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Registration of a series of the two-dimensional electron microscope (EM) images of

the brain tissue into volumetric form is an important technique that can be used for

neuronal circuit reconstruction. However, complex appearance changes of neuronal

morphology in adjacent sections bring difficulty in finding correct correspondences,

making serial section neural image registration challenging. To solve this problem, we

consider whether there are such stable "markers" in the neural images to alleviate

registration difficulty. In this paper, we employ the spherical deformationmodel to simulate

the local neuron structure and analyze the relationship between registration accuracy

and neuronal structure shapes in two adjacent sections. The relevant analysis proves

that regular circular structures in the section images are instrumental in seeking robust

corresponding relationships. Then, we design a new serial section image registration

framework driven by this neuronal morphological model, fully utilizing the characteristics

of the anatomical structure of nerve tissue and obtaining more reasonable corresponding

relationships. Specifically, we leverage a deep membrane segmentation network and

neural morphological physical selection model to select the stable rounded regions

in neural images. Then, we combine feature extraction and global optimization of

correspondence position to obtain the deformation field of multiple images. Experiments

on real and synthetic serial EM section neural image datasets have demonstrated that

our proposed method could achieve more reasonable and reliable registration results,

outperforming the state-of-the-art approaches in qualitative and quantitative analysis.

Keywords: neuronal structure, spherical deformation model, image registration, registration accuracy, serial

section electron microscopy

1. INTRODUCTION

Connectomics is an important research field in exploring and understanding the nanoscale
neuronal structures of the brain, which is of great significance for research on neuronal function,
neurogenic diseases, and brain-inspired intelligence (Paul Alivisatos et al., 2012; Luo, 2017; Sun and
Du, 2018). Serial sections electron microscopy (ssEM) imaging is one of the important techniques
to obtain three-dimensional (3D) neural tissue image data at nanometer resolution (Wanner et al.,
2015). For serial sections imaging (Kasthuri et al., 2007), the sections of brain tissues are cut into
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30–50 nm-thick by an ultramicrotome and collected onto
conductive supporters, such as electron opaque support tape
(e.g., ATUM-SEM Hayworth et al., 2014) or metal support grids
(e.g., ssTEM Harris et al., 2006). The sections can be imaged in
parallel to save data acquisition time, which facilitates studies
of large-scale neural circuit reconstruction. However, such brain
imaging technique inevitably brings the loss of 3D integrity.
Therefore, the image registration technique is crucial for getting
these serial two-dimensional (2D) EM images into 3D volumetric
form for subsequent neural circuit reconstruction and analysis
(Briggman and Bock, 2012).

Images registration of neural tissue sections is not an easy
task. This is because the neuronal structures change dynamically
along the sections. In addition, sections cut sequentially at
specific intervals are unique and contiguous. This means that
the contents of the adjacent images are not identical but similar,
and the similarity depends on neuronal structure variation and
section thickness. Most existing image registration approaches
consist of three steps: feature extraction, feature matching, and
regularization using a specified transformation model (e. g. rigid,
affine, diffeomorphic models, etc.). Such complex appearance
changing of neural images brings enormous challenges for this
pipeline’s first two steps (feature extraction and matching). The
key to solving serial section neural image registration is finding
robust and reliable correspondences under such changeable
appearance circumstances.

There are several conventional nonlinear registrationmethods
using hand-crafted features for aligning serial section images,
such as scale-invariant feature transform (SIFT) (Lowe, 2004)
and block-matching. Some open-source ssEM image registration
tools use these types of hand-crafted features, such as elastic
alignment (Saalfeld et al., 2012) (available via TrakEM2 Albert
et al., 2012). However, these types ofmethods could not guarantee
that correct correspondence is detected in the adjacent sections
with considerable appearance changing. Most of them (Wang
et al., 2015) choose one of the serial images as the reference image
and then sequentially perform forward or backward pairwise
image registration. As a result, these methods may introduce
error accumulation and propagation, which leads to artificial
deformation for images that are far away from the reference
image. Recently, many state-of-the-art results in deep learning
have been proposed for computer vision problems. Some
researchers have drawn from natural image registration methods
and apply to ssEM image registration. They used the data-driven
deep learning method to measure the similarity between sections
and minimize the square error between the target image and
the registered source image to obtain the deformation field. Yoo
et al. (2017) proposed an end-to-end trained 2D convolutional
autoencoder (Hinton and Salakhutdinov, 2006) to generate
feature maps and then combined them with a spatial transformer
network (STN) (Jaderberg et al., 2015) to obtain the vector
field. Mitchell et al. (2019) leveraged a siamese convolutional
network to encode images and extract features, and a coarse-to-
fine recursion trained alignment module to transform the source
image. Despite the above significant progress, serial section
neural image registering methods do not take full advantage
of neuronal morphological characteristics. Due to the lack of

utilization of characteristics of image content and the variation
adaptability, they can hardly capture the reliable corresponding
relationship in adjacent images of neural tissues well, which
may lead to registering failures. Note that there exists a strong
spatial morphological relationship between the appearances of
neural structures in consecutive sections. Therefore, we propose
that serial image registering can benefit from the neuronal
morphological modeling of neuronal structures in neural images.

