the MI sessions.

Two-minute baselines were recorded immediately before and
after the alpha NFT. Each baseline session was organized into a
1 min, eye-open (EO), resting-state run and a 1 min, eye-closed
(EC), resting-state run.

The alpha NFT session was organized into 6 runs, each
run lasting 3 min. During each run, subjects received real-time
feedback of alpha changes – provided visually as a vertical bar
on the screen. The ordinate value of the bar was proportional
to the deviation of the alpha indicator from the baseline. The
bar color turned green or red when the alpha indicator was
higher or lower than the baseline, respectively. Subjects were
instructed to remain relaxed to increase their alpha indicator
during the three continuous minutes. Additionally, subjects were
given smileys as emotional support when they performed well
within a short time (details in section “Alpha Neurofeedback
Training System Design”).

Electroencephalogram Recording and
Pre-processing
Electroencephalogram recording was performed using a 64-
channel Synamps2 system (Neuroscan, Inc., Victoria, Australia)
with a sampling frequency of 500 Hz. 60 EEG scalp electrodes
were prior-selected according to the international 10–20 system,
4 electrodes were then excluded due to the poor signal quality.
The remaining 56 channels were marked in gray as shown in
Figure 1D. The reference electrode was placed on the top of
the head between Cz and CPz, and the ground electrode AFz
was placed on the medial frontal area of the head. A horizontal
electrooculogram (EOG) and vertical EOG were recorded using
the same system. A band-pass filter between 0.5 and 100 Hz and
a notch filter of 50 Hz were applied directly to the amplifier.

Alpha Neurofeedback Training System
Design
As mentioned above, to help subjects upregulate alpha band
power, the alpha indicator was calculated and fed back in
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real-time during the alpha NFT session. In this study, the
deviation of alpha relative power (ARP) from the baseline was
used as the alpha indicator. Before the alpha NFT session,
the individual alpha frequency (IAF) from the eye-closed (EC)
baseline was calculated using an automated and open-source
method (Corcoran et al., 2018). After this, the ARP of the eye-
open (EO) baseline before NFT was calculated as ARPbaseline.
During the alpha NFT session, the continuous EEG recording was
segmented into 1 s epochs and updated every 100 ms. The ARP
of the EEG epoch was calculated as ARPepoch. The ARP and the
deviation of ARP (1ARP) from the baseline were calculated as
follows:

ARP = Palpha
Ptotal

(1)

1ARP = ARPepoch−ARPbaseline
ARPbaseline

. (2)

Palpha and Ptotal indicate the absolute power of the alpha band
from (IAF-2, IAF+2) Hz and the total band from (1, 50) Hz,
respectively. The multitaper method was used to calculate the
power spectral density (PSD) (Percival and Walden, 1993), and
the integration method was used to obtain the target band power.
The multitaper function was implemented through the MNE-
Python package (Gramfort et al., 2013). In this study, 16 frontal
lobe electrodes were selected to obtain the averaged ARP used in
the alpha NFT session (Figure 1D).

The 1ARP value was mapped to the ordinate value of the
visual feedback bar in real-time, and the sign of the 1ARP
(positive or negative) corresponded to the bar color (green or
red). If the 1ARP value of most epochs within a few seconds
exceeded the custom-set threshold, a smiley would be presented
on the screen, indicating good performance. A dynamic threshold
strategy was designed to better adapt to the subjects during each
run (see Figure 2). In this study, the maximum length of the
buffer was set to 100 (about 10 s), the initial threshold (Th) was
set to 10%, the stride of raising or reducing threshold was set to
1%, and the threshold was set to no less than 1%. The feedback
would be paused briefly if EOG artifacts were detected.

