
ORIGINAL RESEARCH
published: 20 May 2022

doi: 10.3389/fnhum.2022.866118

Edited by:

Hiroshi Kadotani,
Shiga University of Medical Science,

Japan

Reviewed by:
Almira M. Kustubayeva,

Al-Farabi Kazakh National University,
Kazakhstan

Elzbieta Olejarczyk,
Institute of Biocybernetics and
Biomedical Engineering (PAN),

Poland

*Correspondence:
Gianluca Di Flumeri

gianluca.diflumeri@uniroma1.it

†These authors have contributed
equally to this work

Speciality section:
This article was submitted to

Brain-Computer Interfaces,
a section of the journal

Frontiers in Human Neuroscience

Received: 30 January 2022
Accepted: 19 April 2022
Published: 20 May 2022

Citation:
Di Flumeri G, Ronca V, Giorgi A,

Vozzi A, Aricò P, Sciaraffa N, Zeng H,
Dai G, Kong W, Babiloni F and

Borghini G (2022) EEG-Based Index
for Timely Detecting User’s
Drowsiness Occurrence in

Automotive Applications.
Front. Hum. Neurosci. 16:866118.
doi: 10.3389/fnhum.2022.866118

EEG-Based Index for Timely
Detecting User’s Drowsiness
Occurrence in Automotive
Applications
Gianluca Di Flumeri1,2*†, Vincenzo Ronca2,3†, Andrea Giorgi2,3, Alessia Vozzi2,3,
Pietro Aricò1,2, Nicolina Sciaraffa2, Hong Zeng4, Guojun Dai4, Wanzeng Kong4, Fabio
Babiloni1,2,4 and Gianluca Borghini1,2

1Laboratory of Industrial Neuroscience, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,
2BrainSigns srl, Rome, Italy, 3Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University
of Rome, Rome, Italy, 4School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, China

Human errors are widely considered among the major causes of road accidents.
Furthermore, it is estimated that more than 90% of vehicle crashes causing fatal and
permanent injuries are directly related to mental tiredness, fatigue, and drowsiness of the
drivers. In particular, driving drowsiness is recognized as a crucial aspect in the context
of road safety, since drowsy drivers can suddenly lose control of the car. Moreover,
the driving drowsiness episodes mostly appear suddenly without any prior behavioral
evidence. The present study aimed at characterizing the onset of drowsiness in car
drivers by means of a multimodal neurophysiological approach to develop a synthetic
electroencephalographic (EEG)-based index, able to detect drowsy events. The study
involved 19 participants in a simulated scenario structured in a sequence of driving
tasks under different situations and traffic conditions. The experimental conditions were
designed to induce prominent mental drowsiness in the final part. The EEG-based
index, so-called “MDrow index”, was developed and validated to detect the driving
drowsiness of the participants. The MDrow index was derived from the Global Field
Power calculated in the Alpha EEG frequency band over the parietal brain sites. The
results demonstrated the reliability of the proposed MDrow index in detecting the driving
drowsiness experienced by the participants, resulting also more sensitive and timely
sensible with respect to more conventional autonomic parameters, such as the EyeBlinks
Rate and the Heart Rate Variability, and to subjective measurements (self-reports).

Keywords: cognitive neuroscience, drowsiness, human factor, EEG, neurometrics, road safety, driving
performance, neuroergonomics

INTRODUCTION

According to reports of the World Health Organization (2021), every year 1.3 million people die
as a consequence of road traffic crashes. In this context, between 20 and 50 million people suffer
non-fatal injuries related to car accidents. Moreover, road traffic injuries are the leading cause of
death for children and young adults aged 5–29 years and, in terms of economic weight, road traffic