In addition, instead of using image information, some
methods employ the straightforward way to build the
corresponding relation, in which implants are utilized as
registration landmarks in the biological tissues (Pauchard
et al., 2004; Yavariabdi et al., 2013). Such landmarks are steady,
regular, and unvarying structures in the adjacent images.
They are directly selected as correspondences to register
biological tissues, reducing the difficulties of seeking robust
and reliable correspondence in significant appearance-changing
neural images. However, the method of using implants as
correspondences for registration is limited by additional
experimental operations. Therefore, we consider whether there
are such relatively stable structures in neural images.

Motivated by the above observations, in this work, we
model the nerve morphological structure to investigate the
stable structure as the "landmarks" for serial neural image
registration. In previous work (Bohao et al., 2022), the authors
used the spherical deformation model to simulate neurons
to investigate the effects of section thickness and neuronal
structure size on the ssEM registration accuracy. Inspired by
this work, we use the spherical deformation model to simulate
the local neuronal structure, generate synthetic pre-aligned
image data, and mathematically analyze the relationship between
registration accuracy and neuronal structure shapes in two
adjacent sections. These findings presented that registration
accuracy is positively correlated with neuronal structure
roundness, or in other words, the more regular the shape of
neuronal structure, the more accurate it is to register adjacent
sections. Based on the conclusion of neuronal morphological
modeling analysis, we go a step further by proposing a novel
framework for serial neural image registration, consisting of a
neuronal morphological model-driven region selection module,
correspondence extraction and global optimization module, and
image deformationmodule. Specifically, a mask is obtained in the
neuronal morphological model-driven region selection module
as the adaption guidance by a deep segmentation network
and neural morphological physical selection model. With this
mask, the feature can be adaptively extracted by focusing on
the stable region and paying less attention to changing region
(unstable structure). In correspondence extraction and global
optimization module, the reliable correspondences between the
adjacent sections are extracted by the local feature description
method SIFT-flow (Liu et al., 2011). Then, the corresponding
points are adjusted globally (the whole sequence) based on
an energy function to satisfy the position consistency of
the extracted correspondences, reducing error propagation in
computing multiple images, and preserving section continuities.
Finally, each section image is deformed according to the
position adjustment result of the correspondences in the image
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deformation module. We validate the effectiveness and efficiency
of our approach on two datasets of serial EM sections.

To sum up, the main contributions of this work are as follows:
(1) We model the neuronal morphology by spherical

deformation model. The relationship between registration
accuracy and neuronal structure shapes in two adjacent sections
is mathematically analyzed. The relevant analysis proves that
more regular circular structures in the section images should be
selected as "landmarks."

(2) We design a new serial section image registration
framework driven by neuronal morphological model, fully
utilizing the characteristics of the anatomical structure of
nerve tissue and obtaining more reasonable corresponding
relationship. Our proposed framework consists of a neuronal
morphological model-driven region selection module,
correspondence extraction and global optimization module, and
image deformation module.

(3) Experimental results on different datasets show that the
proposed register performs significantly better than the state-of-
the-art algorithms, achieving more genuine deformation results.

The remainder of this paper is organized as follows.
Section 2 briefly describes the datasets used in this paper,
mathematically analyses neural image registration accuracy
by neuronal morphology model, and presents the proposed
registration framework. Section 3 provides experiment results
on a real and synthetic dataset. Finally, we conclude the paper
in Section 4 with a discussion of our findings and future
research directions.

2. MATERIALS AND METHODS

2.1. Data Preparation
In this subsection, we briefly describe datasets used in this paper.
We use three biological datasets and one synthetic dataset to
validate our serial section image registration framework and
verify the registration accuracy theory. We first introduce the
biological datasets, then describe how to model a tubular neuron
as local sphere-like structures, and generate synthetic pre-aligned
image data.

2.1.1. Serial Section Neural Images Acquisition
Drosophila ssTEM (DST) dataset: These data were released by
Gerhard et al. (2013), containing 20 sections of a Drosophila
brain from serial section transmission electron microscopy
(ssTEM). The section thickness is 40-50 nm. The resolution is
1, 024× 1, 024 pixels with a 4.6 nm pixel size in the xy plane.

Drosophila FIB-SEM (DFS) dataset: These data include 31
serial sections of a Drosophila brain acquired using FIB-SEM
(Knott et al., 2008). The solution is 6, 684 × 6, 516 pixels with
a 9.15 nm pixel size in the xy plane. Because the serial EM
sections are highly anisotropic in resolution, the section thickness
is set to 100 nm. The sections of this dataset are imaged in
situ, while due to the imaging parameter drift, a little shift
has existed. It could be corrected by simple linear alignment.
The finely adjusted FIB-SEM images are often regarded as
the ground truth in serial section image registration and can
introduce synthetic deformation to simulate the deformation

received by real slices. We can quantitatively evaluate registration
methods by comparing the effect of aligning these artificially
deformed images.

To generate the artificially deformed images, each section
is first rotated by a random angle and shifted in a random
displacement. The random angle is uniformly distributed
between –90 and 90 degrees, and the random displacement is
uniformly distributed between –100 and 100 pixels. Then, in
order to simulate the nonlinear distortion during the section
cutting, we further distort every five sections artificially using
MLS (Schaefer et al., 2006) by displacing four control points. The
image is evenly divided into four parts by cross line, each control
point is randomly selected at random positions within the range
of more than 50 pixels from the edge of each part.

