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Voices are a complex and rich acoustic signal processed in an extensive

cortical brain network. Specialized regions within this network support voice

perception and production and may be differentially affected in pathological

voice processing. For example, the experience of hallucinating voices has

been linked to hyperactivity in temporal and extra-temporal voice areas,

possibly extending into regions associated with vocalization. Predominant

self-monitoring hypotheses ascribe a primary role of voice production

regions to auditory verbal hallucinations (AVH). Alternative postulations view

a generalized perceptual salience bias as causal to AVH. These theories are

not mutually exclusive as both ascribe the emergence and phenomenology

of AVH to unbalanced top-down and bottom-up signal processing. The

focus of the current study was to investigate the neurocognitive mechanisms

underlying predisposition brain states for emergent hallucinations, detached

from the effects of inner speech. Using the temporal voice area (TVA) localizer

task, we explored putative hypersalient responses to passively presented

sounds in relation to hallucination proneness (HP). Furthermore, to avoid

confounds commonly found in in clinical samples, we employed the Launay-

Slade Hallucination Scale (LSHS) for the quantification of HP levels in healthy

people across an experiential continuum spanning the general population.

We report increased activation in the right posterior superior temporal gyrus

(pSTG) during the perception of voice features that positively correlates with

increased HP scores. In line with prior results, we propose that this right-

lateralized pSTG activation might indicate early hypersensitivity to acoustic

features coding speaker identity that extends beyond own voice production

to perception in healthy participants prone to experience AVH.

KEYWORDS

temporal voice area (TVA), voice perception, hallucination proneness, functional
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Introduction

The human voice is a complex signal that carries rich
information. This allows the listener not only to identify
linguistic messages but also who speaks and how something is
said (Belin et al., 2004; Lavan et al., 2019). Some individuals
experience auditory verbal hallucinations (AVH), in which they
perceive voices in the absence of a corresponding incoming
voice signal (Bentall, 1990; Anthony, 2004; Brookwell et al.,
2013). Experience of AVH is a key symptom of schizophrenia
(Bauer et al., 2011; Larøi et al., 2012; Hugdahl and Sommer,
2018). Yet, it is also reported in multiple other psychiatric,
developmental, and neurological disorders (Van Os et al.,
2000; Reininghaus et al., 2016; Waters and Fernyhough, 2017;
Rollins et al., 2019; Zhuo et al., 2019) and in a minority
of otherwise healthy people (Beavan et al., 2011; Linscott
and Van Os, 2013; McGrath et al., 2015). Variability in
AVH phenomenology exists within and across brain disorders
(Stephane et al., 2003; Jones, 2010) and between clinical and
non-clinical voice hearers (Daalman et al., 2011; Larøi et al.,
2012; Johns et al., 2014; Baumeister et al., 2017). However,
hallucinated voices commonly carry information regarding the
identity or emotion of a perceived speaker (Stephane et al.,
2003; Larøi and Woodward, 2007; Badcock and Chhabra, 2013;
McCarthy-Jones et al., 2014), therefore involving a wide range of
cortical areas in a voice perception network. Multiple cognitive
theories have been proposed delineating the emergence and
phenomenology of AVH (Jones, 2010; Ćurčić-Blake et al.,
2017; Rollins et al., 2019). One long standing model considers
hallucinations as the misattribution of self-generated input to
an outside source (Feinberg, 1978). In terms of AVH, signals
from voice production cortical regions during inner speech
are misperceived as hearing someone else speak (Allen et al.,
2007a; Jones and Fernyhough, 2007a,b; Swiney and Sousa,
2014; Gregory, 2016). Recently, competing theories have gained
traction, claiming that the initiation of hallucinations does not
require motor activity while they are, at their core, misperceived
sensations from the environment (e.g., Ford and Mathalon,
2019; Thakkar et al., 2021).