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 866118

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.866118
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.866118&domain=pdf&date_stamp=2022-05-20
https://creativecommons.org/licenses/by/4.0/
mailto:gianluca.diflumeri@uniroma1.it
https://doi.org/10.3389/fnhum.2022.866118
https://www.frontiersin.org/articles/10.3389/fnhum.2022.866118/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Di Flumeri et al. EEG-Based Driver’s Drowsiness Index

crashes cost most countries 3% of their gross domestic product.
Among the principal causes of road traffic accidents and
related mortality and non-fatal injuries are the human factors.
According to Sehat et al. (2012), the human factor has a direct
effect on 93% of crashes, which makes human behavior the main
cause of incidents. The most common errors occurring during
car driving related to human factors are strictly correlated to
tiredness, mental fatigue, and drowsiness (Choi et al., 2016). In
particular, drowsiness consistently increases the probability of
accidents while driving. The risk of crashes in drowsy drivers is
estimated to be 4–6 times higher than in awake drivers (Klauer
et al., 2006). Mental drowsiness is frequently associated with a
progressive decrease of reaction time, deficiency in processing
of available information, errors in short-term memory and
recalling, and less vigilant behavior (Ahmad Kamran et al., 2019).
In the context of driving, all these aspects can lead to the loss
of control of the vehicle, which later might collide with other
vehicles or stationary objects, potentially amplifying the human
and economic cost of the crash. Such concern is even more
relevant with long-haul professional drivers, that are usually
exposed to long driving sessions, possibly alternating with other
physically demanding activities such as loading/unloading goods
(Apostolopoulos et al., 2013). Just to provide a rough idea of the
concern, an Israeli epidemiological study reported that trucks
represent 6% of all vehicles, but truck crashes account for 20%
of road deaths in Israel (Sabbagh-Ehrlich et al., 2005). Mental
fatigue and drowsiness are univocally recognized as the main risk
factors in this context (LaDou, 1988; Maycock, 1995; Häkkänen
and Summala, 2000).

The automotive industry is relevantly investing in preventing
drowsiness-related road accidents (Macy et al., 2014), through
two main strategies: the first one consists of the development of
preventive systems directly integrated into the vehicles, such as
alarms and assistive modules (e.g., Lane Keeping) to support the
driver when unsafe behavior is detected (Saito et al., 2016). The
second one consists of the drivers’ monitoring to preventively
assess the drivers’ drowsiness and, therefore, intervene before the
drowsy driving behavior happens (Yeo et al., 2009; Roy et al.,
2014). The first strategy foresees the support of vehicle-based
sensors, i.e., interpreting the steering wheel data, steering wheel
angle, the applied pressure pattern on an acceleration paddle,
lane-position indicators, and pressure sensors integrated inside
the car’s seat (Akhlaq et al., 2012; Reyes-Muñoz et al., 2016).
The second approach is based on the analysis of physiological
and neurophysiological signals collected from the driver. In
fact, neurophysiological measures are considered a powerful
objective way to obtain reliable information about the driver’s
psychophysiological state on the basis of its mind-body relations
(Borghini et al., 2014; Di Flumeri et al., 2018, 2019b; Islam et al.,
2020; Marucci et al., 2021). Several previous works demonstrated
how the drowsy state can be detected by the analysis of the
eye-closure time, the increase of the eye-blinking frequency,
monitoring of head’s movement and pose, and yawning (Vitabile
et al., 2011). Other studies characterized the drivers’ drowsiness
by analyzing the Electrocardiographic (ECG) signal, in particular
evaluating the Heart Rate (HR) and Heart Rate Variability
(HRV; Borghini et al., 2012; Ahn et al., 2016; Chowdhury et al.,