Drosophila ssTEM dataset from CREMI challenge (DST-

CREMI): CREMI dataset is from an adult Drosophila
melanogaster brain and imaged with ssTEM. It consists of 125
serial EM images with the voxel resolution size of 4 × 4 ×
40nm and pixel resolution of 1, 250 × 1, 250. CREMI datasets
have undergone strict manual registration and neurite membrane
annotation, which can be treated as the ground truth of the EM
image to be registered. We follow the process of Yoo et al. (2017)
to generate synthetic deformation data: deformed using the TPS
method (Bookstein, 1989) by several random vectors on random
positions. The random vectors were sampled from the normal
distribution with a zero mean value, and the random positions
were uniformly distributed in space.

2.1.2. Synthetic Dataset
Inspired by previous work modeled vessels as the envelope of a
family of spheres in Wang et al. (2020), we model the tubular
neuronal structure in biological tissue as a series of local sphere-
like structures, as shown in Figure 1A. Each local structure is
described by the spherical deformation model, which is analyzed
in detail in Hobolth (2003). The spherical deformation model
has been successfully used to fit the surfaces of neurons in
the human hippocampus. Further, we intend to simulate the
registration of local structure K in adjacent sections in neuronal
circuit reconstruction. The local structure K is cut into two
parallel planes with distance d, regarded as adjacent sections.
d is regarded as section thickness. The projections of K on
the cutting planes are regarded as image content. After the
projecting process, i.e., the simulated imaging process, we add
a translation to one image, regarded as image deformation
during the slicing and imaging process. Then, we register these
two images and analyze the relationship between registration
accuracy and neuronal structure shape. Figure 1B illustrates the
above process.

We generated a synthetic dataset based on the spherical
deformation model with the above description of modeling
local structure and simulated registration process. Now, we
briefly introduce the spherical deformation model for the
following accuracy analysis and synthetic data generation. For
a local structure K, the spherical deformation model selects
a point z ∈ K as origin and describes the surface of K
by spherical coordinates as {z + r(θ ,φ)ω(θ ,φ) : 0 ≤ θ <

2π , 0 ≤ φ ≤ π}. The unit direction vector ω(θ ,φ) =
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FIGURE 1 | (A) A tubular-like neuron is modeled as a sequence of local sphere-like structures described by a spherical deformation model with different parameters.

(B) Illustration of simulated imaging, image deformation, registration, and accuracy analysis process.

(cos θ sinφ, sin θ sinφ, cosφ) is the vector on the unit sphere
with polar longitude θ and polar latitude φ, and r(θ ,φ) is the
distance from z to the surface ofK. For simplicity, we consider the
normalized radius r(θ ,φ)/r̄, where r̄ is the mean radius length.
The normalized radius function is written as follows

r(θ ,φ) = 1+
∞∑

n=2

n∑

m=−n
amn ϕ

m
n (θ ,φ), (1)

where ϕmn (θ ,φ) is the spherical harmonic function. The spherical
harmonics are given by the following equations

ϕmn (θ ,φ) =





k
|m|
n P
|m|
n (cosφ) cosmθ , m = −n, . . . ,−1

k0nP
0
n(cosφ), m = 0

kmn P
m
n (cosφ) sinmθ , m = 1, . . . , n,

where kmn is normalizing constant and Pmn is the associated
Legendre function of the first kind. In the normalized radius
function, each coefficient amn of spherical harmonic function is
modeled as Gaussian random variables subject to N (0, λmn ). The
deformation model supposes there is stationarity on K, which is

obtained by assuming λmn = λn, n ≥ 2, m = −n, . . . , n.
Besides, the covariance of vectors r(θ1,φ1) and r(θ2,φ2) on K is
as follows:

Cov(r(θ1,φ1), r(θ2,φ2)) =
∑∞

n=2 λn
∑n

m=−n ϕ
m
n (θ1,φ1)ϕ

m
n (θ2,φ2)

=
∑∞

n=2 λn(k
0
n)

2Pn(cosψ),

(2)

where cosψ = ω(θ1,φ1) · ω(θ2,φ2), and ψ represents the spatial
angle between r(θ1,φ1) and r(θ2,φ2). The spherical deformation
model also supposes λn decrease according to

1/λn = α + β(np − 2p),

n ≥ 2, p > 2, α, β > 0.
(3)

The pre-defined parameter p determines the smoothness of K,
while the other two pre-defined parameters α and β determine
the global and local shape, respectively. More information about
the spherical deformationmodel can be found in Hobolth (2003).

As described above, we generated synthetic structures
containing displacements to validate registration accuracy
theory. The synthetic dataset includes 121 subsets with different
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α and β . Since in the deformation model (3), the exponential
term p non-linearly controls the convergence of λn to 0. To
better demonstrate the influence of different α and β , we fix p
to a proper value in all subsets. In Hobolth (2003), the author
used this deformation model to fit neurons in the human brain,
calculating p at [3.6, 4.4]. Here, we choose p = 4 for the following
experiments. Each subset constitutes 1,000 pairs of generated
shapes with r̄ = 150 pixels and thickness d = 40 pixels.
We assume that the length of a pixel in the synthetic dataset
corresponds to 1 nm in the imaging process. Thus, the above
sizes in experiments correspond to a regular neuronal structure
size and normal section thickness in ssTEM. The translation

between images is (4.5 pixels, 4.5 pixels). Figure 2A illustrates the
influence of α and β on the synthetic shapes.