The selection and processing of sensory inputs from the
environment relevant to learning, adaptation, or behavioral
responses involves multiple regions and distributed networks
across the brain. The role of salience attribution within
this integrated system provides the necessary trigger to shift
processing from a state of rest to active sensation and perception
(Menon and Uddin, 2010; Menon, 2011; Palaniyappan and
Liddle, 2012; Uddin, 2015). According to this framework,
increased auditory cortex activation associated with AVH
can be ascribed to a bottom-up hypersensitivity, or salience
bias, toward irrelevant sounds. The modulation and over-
weighting of top-down predictions may influence this salience
bias as well as guide the system to perceive what it expects
in meaningless unimodal and multimodal stimuli (Friston,

2005, 2012; Fletcher and Frith, 2009; Deneve and Jardri,
2016; Jardri et al., 2016; Leptourgos et al., 2017). Since
voice signals in humans are inherently salient to human
listeners, they may be particularly implicated in hypersensitive
responses leading to false perceptions. Furthermore, for those
who experience AVH, the engagement of brain regions
controlling inner speech signals, memory retrieval, and
emotion may then guide the phenomenology of the perceived
speech in terms of content and speaker-related features
(Waters et al., 2012). Abnormal salience processing has been
strongly linked to positive symptoms of schizophrenia (Miyata,
2019).

Researching the contribution of these mechanisms to
AVH in non-clinical samples may be particularly useful as it
avoids potential confounds seen in clinical populations such
as medication, age of onset, and duration of symptoms that
may affect brain structure and function (Verdoux and van
Os, 2002; Kelleher et al., 2010; Kelleher and Cannon, 2011).
This perspective is in line with the experiential continuum
of psychosis (Johns, 2005; Beavan et al., 2011; Larøi et al.,
2012; de Leede-Smith and Barkus, 2013; Johns et al., 2014;
Zhuo et al., 2019), whereby functional variability in the
mechanisms serving perception across the population account
for the spectrum of normal experience, vivid perceptions
and imagery, sub-clinical forms of hallucinations, and those
seen in full-blown psychosis. The revised Launay-Slade
Hallucination Scale (LSHS) is as a measure of perceptual
experience and beliefs associated with vivid daydreams,
thoughts, imagery, and those related to false perceptions
such as visual and auditory hallucinations (Larøi and Van
Der Linden, 2005). The LSHS provides a measure of
hallucination proneness (HP), where higher scores signify
increasing abnormality in perceptual experience and beliefs,
including true hallucinations. Although individual items from
the LSHS can be used to identify the prevalence of AVH
(e.g., Kompus et al., 2015), HP itself is not a measure of
risk for psychosis.

Two critical factors have been incorporated into the
formulation of our hypotheses. First, differential brain activity
may indicate abnormal voice processing as a predisposition
for false perceptions, i.e., activation patterns similar to
those during hallucinations. Second, the localization of
reported changes in brain responses may indicate a specific
stage within hierarchical voice processing at which this
predisposition manifests. To date, no consensus has been
empirically established regarding a trait-based association
between hallucinations and brain responses to the voice. For
example, when presented with voices, patients who commonly
experience hallucinations display decreases (Copolov et al.,
2003), increases (Martí-Bonmatí et al., 2007; Parellada et al.,
2008; Escartí et al., 2010), or no activation differences in
voice selective temporal regions (Woodruff et al., 1997; Simons
et al., 2010). Such inconsistency is likely due to methodological
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heterogeneity (Bohlken et al., 2017). For example, these
studies differed in terms of stimulus type, stimulus content,
and the inclusion of a non-hallucinating patient control
group. Moreover, patients with chronic hallucinations can
experience spontaneous AVH during scanning (Jardri et al.,
2011; Kühn and Gallinat, 2012; van Lutterveld et al., 2013;
Zmigrod et al., 2016), which may even be unintentionally
elicited by tasks (e.g., Copolov et al., 2003; Parellada et al.,
2008). Although this hallucinatory state elicits brain activity
in voice perception regions, simultaneous external voice
input during AVH results in a paradoxical net activity
decrease (Kompus et al., 2011; Hugdahl and Sommer,
2018).