2018). Besides these autonomic parameters’ analyses, a relevant
number of researches on drivers’ drowsiness characterization
were based on the brain cortical signals analysis (Xu et al., 2017;
Yeom et al., 2017; Wang et al., 2018; Barua et al., 2019). Eoh
et al. (2005) validated two Electroencephalographic (EEG)-based
indexes to characterize the drowsiness, consisting respectively of
Power Spectral Density (PSD)’s Alpha/Beta and PSD’s (Alpha +
Theta)/Beta ratios, while performing a driving simulation task
and by using an 8-channel EEG system. The increase of the
PSD in low and high Alpha and Theta bands while drowsiness
episodes were observed in drivers performing monotonous and
poor driving tasks by Lim et al. (2014) and Lin et al. (2005).
However, drowsiness generally occurs as an episodic event rather
than a prolonged state (Slater, 2008), resulting in ‘‘dozing off’’
phenomena (Haworth, 2019). In this sense, other EEG studies
characterized the drowsy drivers according to the Alpha spindles,
which is a short (0.5–2 s) burst of high-frequency Alpha activity
(Borghini et al., 2012; Lawhern et al., 2013). In this context,
Simon et al. (2011) proposed an algorithm to evaluate the
mental drowsiness under real car traffic conditions based on
different parameters derived from the Alpha spindles, such as
their peak frequency, amplitude, and duration. More recent
studies (Wang et al., 2020; Cui et al., 2021) demonstrated the
significant temporal correlation between the Alpha spindles and
the drivers’ drowsiness episodes. A very recent review by Stancin
et al. (2021) provides a detailed overview of the current state of
the art from both methodological and technological perspectives,
pointing out the huge variety of studies promoting different
approaches and methods. Nevertheless, these studies are still
far from being deployed in real applications aimed at real-time
monitoring of the driver’s state. Therefore, in scientific literature
there is still a lack of a synthetic index to evaluate the mental
drowsiness on the basis of the driver’s brain activity, while
driving and ready to be adopted in real time-like evaluation.
Current in-car systems are usually based on measuring the
driver’s yawning and eye blinking frequencies (Kuamr and
Barwar, 2014; Deng and Wu, 2019; Liu et al., 2019). However
these systems are affected by a low time resolution (minutes) to
detect the phenomenon, and thus they are not effective towards
episodic events. Indeed, high time resolution evaluation in such
a context can play a crucial role in preventing car accidents
and implementing precautionary measures in the assistive car’s
modules.

The present study aimed therefore at developing and
validating an innovative EEG-based monitoring technique to
detect the occurrence of driving drowsiness. In particular, we
aimed at:

• identifying the most prominent neurophysiological features
of driver’s brain activity under drowsiness to define the
EEG-based MDrow index;
• investigating the reliability of the MDrow index in detecting

driving drowsiness during monotonous driving conditions;
• evaluating the capability of the MDrow index with respect

to other indexes derived from autonomic signals (eye
movements and ECG) in timely detecting short-term episodes
of drowsiness.
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MATERIAL AND METHODS

Participants
Nineteen (19) participants were recruited, on a voluntary basis,
from the Sapienza University of Rome (12 males and seven
females, 28.1 ± 4.7 years old) with normal or corrected-to-
normal vision. The participants were selected in order to have
a homogeneous sample in terms of age, driving experiences
(7.89± 2.54 years in possession of their driving license), and cars
that normally they used to drive (specifically, manual gear and
not automatic one). All of them were prohibited to drink alcohol
and to have heavy meals for 1 day prior to the experimental
protocol, and they were asked to avoid caffeine, tea, or chocolate
consumption 5 h before the experiments. Informed consent was
obtained from each participant after an explanation of the study.
The experiment was conducted following the principles outlined
in the Declaration of Helsinki of 1975, as revised in 2008, and was
approved by the Sapienza University of Rome Ethical Committee
in Charge for the Department of Molecular Medicine.

Experimental Protocol
The experiments were performed between 2 p.m. and 5 p.m.
because daytime sleepiness tends to increase during those hours
(Baulk et al., 2001). The experimental main task consisted
of driving a car, the Alfa Romeo—Giulietta QV (1,750 TBi,
4 cylinders, 235 HP), along the Spa—Francorchamps (Belgium)
track. One experimental trial also required the participant to
simultaneously perform an Alert and Vigilance Task (TAV; Kong
et al., 2015). The alert stimuli, a white ‘‘X’’, were presented on a
monitor placed 70 (cm) from the participant just a little below
the frontal direction, avoiding interference with the main screen.
The vigilance stimuli were presented by two speakers placed on
the left and on the right side of the driver (Figure 1).