2.2. Registration Accuracy Analysis
In order to explore the influence of different morphological
structures in nerve slices on image registration, we use the
spherical deformation model mentioned above to simulate the
neural morphological structure. Then, we analyze the registration
accuracy between two images containing projections of a local
structure.

Consider source image S and template image T in registration.
These two images are different cross-sections of local structure

FIGURE 2 | (A) Simulated projections of the spherical deformation model with p = 4 and changing α and β. The background color indicated R value. (B,C)

Comparison of theoretical variance and experiment results of estimated translation in X-axis on synthetic datasets. (D) The theoretical variance of estimated translation

with p = 4 and changing α and β.
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K with a shift introduced by the slicing and imaging process,
(1t,1s). In registration, we first extract N corresponding
landmarks lik = (xik, yik), k = {S,T} in image S and image T.
Landmarks are sampled at an equal angular interval on contours
relative to the selected origin. Next, we estimate the translation
based on the given cost function. The cost function in registration
is as follows

N∑

i=1
(xiT − (xiS + u))2 + (yiT − (yiS + v))2, (4)

where u and v are the translation on X-axis and Y-axis,
respectively. We align S and T by estimating the translation
(1̂t, 1̂s), which minimizes the cost function. Since we consider
translation-only registration, landmark liT is corresponding to
landmark liS, which are both sampled at the same longitude θi.
We use ρik to represent the distance from the origin to the ith
landmark lik. ρi is actually the projection of unnormalized radius-
vector on the plane, which means ρik = r(θi,φk)r̄ sinφk. As
mentioned above, researchers generally use ultra-thin sections
of 40 − 50nm for volume reconstruction. As a result, the size
of neuronal structures in adjacent sections are approximately
identical, i.e., the mean distance ρ̄T from the origin to the
neuronal structure contour in T roughly equals the mean
distance ρ̄S in S. This relation can be written as E(ρiT) ≈ E(ρiS),
and can be simplified to sinφT ≈ sinφS. In our analysis and
experiments, we suppose sinφT = sinφS = sinφ.

By computing the partial derivative of the cost function
concerning u and making the derivative function be zero, we get

1̂t =
1

N

N∑

i=1
(xiT − xiS) =

1

N

N∑

i=1
(x̄T + ρiT cos θi − x̄S − ρiS cos θi)

=1t +
r̄ sinφ

N

N∑

i=1
cos θi(riT − riS) ,

where x̄k is the X-axis coordinate of the origin in image k, and
x̄T = x̄S + 1t. The second-order moment of (1̂t − 1t) is as
follows

E
(
(1̂t −1t)2

)
=
r̄2(sinφ)2

N2
E




N∑

i=1

N∑

j=1
cos θi cos θj(riT − riS)(rjT − rjS)




=
r̄2(sinφ)2

N2

N∑

i=1,j=1
2 cos θi cos θj(CoviTjT − CoviSjT )

=
r̄2(sinφ)2

N2

∞∑

n=2
λn(k

0
n)

2

N∑

i=1,j=1
2 cos θi cos θj

(
Pn(cosψiTjT )− Pn(cosψiSjT )

)

(5)

where Covik1jk2 = Cov(r(θi,φk1 ), r(θj,φk2 )). The above analysis is

the same as 1̂s in the Y-axis. Equation (5) shows that the critical
factor affecting the estimation accuracy is the covariance λn when
the sampling interval and section latitude are fixed.

Consider the relationship between λn and neuronal structure
shape. Now, we analyze why a circle-like projection is more likely
to correspond to a more accurate registration result. According
to the method of estimating λn based on the Fourier coefficients
of a structure projection at polar latitude π/2 in Hobolth (2003),
we apply a Fourier transform to the radius-vector function of
a projection at polar latitude φ0, the radius-vector function in
terms of the Fourier basis is written as

r(θ ,φ0) =
b0√
2π
+
∞∑

n=1

(
bcn√
π
cos nθ +

bsn√
π
sin nθ

)
,

and the Fourier coefficients bsn of sin nθ are given by

bsn =
sinφ0√
π

∫ 2π

0
r(θ ,φ0) sin nθ dθ .

Under the spherical deformation model, the Fourier coefficient
can be modeled as a random variable:

bsn =
sinφ0√
π

∫ 2π

0
r(θ ,φ0) sin nθ dθ

=
sinφ0√
π

∫ 2π

0

∞∑

l=2

l∑

m=−l
aml ϕ

m
l (θ ,φ0) sin nθ dθ

=
√
π sinφ0

∞∑

l=n
knl P

n
l (cosφ0)a

n
l ∼ N (0, κn),

κn = π sin2 φ0

∞∑

l=n
(knl P

n
l (cosφ0))

2λl, n ≥ 2.