The localization of changes in functional brain activity
within the voice processing network can be particularly
informative in determining how HP may arise. Within the
upper bank and lateral regions of the temporal lobe, voice
signals are processed hierarchically along a pathway composed
of multiple functional subsystems or components (Belin et al.,
2004; Pernet et al., 2015; Zhang et al., 2021). The engagement
of these temporal voice areas (TVA) starts with the evaluation
of low-level acoustic features in the posterior superior temporal
gyrus (STG), an area specialized in processing spectro-temporal
properties of complex sounds (Griffiths and Warren, 2004;
Warren J. D. et al., 2005; Warren J. E. et al., 2005).
Further processing occurs along hemispherically specialized
pathways, with linguistic features predominantly in the left and
paralinguistic (i.e., speaker-related information) in the right side
of the brain (Belin et al., 2000; Formisano et al., 2008). However,
some stimuli such as emotional vocalizations contain both
speaker-and speech-relevant information and involve bilateral
processing of separate features in the signal (Schirmer and Kotz,
2006). Importantly, AVH often contain marked paralinguistic
information about speaker identity or emotion (Larøi and
Woodward, 2007; Larøi et al., 2012; McCarthy-Jones et al.,
2014). In non-clinical voice hearers, however, the degree of
perceived emotional valence is less prominent (Daalman et al.,
2012; de Boer et al., 2016). Speaker-related feature processing
operates along a multi-stage hierarchy in the right temporal
cortex along a posterior to anterior gradient (Nakamura et al.,
2001, Belin and Zatorre, 2003; von Kriegstein et al., 2003, von
Kriegstein and Giraud, 2004). The TVA localizer is a widely used
fMRI task which reliably identifies activation peaks localized in
the bilateral anterior, middle, and posterior superior temporal
cortex (Pernet et al., 2015). By comparing voice to non-voice
activation in response to passively heard sounds, regions of
interest (ROI) can be defined for further investigation. Using
ROIs produced by this task, we predicted HP-related early
sensitivity to low-level voice features to be isolated to the
posterior STG ROI. Alternatively, changes to voice processing
in the anterior direction of the right STG might indicate an
abnormal salience bias for identity or emotion associated with
an increasing propensity to hallucinate.

Methods

Participants

Twenty-six participants took part in this study, recruited
through the SONA system and social media channels at
Maastricht University, Netherlands. Participants were provided
with informed consent and offered university study credit
for compensation. Exclusion criteria included any history of
psychotic disorder, neurological impairment, history of drug
dependence or abuse, and traumatic brain injury. Participants
were screened for MRI safety and reported no metal implants,
claustrophobia, or pregnancy. Furthermore, all participants
reported no known hearing deficits. Robust statistics using
the interquartile range rule for participant age revealed one
outlier (Rousseeuw and Hubert, 2011), leading to the exclusion
of the dataset from further analysis. Of the resulting 25
individuals (17 female), the average age was 20.92 years (SD
3.95; range 18–32). The Ethical Review Committee of the Faculty
of Psychology and Neuroscience at Maastricht University
(ERCPN-176_08_02_2017) approved this study.

Hallucination proneness

The revised LSHS was employed as a self-report measure
of HP (Larøi and Van Der Linden, 2005). The questionnaire
consists of 16 items targeting tactile, sleep-related, visual, and
auditory modalities of psychosis-like experience as well as vivid
thoughts and daydreaming. Responses were given using a five-
point Likert scale, measuring the extent to which each statement
applied to them. The sum of all responses equated to an overall
HP measure. Furthermore, to investigate the exclusivity of
auditory-only items, subscores of three items were summed to
produce a composite score (Larøi et al., 2004; Larøi and Van Der
Linden, 2005).

Voice area fMRI-localizer task

Voice selective cortical brain regions were identified using
a standard fMRI-localizer task (Belin et al., 2000). This widely
used tool reliably probes activity across three bilateral peaks
in the superior temporal gyrus (e.g., Pernet et al., 2015), often
designated as anterior, middle, and posterior temporal voice
areas (TVA). Furthermore, many studies applying this task
have reported extra-temporal voice regions, such as the inferior
frontal cortex (IFC). The voice area localizer consists of 20
vocal (V) and 20 non-vocal (NV) trials. Additionally, 20 silence
(S) trials are included allowing relaxation of the hemodynamic
response to auditory stimuli. The voice condition is composed of
human speech (words, syllables, or sentence excerpts) and non-
speech voices produced by male and female speakers of different
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ages (7 babies, 12 adults, 23 children, and 5 elderly). This broad
selection of voice stimuli allows for the probing and inclusion of
functionally diverse regions of TVA. Conversely, the non-voice
condition includes environmental (natural and animal) and
man-made (e.g., cars, alarm clocks, instrumental music) sounds.
Sound clips are presented at a standard 70 db volume (for a
detailed report of the included sounds and recording duration,
amplitude, and frequency see Pernet et al., 2015). Trials were
presented in a pseudorandom order, each with a duration of
eight seconds. With a two second inter-trial interval, the total
run time of the task was 10 min.