The whole protocol was developed along 2 days. The first
day of experiments was dedicated to the training of participants
with the driving simulator and to the familiarization with the
TAV. On the second day, the participants performed the track
under the different driving conditions. Each condition consisted
in driving two laps along the Spa—Francorchamps. In the first
condition (warm-up, WUP) the participants did not receive any
requests. Successively, the drivers were requested to perform
the race reducing 2% of their total time achieved in the WUP
condition (performance, PERFO). After that, the drivers had to
perform the driving task by keeping the total time achieved in
the PERFO condition and attending, at the same time, the TAV.
Therefore, the TAV condition was equal to the PERFO condition
in terms of the driving task (two laps of the circuit) but with the
TAV task as a secondary task. The participants could reply to the
TAV stimuli by pressing the button placed on the sides of the
steering wheel. In particular, button number one (left side of the
drivers) for the vigilance stimuli and button number two (right
side of the drivers) for the alert stimuli. This condition aimed to
enhance the task difficulty. The participants had to perform five
repetitions of the TAV condition, differing in terms of cognitive
demand. In particular, the cognitive demand of the TAV task was
modulated by modifying the frequency of the stimuli. So the five
repetitions of the TAV conditions differed in terms of stimuli

rate, and they were performed in a randomized way, i.e., not from
the easier (low stimuli rate) to the harder (high stimuli rate) one.
The analysis of the effects related to the different TAV repetitions
was out of the scope of the present study. Thus, for each analysis
(see Section ‘‘Performed Analysis’’) we preliminary checked if
there was any significant effect between the five repetitions of
the TAV condition with respect to the investigated parameters,
and since no significant effects were found, we concatenated the
five repetitions in a unique ‘‘TAV condition’’. The last condition
(DROW) was a monotonous night driving task, in which the
subjects had to drive very slowly (without significantly exceeding
the speed of 70 Km/h). The aim of the monotonous task after
high cognitively demanding conditions was to induce boredom
and finally drowsiness in the drivers. In fact, daytime with
respect to circadian rhythms (in this study the early afternoon),
the dark external conditions, and the low cognitive demand,
especially after a fatiguing period, are normally considered the
main contributing factors to the risk of drowsiness (Thiffault and
Bergeron, 2003; Wang et al., 2017; Ahmad Kamran et al., 2019;
Soares et al., 2020). At the end of each condition, the participant
had to fill in the NASA-Task Load index (NASA-TLX; Hart and
Staveland, 1988) questionnaire. The driving errors, in terms of
getting off the roadway, were also noted for each participant in
each experimental condition.

Data Collection
EEG Signal Recording and Processing
An Electroencephalographic (EEG) signal was recorded by a
digital ambulatory monitoring system (Brain Products GmbH,
Germany). Sixty-one EEG channels (Fp1, Fpz, Fp2, Af7, Af3,
Afz, Af4, Af8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5,
FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2,
C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8,
P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8,
O1, Oz, and O2), placed according to the 10–10 International
System, were collected simultaneously during the experiment
with a sampling frequency of 250 (Hz). All the electrodes were
referenced to both the earlobes, grounded to both mastoids, and
the impedances were maintained around 10 (kΩ). A 50-Hz notch
filter was applied to all measurements for removing main line
power interference. The EEG recordings were also band-pass
filtered [low-pass filter cut-off frequency: 40 (Hz), high-pass filter
cut-off frequency: 2 (Hz)] and then the Independent Component
Analysis (ICA) was used to remove eyeblinks and muscular
artifacts. For further sources of artifacts, specific algorithms of
the EEGLAB toolbox (Delorme and Makeig, 2004) were applied.
Specifically, the ICA-processed signal has been then divided
into 1-s-long epochs and three criteria have been applied in
order to automatically recognize artefactual data. Firstly, EEG
epochs with the signal amplitude exceeding ±80 µV (Threshold
criterion) were marked as ‘‘artifacts’’. Then, each EEG epoch
was interpolated in order to check the slope of the trend
within the considered epoch (Trend estimation). If such a
slope is higher than 20 µV/s, the considered epoch is marked
as ‘‘artifact.’’ Finally, the signal sample-to-sample difference
(Sample-to-sample criterion) was analyzed: if such a difference,
in terms of absolute amplitude, was higher than 25 µV, i.e., an
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FIGURE 1 | The experimental protocol consisted in driving the Alfa Romeo Giulietta QV on the Spa—Francorchamp (Belgium) track under different driving
conditions. On the top, a picture of the experimental environment. On the bottom, an overview of all the experimental tasks, including the initial Open Eyes (OE)
condition and all the driving tasks with related specific requests.

abrupt variation (no-physiological) happened, the EEG epoch
was marked as ‘‘artifact’’. In the end, the EEG epochs marked
as ‘‘artifacts’’ were removed from the EEG dataset with the aim
to have a clean EEG signal to perform the analyses. In total, the
3.3% ± 2.1% (mean ± standard deviation) of EEG epochs was
rejected for each participant.