Feature Extraction and Classification
The result of offline classification using the whole brain electrodes
was used to measure MI-BCI performance. First, the EEG signal
of the MI session was band-pass filtered by a linear phase, finite
impulse response (FIR) filter between 8 and 30 Hz. Then, the
signals were extracted from 0 to 4 s after task onset. The three-
class classification (i.e., left hand, right hand, and idle task) and
three binary classifications were considered. EEG epochs were
spatially filtered using the one versus rest (OVR) Common Spatial
Pattern (CSP) algorithm (Ang et al., 2012). After that, the features
were fed into the Support Vector Machine (SVM) algorithm with
a radial basis function kernel to generate subject-specific models.
A 10-fold cross-validation (CV) procedure was performed to
validate the results.

Power Spectral Analysis
The power and relative power (RP) of different bands were used
to investigate changes of brain rhythms. The individual frequency

FIGURE 2 | Flow chart of the dynamic threshold strategy.

bands included the delta band from (1, IAF-6) Hz, theta band
from (IAF-6, IAF-2) Hz, alpha band from (IAF-2, IAF+2) Hz,
beta band from (IAF+2, 30) Hz, and the low gamma band from
(30, 50) Hz (Escolano et al., 2014a). The calculation of RP was
similar to ARP from the online, alpha NFT session, the 1RP was
calculated as follows:

1RP = RP−RPbaseline
RPbaseline

. (3)

For the baseline session, we investigated the 1RP of five bands.
The RP and RPbaseline indicated the specific band RP from post-
and pre-NFT baseline sessions, respectively.

For the alpha NFT session, only the alpha band 1RP of six
runs was analyzed separately. The RP and RPbaseline indicated the
individual alpha band RP from the specific run and the previous
baseline session before NFT.

For the MI session, the EEG signal from −3 to 4 s was
extracted. Each trial was split into a pre-task stage (−3 – 0 s) and
a task stage (0 – 4 s), and further grouped by the type of task. The
power was averaged over three runs of each session. The ERD of
each task was calculated as follows:

ERD =Ptask−Ppretask
Ppretask

, (4)

where Ptask and Ppretask represent the absolute power of
the individual alpha band from the task and pre-task
stage, respectively.
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Functional Connectivity Analysis
Resting-state functional connectivity (FC) was analyzed to
investigate changes in the brain networks. To map the
connectivity between the bilateral brain regions, the eight central
electrodes (i.e. Fpz, Fz, FCz, Cz, CPz, Pz, POz, and Oz)
were excluded. 24 electrodes of each side with a total of 48
electrodes were selected from EO baseline session. The functional
connectivity matrix was calculated by the phase lag index
(PLI) and Imaginary Coherence (imCoh), which are both very
commonly used measurements to date. Previous studies have
suggested that PLI is less affected by the influence of common
sources and active reference electrodes (Stam et al., 2007), while
imCoh is weakly affected by volume conduction and spatial
leakage (Nolte et al., 2004). The implementation of algorithms
and the drawing of brain network connection maps were carried
out through the MNE-Python package (Gramfort et al., 2013).

Statistical Analysis
A paired t-test was applied to statistically analyze the significance
of differences from before and after the alpha NFT stage. Pearson
correlation was performed to analyze the correlation between
1ARP and the performance changes within subjects. A false
discovery rate (FDR) of α = 0.05 was used to correct the
significance level for multiple comparisons. The statistical and
correlational methods used in this paper were implemented using
the Python package Pingouin (Vallat, 2018).

RESULTS

Motor Imagery and Mental Rotation Test
Performance Analysis
Figure 3 shows the classification results of MI sessions
before and after alpha NFT. For the three-class classification,
all of the subjects achieved performances higher than the
random level (33.33%). Overall, the average classification
accuracy was 59.29 ± 9.17% before alpha NFT and
64.78 ± 13.45% after alpha NFT, which shows a significant
improvement of 5.48 ± 7.76% (p < 0.01). However, there
remained 30% of the 18 subjects showed no increase in
MI-BCI performance.