The above analysis is also applicable to the Fourier coefficient of
cos nθ . Because of the characteristics of variance (3), λl decreases
rapidly. In Hobolth (2003), the author found that κn is almost
only related to the first item λn. We simplify κn as follows:

κn ≈ Cn
l λn,

Cn
l = π sin2φ0(k

n
l P

n
l (0))

2, n ≥ 2.
(6)

Since bsn and bcn obey the same gaussian distribution, we have

bn = (bcn)
2 + (bsn)

2 ∼ κnχ2(2), n ≥ 2. (7)

We can get a good enough interval of λn with the interval
estimation method by selecting a reasonable confidence level α.
The estimated bound of λn is bn multiplied by a constant Cn,α

determined by α. Therefore, a larger bn often corresponds to a
larger λn. The accuracy of the bound of λn is determined by α.
By Equations (6) and (7), a larger bn is more likely to correspond
to a larger λn. We construct an index R to reflect the theoretical
registration accuracy,

R = − log

(
N∑

n=1
bn

)
. (8)
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On the one hand, based on the above analysis, we know that the
larger R is, the larger λn is likely to be, and with Equation (5),
the registration accuracy is expected to be worse. On the other
hand, since R is an index related to the Fourier coefficients, R
reflects whether a shape is close to a circle or not. We validate
the mean of R on the synthetic dataset, as Figure 2A shows. The
results show R increases with the shape roundness. According to
Figure 2A, we select Rthres = 6 as a threshold to judge whether
a local structure is a "sphere-like" object in the following process.
The other three results in Figure 2 demonstrate that registration
accuracy is positively correlated with shape roundness, just as
above analysis.

2.3. Serial Neural Image Registration
Based on the above neuronal morphological modeling analysis,
we further propose a novel framework for serial neural
image registration, which utilizes the characteristics of the
anatomical structure of nerve tissue to obtain a more reasonable
corresponding relationship. The proposed image registration
method for serial EM sections is presented in three parts:
neuronal morphological model-driven region selection,
correspondence extraction and global optimization, and
image deformation.

2.3.1. Neuronal Morphological Model-Driven Region

Selection
On the basis of Section 2.2, more regular circular regions
in the section image of neural tissue should be selected
to extract correspondences. Hence, in this part, we try to
obtain a mask of neural images that focus on the stable
structures and pay less attention to the variant structures.
First, we utilize the deep membrane segmentation network
"FusionNet (Quan et al., 2016)" and the traditional region
segmentation algorithm watershed (Bieniek and Moga, 2000)
to segment all neural structures. We then use the neural
morphological physical selection model to pick the stable
structures. Through the segmentation method and neural
morphological physical selection model, a mask is learned to
focus on the stable region and pay less attention to the changing
regions (unstable structure).

Algorithm 1 : Region selection.

Input: EM Image I
1: Membrane Segmentation:Mres← FusionNet(I)
2: Structure Segmentation: Sres←Watershed(Mres)
3: Number of Structures: Nres← CountStructures(Sres), i← 0
4: repeat

5: i← i+ 1
6: Get ith Structure Si in Sres
7: if R(Si) < Rthres, R is based on Equation (8) then
8: Delete Si in Sres
9: end if

10: until i >= Nres

11: M← Sres
Output: Region MaskM

FusionNet is widely used in cell membrane segmentation.
Similar to the traditional U-Net framework, Fusionet includes a
contraction path to extract features and a symmetrical expansion
path to better locate. Furthermore, it embeds a residual module
between lower sampling and upper sampling in each layer and
retains the layer hopping connection of U-Net. As a result, it
has more robust advantages than U-Net in neuron boundary
extraction (Quan et al., 2016). Therefore, in this paper, we
adopt the Fusionnet structure. The number of output feature
channels of the first residual block of the network is 32, and
the number of feature channels increases two times every
subsequent sampling. In addition, there are four lower sampling
layers. Similarly, there are four upper sampling layers. The
number of feature channels is reduced by two times every upper
sampling. The last layer of the network is the sigmoid function
to ensure that the range of the final output probability diagram
is between 0 and 1. Our loss function adopts the single-pixel
MSE function, which can ensure that the width of the output
cell membrane will not be thicker or thinner than the ground
truth. The training dataset is from the ISBI two-dimensional
electron microscopy segmentation challenge (Arganda-Carreras
et al., 2015), which included a 2 × 2 × 1.5 um3 volume imaged
from 30 sections and publicly available manual segmentations.
During instance testing, the corresponding binary image of
the cell membrane can be obtained. The watershed algorithm
(Bieniek and Moga, 2000) is used for different segment cells
in the process, which takes the similarity between adjacent
pixels as a reference so that the pixels with similar spatial
positions and similar gray values are connected to form a
closed contour. Finally, the desired more rounded regions are
selected by the morphological threshold Rthres. Algorithm 1
describes an implementation of the complete model-driven
region selection process.

2.3.2. Correspondence Extraction and Global

Optimization
After the specific structural regions were selected, we adopt SIFT-
flow (Liu et al., 2011) to extract the reliable correspondences
in these areas, assuming that the structure of the biological
tissue changes independently, which means that the angle of
the structure to the section plane is random. As an optical flow
method, SIFT-flow searches the correspondence for every pixel.
Pixelwise SIFT features between the adjacent section i and i + 1
are matched as a discrete optimization problem,

E(wi) =
∑
pi

min(‖si(pi)− si+1(pi + wi)‖1, t)

+
∑
pi

η(|u(pi)| + |v(pi)|)

+
∑

(pi ,qi)∈ε
min(α|u(pi)− u(qi)|, d)

+min(α|v(pi)− v(qi)|, d)

(9)

where wi(pi) = (u(pi), v(pi)), and si(pi) are the displacement
vector and the SIFT descriptor at location pi in section i,
respectively, ε contains all the spatial neighborhoods. The third
term in function 9 is used as a smoothness constraint, which
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FIGURE 3 | The results of extracting membrane boundaries and the selection of the regular circular region: (A) original image; (B) the results of membrane

segmentation; (C) the results of region selection.