From the artifact-free EEG, the Global Field Power was
calculated for the EEG frequency band of interest for the mental
drowsiness evaluation, which was the Alpha. The GFP was
chosen as the parameter of interest describing brain EEG activity
since it has the advantage of representing, in the time domain,
the degree of synchronization or a specific cortical region of
interest in a specific frequency band (Skrandies, 1990; Di Flumeri
et al., 2016b; Cartocci et al., 2018). The Alpha band was so
defined according to the Individual Alpha Frequency (IAF) value
(Klimesch, 1999) computed for each participant. Since the Alpha
peak is mainly prominent during rest conditions, the subjects
were asked to keep their eyes open for a minute before starting
the experiment. Such a condition was then used to estimate
the IAF value specifically for each participant. Consequently, an
EEG ‘‘strict’’ Alpha band was defined as Alpha = (IAF − 1) :
(IAF + 1) Hz. This definition of Alpha band is more restrictive
(thus ‘‘strict’’) compared to the vast majority of Alpha band
definitions that can be found in scientific literature, which is

(IAF− 2) : (IAF + 2) Hz. This approach was selected according to
Klimesch (2012), who demonstrated that a tighter band around
the IAF can be considered as Alpha to avoid the impact from
closer EEG frequency bands (Theta and Beta) variations on the
observed phenomena in Alpha band.

The GFP was calculated over all the EEG parietal channels
for each epoch using a Hanning window of the same length of
the considered epoch (1 s length, that means 1 Hz of frequency
resolution).

EOG and ECG Recordings
The electrooculographic (EOG) and electrocardiographic (ECG)
signals were recorded by using the same digital ambulatory
monitoring system employed for the EEG data collection. The
vertical EOG pattern was estimated by analyzing the EEG
Fpz channel. This analysis was based on the application of
a customized version of the Reblinca method (Di Flumeri
et al., 2016a) to isolate and identify the eyeblinks. The
EyeBlinks Rate (EBR) parameter was estimated to perform the
mental drowsiness evaluation during the different experimental
conditions. The Heart Rate (HR) and Heart Rate Variability
(HRV) parameters were derived from the ECG signal, collected
by one electrode positioned on the Erb’s point and the two EEG
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references placed on the earlobes, by applying the Pan-Tompkins
algorithm (Pan and Tompkins, 1985).

Performed Analysis
Experimental Design Validation
As the first analysis, it was validated the experimental design.
In fact, as introduced, the last driving condition (DROW)
was expected to induce drowsiness in the drivers, according
to scientific literature (Thiffault and Bergeron, 2003; Ahmad
Kamran et al., 2019; Soares et al., 2020), since:

• the experiments were conducted after lunchtime, so the
metabolism and the circadian rhythms should increase the
probability of experiencing drowsiness;
• the last condition (DROW) was performed in a dark room and

simulating a nighttime driving;
• the DROW condition was a monotonous and low-engaging

task after a large and high demanding experimental trial.

In order to validate the last assumption, behavioral, subjective,
and physiological measures were analyzed by deriving the
EBR from the EOG signal and the HR and HRV from the
ECG signal. The statistical analysis was performed on such
physiological parameters and the subjective measurements,
i.e., the NASA-TLX and the Driving Errors.