FMRI data acquisition

Scanning was conducted using a Siemens 3T Magnetom
Prisma Fit equipped with a 32-channel head coil (Siemens
Healthcare, Erlangen, Germany), at the Scannexus facilities
(Maastricht, Netherlands). Structural whole-brain T1-weighted
images were acquired with a single-shot echoplanar imaging
(EPI) sequence [field of view (FOV) 256 mm; 192 axial slices;
1 mm slice thickness; 1 mm × 1 mm × 1 mm voxel size;
repetition time (TR) of 2250 ms; echo-time (TE) 2.21 ms].
For the functional localizer task, T2-weighted EPI scans were
collected (FOV 208 mm; 60 axial slices; 2 mm slice thickness;
2 mm × 2 mm × 2 mm voxel size; TE 30 ms; flip angle = 77◦).
To reduce scanner noise interference, auditory stimuli were
presented via S14 MR-compatible earphones, fitted with foam
earplugs (Sensimetrics Corporation). Furthermore, to provide
relative silence during playback of auditory stimuli, a long
inter-acquisition-interval was adopted where time between
consecutive acquisition was delayed, resulting in a TR of 10 s.
The delayed TR was timed to allow a 2,000 ms acquisition period
during peak activation in the auditory cortex (Belin et al., 1999;
Hall et al., 1999).

Data pre-processing and analysis

Pre-processing of the TVA localizer blood-oxygen-
level-dependent (BOLD) signal was conducted in SPM12
(Wellcome Department of Cognitive Neurology, London,
United Kingdom). A standard pipeline was applied using slice
timing correction, realignment and unwarping, segmentation,
normalization to standard (MNI) space (Fonov et al., 2009),
and 8 mm isotropic Gaussian kernel full width at half maximum
(FWHM) smoothing. Analysis followed a two-level procedure
in which contrast estimates were first determined as fixed effects
at the level of individual participants then modeled as random
effects at the level of the sample. Contrast estimates were
computed on BOLD data to assess voice sensitivity (V > NV)
and sensitivity to environmental sounds (NV > S) for each
participant. A first-level fixed-effects GLM analysis for the

conjunction analysis [(V > NV) ∩ (V > S)] was computed to
localize the temporal voice areas. A second-level random-effects
analysis tested for group-level significance and determined
the ROIs for parameter extraction. Contrast estimates of
V > S and NV > S were then used to contrast voice with
non-voice activity, corrected for baseline, in the subsequent
hypothesis-driven ROI analysis to investigate the correlation
of voice-preferential TVA activity compared to HP. Contrast
estimates were extracted from a 5 mm radius of the center
coordinates from each region of peak activity produced in
the TVA-localizer using the SPM MARSbar toolbox (Brett
et al., 2002). Pearson’s correlation analysis using bootstrapping
(5000 samples) and bias-corrected confidence intervals was
then employed to test for significant relationships between the
sensitivity of the voice ROIs and HP measures.

Results

Hallucination proneness

For the HP composite score (possible maximum score of
80), the mean self-reported rating was 25.20 (SD 10.47; range 0–
42). The HP auditory subscale mean score (possible maximum
score 15) was 3.92 (SD 2.74; range 0–11). To test for normality
of the distribution of demographics and HP across the sample,
Shapiro–Wilk tests were conducted. Both total LSHS (0.948,
df = 25, p = 0.229) and auditory subscale (0.928, df = 25,
p = 0.078) were not different from normal. A moderately strong
correlation was also found between LSHS auditory subscale and
non-auditory item totals (r = 0.457, df = 25, p = 0.019).

Voice area localizer

The fMRI localizer task produced 5 clusters covering
bilateral lateral temporal cortices, bilateral inferior frontal gyri,
and the right precentral gyrus (preCG) (Table 1 and Figure 1).
Within each bilateral temporal cortex “voice patch,” peak
activity localizations were distinguished in three distinct regions:
posterior (pSTG), middle (mSTG), and anterior STG (aSTG).
These regions correspond to the expected divisions of the TVA
localizer (Pernet et al., 2015).