FIGURE 4 | The mean and the variance in the displacement between the

regular circular areas, other areas and the whole image in two consecutive

layers.

constrains the adjacent pixels to have similar displacement. With
the assumption that the neighboring structures of the biological
tissue change independently, the extracted correspondences
between the adjacent sections are more reliable compared with
SIFT and block-matching methods.

Although all of the pixels in the selected regions of the
adjacent sections can be used as correspondences, the vertexes
of a grid placed in the section are selected due to computational
burden. The positions of the extracted correspondences need
to be adjusted so that the points of each correspondence at
the adjacent sections have the same positions in the xy plane.
To avoid error accumulation, the correspondences through all
of the sections are adjusted simultaneously. In addition to the
position consistency of the correspondences, the displacements
of these correspondences are constrained to be smooth and small,
which restricts the nonlinear deformation of the original images.

An energy function with an equality constraint for the sections
(i = 1, · · · , n) is utilized to calculate the displacement of the
correspondences.

E(wi, · · · ,wi, · · · ,wn) =
∑
i

∑
pi

(u(pi)
2 + v(pi)

2)+
∑
i

∑
∀(pi ,qi)

λ
dist(pi ,qi)

((u(pi)− u(qi))
2 + (v(pi)− v(qi))

2)

s.t. pi + wi = pi+1 + wi+1 for every correspondence (pi, pi+1)
(10)

where wi(pi) = (u(pi), v(pi)) is the displacement vector at
location pi in section i, and dist(pi, qi) is the Euclidean distance
between pi and qi. The equality constraint keeps the position
consistency of the correspondences between the adjacent sections
and avoids the value of the displacement vector wi in the energy
function to be zero.

2.3.3. Image Deformation
With the displacement vector of the extracted correspondences,
we have the positions of the points in the original section image
and their positions in the aligned image for each section. Any
image deformation method based on the control points could be
used to transform the original section into the aligned section.
Here, the moving-least squares (MLS) method (Schaefer et al.,
2006) is used to warp each section image. The deformation result
produced by the MLS method is globally smooth, and as a result
of using rigid transformation, rigidity and scale are maintained
locally so that the biological tissue can retain its local shape as
rigidly as possible.

3. EXPERIMENTS AND RESULTS

In this section, to illustrate the proprieties of our proposed
framework, we tested the effect of sub-modules: neuronal
morphological model-driven region selection module and
correspondence extraction and global optimization module.
Furthermore, we performed volume reconstruction experiments
on the serial section neural image datasets to demonstrate the
capability of the whole proposed framework.
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FIGURE 5 | Left: the points in the reference section. Middle: the correspondences extracted in the adjacent section. Right: the correspondences extracted in the

selected region map.

3.1. Neuronal Morphological Model-Driven
Region Selection
We assessed the efficiency of the neuronal morphological model-
driven region selection. We implemented the segmentation
network using Keras and used a GPU workstation equipped with
a NVIDIA 2080 Ti GPU. The neural cell membrane segmentation
network is trained and verified on the ISBI2015 dataset (Arganda-
Carreras et al., 2015), which is from Drosophila brain imaging by
FIB-SEM and has the ground truth of membrane segmentation
results. We got 95% membrane segmentation accuracy in the
test dataset. Then, we apply the network parameters to DFS
dataset, which has the same image style and could directly utilize
our pre-trained model. The images from DFS data are cut to
a smaller size of 512 × 512 to suit the network input. The
membrane segmentation result is shown in Figure 3B. After that,
the watershed algorithm is utilized to separate the regions of
neural structure. Then, through region selection guided by the
neuronal morphological model, we could get our desired stable
region mask as shown in Figure 3C. We could see that the
selected regions are relatively regular and concentrated in the
nerve fiber bundle areas.

To further verify that the selected areas are indeed the more
stable areas, we performed experiments using DFS dataset to
measure the registration accuracy. DFS dataset are imaged in
situ and the corresponding point is the direct correspondence
of the pixel position. We calculated the position deviation
of the corresponding points of the mask areas, the areas
outside the mask, and the overall image. The calculation
results showed that the mean and variance in displacement
calculated in our mask regions are smaller than other regions,
as shown in Figure 4. This proves that the regular circular

FIGURE 6 | The mean and the variance in the distances between the

extracted correspondences and the ground truth.

areas change slowly and verifies our hypothesis that the
stable regions extracted are more effective for improving
registration accuracy.

3.2. Correspondence Extraction and Global
Optimization
We quantitatively evaluated the accuracy of the correspondence
detection methods on adjacent sections acquired by DFS dataset.
As the sections are imaged in situ, we can measure the absolute
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FIGURE 7 | Registration results in the yz plane on the Drosophila FIB-SEM (DFS) dataset. (A,E) Ground truth. (B,F) Our results. (C,G) Wang CW results. (D,H) Elastic

results.
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distances of the extracted correspondences as the ground truth.
Among the 30 pairs of adjacent images in DFS dataset, we
randomly select five starting coordinates for cutting image pairs.
A total of 150 image pairs with 512 × 512 pixels are acquired
for evaluating the accuracy of the correspondences. Our method
was compared with two classical methods on correspondence
detection, block matching and SIFT. Block matching method
uses intensity information to search the correspondences. In
some previous reconstruction works, block matching method
was often used for slice image alignment (Saalfeld et al., 2012).
SIFT is a stable local feature descriptor, maintaining invariant to
rotation, scale scaling, brightness change (Lowe, 2004).