Neurophysiological Analysis
A preliminary statistical analysis on EEG topographic maps, a
spatial representation over the scalp of a specific EEG feature,
was performed in the Alpha band to identify the cortical
regions related to alpha synchronization during drowsy states. In
particular, for each EEG channel and along each experimental
condition, the Alpha GFP was estimated. The four experimental
conditions, i.e., WUP, PERFO, TAV, and DROW, were divided
each in five segments of equal duration. Subsequently, for each
EEG channel a Student’s t-test was performed between the
DROW condition and, respectively, the WUP, PERFO, and
TAV ones. If the test resulted was significant, the correspondent
EEG channel was red-colored if the GFP increased during the
DROW condition, and it was blue-colored if the GFP decreased
during the DROW condition. The degree of color intensity was
modulated by the t-value.

MDrow Index Development
Once identified the brain regions of interest, related to
the drowsiness effect (alpha synchronization), the following
procedure was adopted to define the MDrow index, in particular,
the parietal brain sites were considered. All the working
hypotheses of each intermediate step have been experimentally
validated, as described in the following.

Based on the assumption that the Alpha rhythm reaches the
maximum value in the resting state (OE condition; Klimesch,
1999), the GFPs related to all the experimental conditions were
referenced to the OE condition. The Alpha-OE ratio index was
therefore defined as a time-domain function:

Alpha-OE ratio (t) =
Alpha GFP(t)i-condition

max
(
Alpha GFPOE condition

)

where Alpha GFP(t)i-condition is the GFP computed in Alpha
band in the i-th experimental condition, and the max (Alpha
GFPOE condition) is the maximum value of the GFP computed in
Alpha band during the OE condition.

Then, statistical analysis was performed to confirm the
working hypothesis that such an index was sensitive to mental
drowsiness. In particular, the distributions of the Alpha-OE ratio
for each condition were compared in terms of:

- Median values to verify that this parameter was actually higher
during the DROW condition, while WUP, PERFO, and TAV
should not differ.

- Skewness values: according to the theory of alpha spindles
(please refer to Introduction) the distribution of this parameter
should show a right (i.e., positive) skewness only during the
DROW condition.

Once such a hypothesis was confirmed, a threshold was
determined for each participant to detect the presence of eventual
peaks, i.e., index transients due to high synchronization among
electrodes as a consequence of spindles. In this regard, the WUP
condition was preliminarily demonstrated to be not significantly
different from PERFO and TAV ones. Therefore, we used the
WUP condition as a sort of ‘‘reference condition’’ to estimate the
individual threshold as follows:

Threshold =mean
(
Alpha-OE ratio

)
+ 3 ∗ std

(
Alpha-OE ratio

)
Where mean(Alpha-OE ratio) is the mean value of the Alpha-OE
ratio and std(Alpha-OE ratio) is its standard deviation.

Such a threshold was subsequently employed to identify
the peaks of the Alpha-OE ratio along the PERFO, TAV, and
DROW conditions: in particular, each local maximum of the
signal exceeding the threshold was marked as a ‘‘peak’’. These
three conditions were so compared to verify that the number,
amplitude (difference between the threshold and the maximum
value of the peak), and duration (the time interval between the
two local minimum points before and after a peak), of such peaks
(a consequence of the alpha spindles) were higher during the
DROW condition.

Finally, the convolution of the Alpha-OE ratio above the
threshold with a 30-seconds-long rectangular window was
estimated to integrate these three parameters in a synthetic
indicator. The result of the convolution corresponded to the
Mental Drowsiness (MDrow) index.

Statistical Analysis
All the previously mentioned comparisons have been
investigated by means of statistical analyses, that were carried
out using Statistica 12 software (Statsoft Europe). When
performing groups analysis, for each participant, the EEG GFP
in the Alpha band, EBR, HR, and HRV measured from the
data collected during the OE condition were subtracted from
analogous data collected during the experimental conditions
in order to handle the inter-individual variability. The new
EBR, HR, and HRV parameters were named respectively EBR’,
HR’ and HRV’.
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Firstly, the normality of the analyzed distributions was
assessed by performing the Shapiro–Wilk test. If normality
was confirmed, Student’s t-test would have been performed to
pairwise compare the conditions (e.g., ‘‘DROW vs. PERFO’’). In
the case of non-normal distribution, the Wilcoxon signed-rank
test was performed. In case of comparisons between three or
more distributions, the analysis of variance (ANOVA) or its
non-parametric equivalent (Friedman ANOVA) was performed.
For all tests, statistical significance was set at α = 0.05.