FMRI correlation

Correlational tests were performed between contrast
estimates representing voice preference [(V > S) > (NV > S)]
observed in each TVA-ROI with both the composite HP score
and the auditory subscore of the LSHS. All thresholds for
significance were Bonferroni-adjusted for multiple comparisons
using (p < 0.025). Only the right pSTG reached statistical
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FIGURE 1

Temporal voice area fMRI localizer task results: Purple = right premotor cortex, dark blue = right posterior temporal gyrus, middle blue = right
middle temporal gyrus, light blue = right anterior temporal gyrus, orange = right inferior frontal cortex, dark green = left posterior superior
temporal gyrus, middle green = left middle superior temporal gyrus, light green = left anterior superior temporal gyrus, and red = left inferior
temporal cortex. All coordinates listed in MNI space (x,y,z). This image was created using the FSL toolbox fsleyes (McCarthy, 2022).

TABLE 1 Results from temporal voice area fMRI localizer task.

Cluster # Hem. Label BA x y z Cluster-Level p-FDR Peak-Level p-FDR Size (voxels)

1 L mSTG 22 −58 −10 −4 1.6782E-17 1.4637E-09 4145

pSTG 22 −60 −26 0 1.4637E-09

aSTG 22 −58 0 −8 1.3575E-08

2 R mSTG 22 56 −18 −2 2.0689E-17 1.4637E-09 4010

aSTG 22 56 0 −12 1.6043E-08

pSTG 22 54 −34 4 1.6043E-08

3 R pMC 6 52 2 48 0.0049 4.1457E-05 285

4 L IFC 44 −42 16 22 0.0383 0.0018 142

5 R IFC 44 40 16 22 0.0227 0.0302 180

Hem, hemisphere; (a/m/p) STG, (anterior/middle/posterior) superior temporal gyrus; pMC, premotor cortex; IFC, inferior frontal cortex; BA, Brodmann’s Area; p-FDR, false discovery
rate corrected p-value (threshold = 0.05). All coordinates listed in MNI space (x, y, z).

significance (r = 0.470, df = 25, p = 0.020) (Table 2 and
Figure 2). Post hoc correlation analyses were run to assess the
relative contributions of both voice (V > S) and non-voice
(NV > S) contrasts to correlational analyses (see detailed results
in Supplementary Material). We conducted these analyses
in order to rule out a general hypersensitivity of temporal
cortex activity non-specific to the conditions of interest probed
by the conjunction analysis. No significant correlations with
HP were found in any ROI for voice (V > S), however, a
significant negative correlation was reported in the right IFC
for non-voice (V > S) sensitive activity (r = −0.614, df = 25,
p = 0.001).

Discussion

The current study investigated whether a measure of
abnormal perceptual experience (HP) in a non-clinical sample
is associated with variability in the functional brain responses
of the temporal cortex regions serving detecting and processing
of voice signals. Considering the well-established roles of
specific voice sensitive regions of the cerebral cortex, we aimed
to determine if this putative relationship would be limited
to specific subprocesses in hierarchical voice perception. As
hypothesized, activity for voice versus non-voice processing
correlated positively with HP only in the pSTG, a region
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TABLE 2 Voice preference response [(Voice > Silence) > (Non-voice > Silence)] correlation with hallucination proneness results.

ROI LSHS LSHS-Auditory

Hem. Label µ SD CI (95%) r p r p

L aSTG 1.189 0.479 0.203–0.434 0.120 0.576 0.178 0.406

mSTG 1.505 0.586 0.997–1.380 −0.237 0.267 −0.024 0.915

pSTG 1.511 0.560 1.271–1.740 −0.058 0.791 0.055 0.797

R aSTG 1.019 0.452 0.838–1.200 0.266 0.208 0.165 0.440

mSTG 1.295 0.515 1.089–1.501 −0.177 0.408 −0.033 0.882

pSTG 1.213 0.406 1.051–1.375 0.470 *0.020 0.276 0.192

R pMC 0.625 0.447 0.446–0.804 0.087 0.685 −0.103 0.635

L IFC 0.319 0.288 0.204–0.434 −0.048 0.827 −0.025 0.911

R IFC 0.293 0.323 0.164–0.422 0.231 0.277 0.134 0.534

ROI, region of interest; (a/m/p) STG, (anterior/middle/posterior) superior temporal gyrus; pMC, premotor cortex; IFC, inferior frontal cortex; µ, mean activation from contrast; SD,
standard deviation; LSHS, Launay-Slade Hallucination Proneness scale; LSHS-Auditory, subset of 3 auditory items, r = correlation coefficient, Bonferroni-corrected significance level
(*p < 0.025).