For binary classification, left-hand MI versus right-hand
MI (L vs. R), left-hand MI versus idle task (L vs. I), and
right-hand MI versus idle task (R vs. I) were considered. L
vs. R classification results show that average accuracy was
60.83 ± 16.94% before alpha NFT and 69.08 ± 13.12%
after alpha NFT, which shows a significant improvement of
8.25± 12.66% (p< 0.05). Whereas L vs. I and R vs. I classification
results show that average accuracies were 74.51 ± 15.36% and
77.92 ± 9.78% before alpha NFT, and 77.78 ± 11.99% and
79.47 ± 11.54% after alpha NFT, the improvement failed to
achieve a significant level.

For MRT results, the full score was 10, and the average score
of subjects was 5.33 ± 2.13 before alpha NFT and 5.22 ± 2.15
after alpha NFT; no significant difference was found. The timeout
rate was 4.17%.

Relative Power Changes and Correlation
Analysis
The average IAF of the subjects was stable between pre- and
post-NFT EC baseline sessions, which were 10 ± 0.49 Hz
and 9.72 ± 0.53 Hz, respectively. To evaluate trainability and
independence, the 1RP of five frequency bands between pre- and
post-NFT EO baseline sessions were calculated. The difference of
each channel was corrected by FDR. The topographical images
were plotted as shown in Figure 4. The results show that alpha-
band RP (ARP) was significantly increased on almost the whole
brain, especially on the frontal lobe. Few significances of 1RP
were found from the delta band and no significant difference was
found from other frequency bands.

To evaluate the progress of the NFT, the average ARP values
from 6 runs of the alpha NFT session were computed separately,
then ARP changes between each run and the previous EO
baseline session were plotted in Figure 5. An obvious increasing
trend was observed from run 1 to run 6. ARP was significantly
increased on almost the whole brain, especially on the pre-frontal
and parietal-occipital lobes.

After that, 1ARP was evaluated by the relative difference
between post- and pre-NFT EO baseline sessions, and was
averaged across 16 frontal lobe electrodes. Then, we applied
the Pearson correlation to investigate the relationship between
1ARP and MI-BCI performance changes. The results show that
1ARP was significantly and positively correlated with MI-BCI
performance changes (see Figure 6) (r = 0.65; p< 0.01). However,
when considering MRT performance, no significant correlation
was found between MRT score changes and 1ARP or MI-BCI
performance changes.

Event-Related Desynchronization
Analysis
The changes of absolute band power and ERD values between
pre- and post-NFT MI sessions were also analyzed from three
tasks, respectively. As shown in Figure 7, after alpha NFT,
pre-task stage alpha-band power was increased, especially over
occipital lobes, and slightly increased over the prefrontal lobe –
while no obvious changes were observed from the task stage
after alpha NFT. Further, the ERD calculated was found to be
enhanced from both the left-hand and right-hand MI, especially
over the contralateral parietal lobe. And a higher significance
level of ERD changes was found over the contralateral primary
motor cortex (M1).

Functional Connectivity Analysis
The EEG signals from the EO baseline sessions were further
analyzed for variation of the resting state brain network. The
1 min baseline signal was divided into 12 segments, 5 s per
segment. The functional connectivity matrixes were calculated
by PLI and imCoh and averaged across segments. Then the
statistical T values were calculated between post- and pre-
NFT baseline sessions. Figure 8 shows the T values resulting
from the paired t-test, only significant links (p < 0.01) are
illustrated. However, no significance was found after the FDR
correlation. The red and blue color of the line indicates that
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FIGURE 3 | Performance from pre-NFT (Pre) and post-NFT (Post) MI sessions. (A) Histogram of inter-subject classification accuracy – the dotted gray line
represents the random levels of 33.33 and 50%. (B) Boxplots of classification accuracy - the red dot represents the average value: L vs. R, left-hand MI versus
right-hand MI; L vs. I, left-hand MI versus idle task; R vs. I, right-hand MI versus idle task; ∗p < 0.05; ∗∗p < 0.01; n.s., no significance.

the connection was enhanced or weakened after alpha NFT,
respectively. Both PLI and imCoh results show more red lines
than blue lines in the alpha band, indicating that alpha band
connectivity enhanced after alpha NFT, especially between the left
frontal lobe and the right parietal lobe. Additionally, more blue
lines than red lines were observed in the delta and theta band
from imCoh results, the beta band in PLI and imCoh results,
and the gamma band from PLI results, which showed that the
functional connection weakened in different degrees from these
4 frequency bands.