We tested block-matching methods with block size 21 × 21
and 41× 41, SIFT and SIFT-flow. SIFT detects correspondences,
and the points in the reference section are selected to
detect their correspondences in the other section by block
matching and SIFT-flow. Figure 5 displays the comparison of
the corresponding relationship extraction of image pairs. The
mean and the variance in the distances between the extracted
correspondences and the ground truth of 150 image pairs are
shown in Figure 6. As expected, most correspondences lie in
the selected regions, and the SIFT-flow method achieves the
best result because the extracted correspondences are calculated
considering the neighborhood information.

3.3. Evaluation of Serial Section Electron
Microscope Image Dataset
The registration of the serial section recovers three-dimensional
continuity and reconstructs the 3D structure of biological
tissue. To test the effect of restoring the z-axis continuity of
neural structure, we employed our proposed method on the
serial neural section images datasets: DST and DFS. Both the
subjective and objective evaluation criteria are considered as
methods to evaluate the results of serial section image registration
methods. We also employed our proposed method on the DST-
CREMI dataset for reasonably comparing with the learning-
based method ssEMNet (Yoo et al., 2017).

Subjective evaluation is usually conducted by experienced
technicians according to certain rules to score. In serial
neural image registration, this scoring evaluation depends on
the restoration of the continuity of the nerve structure in
the Z direction after registration. To visualize the continuity
performance of serial registration methods, we stack the serial
2D images into volume and get the Z-axis side view of
the alignment results. The side views of the reconstructed
anatomical object of the DFS dataset by the ground truth and
the compared methods are presented in Figure 7. We compared
our proposed method with the state-of-the-art serial section
registration methods: Wang CW’s (Wang et al., 2015) and Elastic
methods (Saalfeld et al., 2012). It is shown that the proposed
method and Wang CW’s method achieve solid reconstructed
objects with less discontinuity. While block matching-based
elastic method has more shaky alignment results than others.
These are mainly caused by the differences in the ability to extract
the corresponding relationships. The DFS datasets with 100 nm
slice thickness has large changes in the content of adjacent

TABLE 1 | The scores of the subjective evaluation of Drosophila ssTEM (DST) and

Drosophila FIB-SEM (DFS) dataset.

Dataset
Method

Elastic results Wang results Our results

DST dataset 2 33 65

DFS dataset 0 37 63

The highest values are marked in bold.

slice images. Due to the limited feature expression ability of
the block matching method, the elastic method easily gets the
incorrect correspondences when dealing with intensity changing
images, leading performance degradation. On the contrary,
Wang CW’s and our proposed method utilizing SIFT with
stronger presentation ability can better handle this. Compared
with Wang CW’s and our proposed method, the results of our
proposed method can better maintain the morphology of neural
structure. The correspondence constraint item of our proposed
method based on the flow field model can punish those abnormal
matching relationships, so as to reduce the matching error and
improve the accuracy of feature matching. What is more, the
correspondences extraction in line with the selection of neural
morphological structure can cope with the changes in image
contents from biological tissue. Hence, better registration results
are acquired by our proposed method.

We also counted the evaluation of registration results by
several experienced technicians. We produced a questionnaire
that contains the registration results of different methods. The
data of subjective evaluation are prepared as follows: the aligned
sections are placed sequentially on the z-axis, and the anatomical
object of the biological tissue is reconstructed by interpolating
along the z-axis to match the pixel size in the xy plane. The
reconstructed anatomical object should have a smooth neuron
membrane and mitochondria with a solid border, which is
evaluated subjectively on the randomly selected side view plane
by five experienced technicians for labeling electron microscopy
data. Each person has 20 images of each dataset, and the total
number of the to be evaluated images of each dataset is 100.
Each person can only choose the best method from the results
of various registration methods for each dataset, and the method
score of the dataset is increased by 1. The statistical scoring results
by experienced technicians are shown in Table 1. It is obvious
that our proposed method has the highest score. To some extent,
it can also show that our registration effect has better visual
continuity.

In order to further assess the effectiveness of our method on
other datasets, we evaluated our method, Wang CW’s method
(Wang et al., 2015) and Elastic method (Saalfeld et al., 2012)
on DST dataset. Compared with the experimental settings on
the DFS dataset, the Elastic method had different parameter
settings due to the different slice thicknesses (100 nm in the DFS
dataset, 40 − 50 nm in the DST dataset). The hyperparameters
of elastic method are block matching search radius and block
radius. After testing, we set 100 pixels block matching search
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FIGURE 8 | Registration results in yz plane on the Drosophila ssTEM (DST) dataset. (A) Wang CW results. (B) Elastic results. (C) Our results.
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FIGURE 9 | Structural similarity index (SSIM) between the aligned sections

and the ground truth.