FIGURE 2

Hallucination proneness fMRI correlation analysis results: Right posterior superior temporal gyrus (BA 22; MNI 54, −34, 4), Voice
preference = contrast estimate [(Voice > Silence) > (Non-voice > Silence)], LSHS = Launay Slade Hallucination Proneness scale. Correlation
coefficient r = 0.470, df = 25, p = 0.020.

associated with the early processing of low-level acoustic
features in complex auditory signals (i.e., Griffiths and
Warren, 2004; Warren J. D. et al., 2005; Warren J. E.
et al., 2005). Furthermore, this finding was restricted to
the right hemisphere and therefore is likely linked to the
processing of paralinguistic voice information (Belin et al.,
2000; Formisano et al., 2008). Additionally, post hoc analysis
revealed a negative correlation with HP in the right IFC
for non-voice versus silence. Together, these findings may
confirm that as the propensity to hallucinate increases, right
posterior temporal lobe voice hypersensitivity increases and is
accompanied by a decreased prefrontal response to non-vocal
environmental sounds.

Hallucination proneness and
hypersensitivity

Multiple neurocognitive mechanisms underlying
hallucinations have been proposed. Most commonly, these
theories have focused on describing the emergence and
phenomenology of pathological voice hearing in patients with
psychotic disorders such as schizophrenia (Allen et al., 2008;
Hugdahl, 2015; Ćurčić-Blake et al., 2017). The most influential
models describe atypical increases in brain activity in cortical
voice regions. The current investigation was approached from
the perspective of perceptual salience models claiming a central
role of hypersensitivity to irrelevant sensory stimuli in auditory
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regions (Menon and Uddin, 2010; Menon, 2011; Palaniyappan
and Liddle, 2012; Uddin, 2015). Conversely, prominent
self-monitoring models of hallucinatory experience describe
increased activity as the result of insufficient suppression of
sensory cortices during inner speech (Frith and Done, 1988;
Weiss and Heckers, 1999; Tracy and Shergill, 2006; Allen
et al., 2007a, 2008; Jones and Fernyhough, 2007b). According
to this theory, the activation of speech production regions
is required for the emergence of AVH. However, the current
results demonstrate that variability in voice processing cortical
regions in relation to HP exists without motor activity.

It is possible that theories proposing divergent involvement
of speech production and perception mechanisms in AVH
may be not mutually exclusive. Experiences of people who
hallucinate are diverse. As theories of HP become more specific
and concrete, they may become less well aligned with the
phenomenology of the hallucinator. Therefore, hallucinatory
experience might be best characterized by multiple subtypes, to
which specific theories might apply better than others (Jones,
2010). For example, models describing the phenomenology of
voice hearing ascribe the top-down contribution of intrusive
memories and thoughts to the quality of false perception
experiences (Hugdahl, 2015; Upthegrove et al., 2016; Bohlken
et al., 2017; Ćurčić-Blake et al., 2017). A core abnormality in
brain function central to the emergence of false perceptions
likely rests in the interactive process of top-down predictions
and bottom-up sensory input (Allen et al., 2008; Hugdahl, 2009,
2015; Kowalski et al., 2021). Regarding perceptual salience,
bottom-up hypersensitivity to sensory input is congruent with
established computation neuroscience accounts of predictive
coding in false perceptions (Sterzer et al., 2018). Here, weighted
top-down predictions and bottom-up explanations of sensation
interact along a hierarchical network, constantly updating via
Bayesian inference to form the most reliable percept (Friston,
2005, 2012; Fletcher and Frith, 2009; Feldman and Friston,
2010; Hohwy, 2017). When internal prediction signals are
weighted too strongly, one “senses what they expect.” Moreover,
when the top-down input is too strong, the threshold for
active perception may be reached under minimal sensory input.
However, the self-monitoring theory posits a delayed or absent
prediction signal resulting in increased activation of sensory
cortical regions and is therefore in apparent conflict with the
former account (Corlett et al., 2019; Leptourgos and Corlett,
2020). These expectations could operate on separate time scales,
at different levels of the information processing hierarchy,
or simply serve two different functions in hallucinations
(Thakkar et al., 2021).