DISCUSSION

Effectiveness of Alpha Neurofeedback
Training
The amplitudes (absolute or relative) of the monitored EEG
bands recorded on the baseline before and after the entire
training were a typical evaluation of NFT efficacy (Rogala
et al., 2016). In this study, the resting-state alpha rhythm of
the baseline session was increased successfully after alpha NFT,
and the enhancement was band-specific (Figure 4). This result
confirmed the conclusion that alpha rhythm could be upregulated
independently from other frequency bands (Zoefel et al., 2011).
Additionally, although a significant difference was found over
almost the entire brain, the 1RP increased mostly over the
frontal lobe, which was used as the target modulating region
of alpha NFT in this study. In the course of the alpha NFT
session, ARP shows a gradually increasing trend across six runs,
mainly over the frontal and parietal-occipital lobes (Figure 5).
Notably, an increase of ARP over the parietal-occipital lobe
appeared in the alpha NFT sessions and disappeared in the
following baseline session. This result may be explained by the

fact that the alpha NFT task required more visuospatial attention,
thus increasing the alpha power over the parietal-occipital lobe
(Kelly et al., 2006).

Our previous study showed no obvious MI-BCI performance
improvement across six runs in 1 day or even across seven
sessions in multiple days without feedback (Zhou et al., 2021),
suggesting that subjects found it difficult to regulate their brain
rhythms to successfully reach the expected output without
feedback. In this study, MI-BCI performance was significantly
improved after alpha NFT, especially between left-hand and
right-hand MI tasks. This result is consistent with a previous
study (Bamdadian et al., 2015), in which only binary classification
was performed. Remarkably, only one alpha NFT session lasting
18 min was applied in our study, whereas 12 sessions were
used in the previous MI study, and multiple sessions are usually
used in cognitive studies (Yeh et al., 2021). Hence, our results
demonstrate the effectiveness of our novel NFT system based on
alpha-band RP in improving MI-BCI performance after short-
term training. In addition, a previous NFT study instructed
subjects to enhance lateralized relative ERD by performing
MI, thus improving MI-BCI performance (Wang et al., 2019).
Different from their paradigm, the self-regulation in our NFT
session is independent of the MI task. The proposed alpha NFT
paradigm may be easier and more operable, and it is also potential
to be combined with the previous studies in the future.

Individual Difference of Alpha
Neurofeedback Training
Previous reviews have pointed out that most studies have focused
on finding group differences rather than on revealing individual
differences. However, from the summary of Alkoby et al. (2018),
about 16 to 57% of the subjects failed to modify their brain
activity in the NFT field. Hence, they highlighted the importance
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FIGURE 4 | (A) Topographical images of 1RP between the pre- and post-NFT baseline sessions from 5 frequency bands. (B) Position of electrodes. (C) The
significant level of 1RP from paired t-test – the p values of electrodes were corrected by FDR. The images in (A,C) share the same color bars on the right,
respectively.