radius, 20 pixels block radius in DST dataset, while 200 pixels,40
pixels in DFS dataset. The side views of the reconstructed
anatomical object of the DST dataset by these methods are
presented in Figure 8. The proposed method still achieves the
best visual effect considering continuity. We also notice that
compared with the results in the DFS dataset, the result of the
Elastic method in Figure 8 looks significantly less shaky. Wang
CW’s method and our proposed method do not suffer from
inconsistent alignment results on the used dataset. We find that
the difference in alignment resulting in a different dataset may
be related to the slice thickness. The difference between adjacent
images increases as the slices thickness increases. As mentioned
earlier, based on the feature selection and extraction of neural
morphological structure, combined with the constraints of global
optimization, our proposed method has a more stable alignment
performance when dealing with such intensity changing images.
This also proves that our method has better adaptability to
different datasets.

The structural similarity index (SSIM) (Wang et al., 2004)
is usually adopted to quantitatively measure the registration
accuracy as an objective evaluation criterion. We also computed
this objective evaluation criterion for the DFS dataset to
quantitatively evaluate the serial registration methods. Figure 9
presents the quantitative evaluation results of individual
approaches, the vertical axis represents the structural similarity
between each transformed source image and ground truth after
serial image registration. We annotated our proposed neuronal
morphological model-driven serial image registration method
as "Region SF" for better plotting figures. As the section index
increases, the score of theWang CW’s method declines obviously
because of error accumulation and propagation, which means
that artificial deformation of the images far away from the
reference image is aggravated. We notice that elastic method
shows higher consistency than other methods, for which we
thank the effective constraint of the elastic mesh model in
serial registration. However, elastic mesh model constraint also

TABLE 2 | Quantitative results comparison of structural similarity index (SSIM) on

Drosophila ssTEM (DST)-CREM datasets.

Method
Metric

SSIM (with GT) SSIM (with adjacent)

Elastic 0.2763 0.4007

Wang CW’s 0.2809 0.5402

ssEMNet 0.2982 0.6638

Ours 0.2847 0.6683

The highest values are marked in bold.

restricts the ability to process abnormal slices. When large
deformation occurs (slice damage or wrong correspondence),
the elastic method will propagate this abnormal condition under
the transmission of spring, leading to the poor performance
of the elastic method in Figure 9. Our proposed neuronal
morphological model-driven serial image registration method
has better SSIM value and retains the morphology of the original
section images better than the comparing methods, except for
the sections that suffered from the artificial generated distortion.
Although some distortions exist in the sections, most of the
section images still reflect the real 3D structure of the sectioned
biological tissue, which proved that our proposed method could
retain as much as the morphology of the acquired serial EM
section images as possible.

In addition, we used the open-source dataset DST-CREMI
for a reasonable comparison of our proposed method and
the learning-based serial section image registration methods
ssEMNet (Yoo et al., 2017), which receives extensive attention
from the serial image registration community. We reproduced
ssEMNet according to the parameters mentioned in the original
paper and tested it on a workstation equipped with Tesla V100
Graphics Processing Units (GPUs). SSIM index is utilized to
quantitatively measure the registration accuracy between the
aligned results and the ground truth image and between the
aligned results and the adjacent image. The quantitative results
in the Table 2 shows that our proposed method achieve the
comparable performance compared with ssEMNet and better
than elastic and Wang CW’s methods on DST-CREMI dataset.
The generalization of our method is proved again, which
is suitable for section image datasets from different imaging
modes and different samples. We could find that our proposed
method has a superior SSIM value (with adjacent). Although the
feature information output from the deep network has stronger
representation ability than the traditional feature descriptor,
our method performs better in maintaining the continuity
of biological structure by using biological prior information
screening the more robust corresponding points.

4. CONCLUSION

In this paper, we consider whether there are such stable
"markers" in the neural images to alleviate registration difficulty.
We employ the spherical deformationmodel to simulate the local
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neuron structure and mathematically analyze the relationship
between registration accuracy and neuronal structure shape in
two adjacent sections by the second-order moment of estimated
translation. Through modeling and analysis, we can prove
that the registration accuracy is positively correlated with
neuronal structure roundness, which is to say, the more regular
the structure, the more stable it is, and it is more conducive
to registration.

Based on the analysis results of neural morphological
modeling, we designed a new serial image registration framework
with a structure selection module, utilizing the characteristics
of the anatomical structure of nerve tissue to obtain a more
reasonable corresponding relationship. The proposed framework
consists of a neuronal morphological model-driven region
selection module, correspondence extraction and global
optimization module, and image deformation module. Our
proposed method leverages the deep membrane segmentation
network and neural morphological physical selection model to
select the changeless rounded regions in neural structure. The
output region selected masks combined with feature extraction
and global optimization of correspondence position to obtain
the deformation field of multiple images.

Compared with the state-of-the-art approaches, the proposed
method achieves better genuine deformation results and better
quantitative results on serial EM section image datasets.
However, we still have some limitations in that utilizing a deep
segmentation network selected region and SIFT-flow method
extracted correspondences to obtain the deformation field, not
a totally end-to-end method. The lack of joint optimization
in separate steps may lead to some reduction in registration

accuracy. The proposed method is not robust enough when the
images have large distortions. In the future, we will explore how
to use an end-to-end method to utilize the structural information
of ssEM images for better registration.
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