The role of perceptual salience in a multistage process
leading to false perceptions has gathered substantial support
in functional neuroimaging. Namely, research into large-
scale functional brain networks has provided a resting-state
hypothesis, outlining brain states serving as a predisposition
for hallucinations, including voice hearing (Northoff and Qin,

2011; Northoff, 2014). While at rest, activation of the salience
network, under conditions of irrelevant stimuli, may interrupt
the Default Mode Network (DMN) and engage active sensory
processing (Alderson-Day et al., 2015, 2016; Schmidt et al.,
2015). The salience network therefore operates as a switch
between the DMN and central executive network and how
attention is directed toward incoming sensations, constituting
a triple network model (TMN) subserving the advent of
hallucinatory experience (Menon, 2011). Although we did not
acquire behavioral data from the participants with ratings of
perceived salience while listening to stimuli during scanning, we
suggest that the change in brain activity that we observed in the
right pSTG is indicative of the TMN in response to voice stimuli.

Hierarchical voice network processing

Voices are processed along a series of bilateral voice patches
in the posterior, middle, and anterior STG. These temporal
voice areas are reliably identified by a standardized TVA
localizer task (Pernet et al., 2015). Participants with greater HP
displayed increased right pSTG activation in response to vocal
stimuli. Activity in this region may reflect sensitivity to low-
level acoustic features during early stages of voice processing
(Griffiths and Warren, 2004; Warren J. D. et al., 2005; Warren
J. E. et al., 2005). Furthermore, the pSTG is not specialized
for voice processing per se, and likely plays a broader role
in extracting spectro-temporal acoustic features from complex
sounds, of which voices are an example. However, activation in
these regions preferentially responds to salient stimuli, such as
voices, over and above other similarly complex environmental
sounds (Pernet et al., 2007).

In terms of the salience hypothesis for hallucinatory
experience, the assignment of salience to irrelevant, neutral,
events must be considered in terms of the paralinguistic factors
which may be involved. Indeed, the phenomenology of AVH
is often marked by prominent paralinguistic features in the
identity and emotional valence of the hallucinated speaker
(Stephane et al., 2003; Larøi and Woodward, 2007; Badcock and
Chhabra, 2013; McCarthy-Jones et al., 2014). Individuals who
experience hallucinations often express difficulty in discerning
the identity of veridical voices. For example, in schizophrenia
patients who experience hallucinations, there is a bias to
externalize voices to another person (Johns et al., 2001; Allen
et al., 2007b; Mechelli et al., 2007; Pinheiro et al., 2016, 2017).
Likewise, severity of AVH in patients is increasingly altered
by emotional processing (Rossell and Boundy, 2005; Shea
et al., 2007; Alba-Ferrara et al., 2013; Tseng et al., 2013). The
role of salience may be influential in perceptions of speaker
identity, as misattributions are more prevalent for emotional
stimuli (Ditman and Kuperberg, 2005; Costafreda et al., 2008;
Pinheiro et al., 2016, 2017). However, the effects of emotional
valence in perceiving voice identity for people prone to false
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perceptions of voices has not shown clear consensus (i.e.,
Brookwell et al., 2013). Comparisons of AVH severity in patients
with schizophrenia with judgments of speaker identity have
indicated an increasing proneness to externalize voices with
negative content (Allen et al., 2004; Pinheiro et al., 2016).
In non-clinical groups, the involvement of salient emotional
features in voices is less clear. For example, higher levels of
HP in the general population are not associated with atypical
evaluation of emotional valence in words or vocalizations
(Pinheiro et al., 2019). However, it has been indicated that
non-clinical individuals prone to voice hearing require stronger
emotional information to consider a stimulus as emotional
(Amorim et al., 2021) or may allocate similar attention to
voices irrespective of their emotional salience (Castiajo and
Pinheiro, 2021). Future research is required into how variability
in perceived salience of speaker-related features may affect
processing in the hierarchical voice network and, in particular,
how posterior STG activity related to HP may be influenced.