FIGURE 5 | (A) Topographical images of 1ARP between each alpha NFT run and the baseline session before NFT. (B) The significant level of 1ARP from the paired
t-test – the p values of electrodes were corrected by FDR. The images in (A,B) share the same color bars on the right, respectively. (C) Line plot of 1ARP from
different brain regions across six alpha NFT runs. Electrodes were grouped into 8 brain regions by their name and averaged in each region. Fp and AF: pre-frontal, F:
frontal, FC: frontal- central, C: central, CP: central- parietal, P: parietal, PO: parietal-occipital, O: occipital area.
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FIGURE 6 | The Pearson correlation between 1ARP and changes of MI-BCI
performance (1Accuracy). A significant positive correlation was found
between the 1ARP and 1Accuracy of the three-class classification (r = 0.65;
p < 0.01).

of a wide reporting and investigation of individual differences
from neurofeedback learning. Further, previous studies have also
found that the effectiveness of brain activity modulation through
NFT may influence behavioral changes. It has been reported
that only subjects who successfully increased their alpha power
after NFT could reach a higher learning efficiency (Brickwedde
et al., 2019) or performed better on memory tasks (Hsueh et al.,
2016), mental rotation tasks (Hanslmayr et al., 2005; Zoefel et al.,
2011), and in clinical behaviors (Deiber et al., 2020). In this MI
study, some of the subjects did not perform well at the beginning

but achieved a considerable improvement after alpha NFT.
In addition, the subjects with more alpha band up-regulation
were found to have better MI-BCI performance improvement
(Figure 6). These findings indicate that alpha NFT is a promising
way to address to some extent the inefficacy problem.

The review in the previous paper has outlined the important
characteristics regarding the set-up of neurofeedback protocols
and has highlighted that personalized intervention should be
considered in neurofeedback system design (Enriquez-Geppert
et al., 2017). In this study, the individualized frequency
interval was extracted for the target alpha-band feature. Further,
proportional feedback rather than binary feedback was applied
and combined with the corresponding side simulation hand
image. Continuous feedback rather than discrete feedback was
applied, and the latency of real-time feedback was about 100 ms.
This is because a previous review recommended that the feedback
latency should not exceed 250–350 ms (Sherlin et al., 2011).
Also, a shorter delay was reported to facilitate the efficient
learning of alpha regulation (Belinskaia et al., 2020). Moreover,
the NFT threshold was adjusted dynamically within the runs
to adapt to the personalized learning curve. Our results prove
that an alpha NFT system using such advanced methods is
feasible and effective.

Mental strategy is also an important factor for affecting
the individual NFT effect. In the alpha NFT session of
our study, subjects were instructed to remain relaxed, keep
mentally focused, and physically relaxed, which have been
reported as effective strategies (Kober et al., 2013). Besides,
psychological variables such as motivation or mood should also
be systematically manipulated in future research to improve the
efficacy of NFT (Kadosh and Staunton, 2019).

FIGURE 7 | Topographical images of alpha-band absolute power (AP) and ERD from pre-NFT (Pre) and post-NFT (Post) MI session and three tasks, respectively.
(A) The AP from the pre-task stage (–3 – 0 s). (B) The AP from the task stage (0 – 4 s) (C) The ERD. (D) The significant difference of ERD from the paired t-test – the
p values of electrodes were corrected by FDR. The images of each panel share the same color bars on the bottom right, respectively. right, right-hand MI; left,
left-hand MI; idle, idle task.
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FIGURE 8 | The functional connectivity difference from five frequency bands, calculated by the phase lag index (PLI) and imaginary coherence (imCoh). The nodes
correspond to 48 electrodes from bilateral hemispheres, and the links represent the statistical values resulting from a paired t-test between pre- and post-NFT
baseline sessions. The red and blue color of the line indicates that the connection was enhanced or weakened after alpha NFT, respectively. Only significant links
(p < 0.01) are illustrated -whereas no significance was found after the FDR correlation.

Physiological Mechanism of Alpha
Neurofeedback Training
Previous studies have suggested that increased alpha power
will lead to decreased neuronal activity – the inhibition
is cyclic and referred to as pulsed inhibition (Jensen and
Mazaheri, 2010). Top-down modulatory and cognitive control
was realized through this mechanism of alpha oscillations. In
this study, alpha-band power was found to have successfully
increased before tasks from MI session after alpha NFT
(Figure 7). This increase of pre-task baseline contributed to the
significant enhancement of ERD. Similar results were reported
in previous studies focused on motor execution (ME) tasks,
in which larger alpha power before tasks as well as larger
ERD during tasks was found in the alpha NF group (López-
Larraz et al., 2012; Escolano et al., 2014b). This enhancement
of alpha rhythms might reveal better cognitive control and
further cause an improvement in classification performance
from ME or MI tasks.