Finally, Pearson’s repeated measure correlation (rmcorr)
analysis (Bakdash and Marusich, 2017) was then used to compare
the EBR’ and MDrow patterns during the condition in which the
mental drowsiness was induced (DROW).

RESULTS

Experimental Design Validation
The Friedman test performed on the NASA-TLX and the
Driving Errors revealed a significant main effect among the
different conditions (NASA-TLX: p = 0.001; Driving Errors:
p = 0.002). Then, the Wilcoxon signed-rank test showed a
significant decrease in the perceived mental workload during
the DROW condition compared to the WUP, PERFO and TAV
ones (DROW vs. TAV: p = 0.001; DROW vs. PERFO: p = 0.003;
DROW vs. WUP: p = 0.01; Figure 2). Similarly, the Driving
Errors parameter during the DROW condition was significantly
lower compared to the others (DROW vs. TAV: p = 0.002;
DROW vs. PERFO: p = 0.002; DROW vs. WUP: p = 0.007;
Figure 2). In both analysis, no significant differences were found
between WUP, PERFO, and TAV. Taken together, these results
indicated that the DROW condition was perceived as simpler
and monotonous by the participants with the respect to the other
tasks.

The following Table 1 includes the average durations related
to each driving condition and shows how the DROW condition
was relevantly longer (because of the limited speed) than the
others:

In terms of physiological parameters, Figure 3 shows the
results in terms of normalized EBR. The ANOVA performed
on the EBR’, HR’ and HRV’ revealed a significant main effect
among the different driving conditions (all p < 0.01). The
post-hoc tests indicated that during the DROW condition the
EBR’ was significantly higher compared to the others (DROW
vs. TAV: p = 0.002; DROW vs. PERFO: p = 0.005; DROW
vs. WUP: p = 0.002). Regarding the ECG analysis, both the
normalized HR and HRV parameters significantly decreased
during the DROW condition compared to the PERFO one (HR:
p = 0.02; HRV: p = 0.01). In other words, also in terms of
autonomic physiological parameters, only the DROW condition
significantly differed from the others, resulting in a higher eye
blink rate, a lower heart rate as well as a lower heart rate
variability.

EEG Topographic Maps
Figure 4 shows the statistical differences between the DROW
condition compared respectively to the PERFO, TAV, and WUP
ones (all p < 0.05). The analysis highlighted a common trend in

terms of statistical increase of the EEG GFP in the Alpha band in
frontal and parietal regions during the last two segments of the
DROW condition compared to the others. In other words, WUP,
PERFO, and TAV are supposed to induce a different cognitive
demand depending on the specific task requests, therefore it is
plausible to obtain a different ‘‘maps layout’’ if compared with
the same condition, i.e., vs. DROW, as it happens in the first three
segments. However, the similar ‘‘maps layout’’ arising in the last
two segments means that a prominent phenomenon is appearing
in the DROW task, according to our working hypothesis.

EEG-Based Parameters Results
The Friedman test performed on the median of the Alpha-OE
ratio along each driving task highlighted a significant main
effect (p < 0.001) among the different conditions. The Wilcoxon
signed-rank test was performed to investigate any significant
within effect, revealing a significant increase in the Alpha-OE
ratio during the DROW condition compared to the WUP,
PERFO and TAV ones (DROW vs. TAV: p = 0.001; DROW
vs. PERFO: p = 0.003; DROW vs. WUP: p = 0.001), while no
significant differences have been found among WUP, PERFO,
and TAV (Figure 5). Similarly, the skewness of data distributions
revealed the same pattern across the experimental conditions
(DROW vs. TAV: p = 0.03; DROW vs. PERFO: p = 0.007; DROW
vs. WUP: p = 0.02), while again no significant differences have
been found among WUP, PERFO, and TAV (Figure 5). Both the
presented results are resumed by the histogram represented in
Figure 5.