In addition to the TVA findings, the localizer task often
provides a subset of extra-temporal regions indicating an
extended voice processing network (Pernet et al., 2015). In
our sample, extra-temporal peak activations were ascribed
to bilateral inferior frontal and right hemisphere premotor
cortex. Prefrontal involvement of the left IFC is commonly
found in voice perception, with different subregions serving
various functions. For example, the pars orbitalis is involved in
processing semantic and emotional information (Belyk et al.,
2017). Here, the left IFC peak was found in Broca’s area,
which has been theorized to represent mirror neuron activity
which may be useful in guiding conversational turn-taking
(Rizzolatti and Craighero, 2004; Grafton and Hamilton, 2007;
Kilner et al., 2007). Likewise, precentral motor regions are
involved in the perception and production of speech (Wilson
et al., 2004; Pulvermüller et al., 2006; Cheung et al., 2016).
This could explain speech production region activity sometimes
reported during AVH (Jardri et al., 2011; Kühn and Gallinat,
2012; Zmigrod et al., 2016). However, self-monitoring theories
take this as evidence for top-down inner speech signals guiding
the perceived hallucinatory voice. Notably, transcranial direct-
current stimulation targeting a fronto-parietal sensorimotor
network is an effective treatment for the alleviation of AVH
in patients with schizophrenia (Yang et al., 2019). In our
post hoc analysis, the right IFC ROI shows an intriguing negative
correlation to HP, however, only for non-voice sounds. The
right IFC may serve a role in salience processing, for example
in recognizing salient cues in voice signals (Johnstone et al.,
2006; Bestelmeyer et al., 2012; Charest et al., 2013; Johns et al.,
2015; Johnson et al., 2021). Additionally, this area shares a
high functional integration with temporal regions serving voice
perception and may assist successful voice recognition (Aglieri
et al., 2018). Although this finding is difficult to interpret on
its own, it may indicate a decrease in salience attribution for
environmental sounds during a voice perception task. This

may indicate not only an HP-related salience bias affecting
the sensitivity of cortical responses to voice sounds, but also a
general bias away from non-voice sounds between hypersalient
responses to intermittent voice stimuli.

Limitations and recommendations

We identify a number of limitations within the current study
and provide suggestions for future research. First, although
the use of the established TVA localizer task facilitated the
testing of our hypotheses regarding an early hypersensitivity
to voice sounds, it did not preclude further investigation into
how more complex stages of the voice processing hierarchy
may relate to HP. Specifically, BOLD responses from this task
are averaged across the trials containing different types of
voice stimuli. This implies that signals extracted from ROIs
serving different functional roles in voice processing, e.g.,
emotion or identity, do not represent the processing of specific
features, but rather constitute a generalized voice detection
signal. Second, in this study, behavioral measures of perceived
stimulus salience were not collected. Therefore, interpretations
of a salience bias attributed to increased functional brain
responses cannot be directly linked to the subjective perception
of the participants. Third, participants in the current study were
sampled from a relatively homogenous sample of university
students, similar in age, ethnicity, and cultural backgrounds.
Due to the uneven distribution of environmental risk factors
for psychotic symptoms throughout the population (Johns
and van Os, 2001, DeRosse and Karlsgodt, 2015; Baumeister
et al., 2017), our sample may unintentionally capture a set
of protective factors. To address these limitations in future
studies, we suggest a two-step procedure using a novel task
that systematically varies paralinguistic voice features. This
may allow investigations into how hierarchical processing
downstream of initial HP-related hypersensitivity may influence
responses to the perceived emotion or identity of the speaker.
Furthermore, behavioral appraisals of perceived salience may be
included to compare fMRI response patterns and HP scores.
Finally, subsequent research may benefit from an increased
sample size and diversity, including a structured collection of
additional demographic data and associated environmental risk
factors as possible covariates for HP-related brain changes.

Conclusion

We observed that HP is positively correlated with increased
activation in the right pSTG in response to passively heard
voices. This suggests a hypersensitivity associated with a
propensity to hallucinate in a region of the brain which
extracts low-level acoustic features from complex auditory
signals. The right pSTG comprises the early processing of
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voice signals along the paralinguistic information pathway of
the cortical voice processing network. We propose that this
increases activity in response to voices represents a perceptual
salience bias as a precursor for the emergence of hallucinations.
This interpretation is in line with functional network models
that posit abnormal engagement of a salience network during
irrelevant stimulus exposure as the underlying neurocognitive
mechanism of false perceptions. Furthermore, the current
findings conflict with self-monitoring accounts of inner speech
models that propose a critical role of voice production regions
in the inception of AVH. We have demonstrated that HP
is associated with right pSTG activation driven by external
auditory signals. Although we do not reject self-monitoring
accounts, we suggest that a state of cortical hypersensitivity to
irrelevant sensory input may be the first step in the emergence
of a hallucinatory experience, possibly followed by the influence
of top-down signals such as inner speech, memory, and thought
that together contribute to the phenomenology of AVH.
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