A recently proposed viewpoint suggests that brain networks
use different features of alpha oscillations to modulate
information processing (Klimesch et al., 2007; Sadaghiani and
Kleinschmidt, 2016; Peylo et al., 2021). According to Sadaghiani’s
model, the widespread enhancement of alpha oscillations
could regularly purge accumulated task-irrelevant and
distracting information and neural noise, thereby maintaining
alertness. Another study demonstrated the hypothesis that
alpha power directly relates to distractor suppression and
operates independently from target selection (Wöstmann
et al., 2019). Meanwhile, focal alpha desynchronization (also
described as focal disinhibition) reflects the top-down guidance

of selective attention, which permits the prolonged accumulation
of local activity and enhances information processing in these
areas, such as the ERD over contralateral motor cortex in
MI tasks in our study, or evoked alpha desynchronization
over contralateral occipital cortex in visuospatial attention
tasks (Lobier et al., 2018). In addition, this theory suggests
that frontal-parietal (FP) network activity can modulate
long-range phase-locking in the alpha band, which facilitates
information exchange and further enables phasic adaptive
control (Sadaghiani et al., 2012). In our FC analysis, the
alpha-band connection between the frontal and parietal lobe
tended to be enhanced after alpha NFT (Figure 8), which
may be evidence of how alpha NFT promotes adaptive
cognitive control.

Limitations and Further Research
One of the limitations of this study is the short training period.
Although it achieved the expected changes in neurophysiological
patterns and an overall improvement of MI-BCI performance,
the binary classification result between MI and idle tasks was
found to have no significant improvement. The reason may be
due to the relatively higher performance before NFT and the
insufficient training time. L vs. I and R vs. I classification results
were 74.51 ± 15.36% and 77.92 ± 9.78% before alpha NFT,
much higher than L vs. R results (60.83 ± 16.94%), which may
reduce the room for improvement. In a previous study, after a
4-month mindfulness and BCI training, participants successfully
increased alpha-band activity and BCI performance between MI
and rest tasks (Stieger et al., 2020). Hence, the effectiveness of
long-term alpha NFT for MI-BCI performance should be further
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investigated in future research. In addition, another limitation
in this study is the lack of control groups. Appropriate control
groups (active or passive) should be designed in future NFT
studies (Rogala et al., 2016).

Notably, still about 30% of the subjects showed no
obvious improvement of either alpha band power or MI-
BCI performance. It remains unclear whether the cause of
these “non-responders” was an inappropriate feedback approach
or fundamental differences in neurophysiology (Thompson,
2019). The problem of NFT inefficiency should be taken
into account and widely reported and investigated in future
studies. Further, no obvious improvement was found in MRT
performance, which is possibly due to the user-unfriendly design
and the limited time of the MRT session, which may have
increased the subjects’ anxiety and stress. Thus, personalized
and humanized NFT procedures should be widely adopted
to achieve efficient brain regulation and ultimately improve
behavior performance.

CONCLUSION

In summary, our findings demonstrate the effectiveness of
alpha NFT for independent up-regulation of alpha rhythms
and the improvement of MI-BCI performance. Additionally,
individual differences in the NFT effect are reported in this
paper. Our study complements earlier studies and shows that
alpha NFT is a promising protocol for solving the problem of
inefficacy, enhancing cognitive function, and further improving
behavior performance. Moreover, the neurophysiological results
confirm the theoretical mechanism of alpha oscillation involved
in cognitive control. Our study can be an inspiration for
future studies to systematically explore the effect of alpha NFT
on various tasks and improve the understanding of cognitive
control mechanisms.
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