Once established that the WUP condition was not different in
terms of Alpha-OE ratio compared to the PERFO and TAV ones,
during such a condition an individual threshold was evaluated in
order to identify the peaks (intended as a cue of alpha spindles)
of the Alpha-OE ratio, according to the development procedure
described in ‘‘MDrow Index Dvelopment’’ Section. Figure 6
shows the Alpha-OE ratio peaks’ identification according to the
computed threshold for a representative subject.

The Friedman test performed on the e peaks rate, amplitude
and duration indicated a significant main effect among the
different driving conditions (all p < 0.007). The Wilcoxon
signed-rank test performed on the above-mentioned parameters
revealed in all the cases a significant increase during the DROW
condition compared to the PERFO and TAV ones (Figure 7). The
statistical results are resumed in Table 2.

Mental Drowsiness (MDrow) Index Results
The Friedman test performed on the MDrow index, and
its non-zero percentage computed along each experimental
condition, revealed a significant main effect among the different
driving tasks (all p < 0.002). The Wilcoxon signed-rank test
performed on such an index showed a significant overall increase
of the index itself during the DROW condition compared to the
PERFO and TAV ones (DROW vs. TAV: p = 0.01; DROW vs.
PERFO: p = 0.004; Figure 8). Similarly, the non-zero percentage
of the MDrow index along each experimental condition was
significantly higher during the DROW condition (DROW vs.
TAV: p = 0.001; DROW vs. PERFO: p = 0.0008; Figure 8).
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FIGURE 2 | On the left, the difference in terms of perceived difficulty (mental workload score obtained from the NASA-TLX questionnaire filled at the end of each
driving task) of the performed task during the different experimental conditions (all p < 0.01). On the right, the statistical decrease of driving errors during the DROW
condition compared to the others can be observed (all p < 0.01). The asterisk(s) indicate whether the post-hoc paired tests are significant (p < 0.05).

TABLE 1 | The average durations related to each driving condition (two laps).

Driving condition WUP PERFO TAV DROW

Average time (per lap) 6’33” ± 0’54” 5’48” ± 0’51” 6’21” ± 1’08” 12’15” ± 1’47”

Figure 9 shows the time dynamics of the MDrow
index along all the experimental conditions for a
representative subject.

In the following Figure 10, it is provided a figure qualitatively
validating the rationale behind the development of the MDrow
index, i.e., the sensitivity of such an index in recognizing the
alpha spindles.

Correlations
The Pearson correlations between the EBR’ and MDrowindex
performed during the DROW conditions per each participant are
reported in Table 3:

The Pearson’s repeated measure correlation between the EBR’
and MDrow index performed during the DROW condition
revealed a moderate and significant correlation (R = 0.49,
p < 10−6).

DISCUSSION

Experimental Design Validation
The impact of humans’ errors while driving in real traffic
conditions can be very relevant in terms of human and economic
costs (World Health Organization, 2021). Moreover, among the

different human factors increasing the probability of committing
errors, mental drowsiness is one of the most critical one since
it immediately precedes the blow of sleepiness. The present
study aimed at developing and investigating the reliability of
an innovative EEG-based index for detecting the risk of mental
drowsiness insurgence while driving and at comparing the
sensitivity of such an index with respect to the insights provided
by current physiological approaches based on eye movement
and ECG derived indexes. In order to achieve these objectives,
19 participants were involved in a simulated driving protocol,
divided into four tasks requiring a different level of driving
performance.

The experiments were designed making the a-priori
assumption that the last driving task, the DROW condition, was
the one inducing mental drowsiness in the participants. In fact,
according to scientific literature (Thiffault and Bergeron, 2003;
Wang et al., 2017; Soares et al., 2020), the participants had to
perform the study in the early afternoon after lunch (when the
insurgence of drowsiness is probable), the DROW driving task
was performed in dark external conditions (nighttime in the
simulation task and dark room), it follows a highly demanding
and fatiguing period, and it was characterized by a very low and
monotonous cognitive demand.
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FIGURE 3 | The normalized EBR (Eye Blink Rate) was significantly higher during the DROW condition compared to the WUP, PERFO, and TAV ones (p = 0.03). The
asterisk(s) indicate whether the post-hoc paired tests are significant (p < 0.05).

The statistical analysis performed on the driving errors and
subjective perception of the task load (NASA-TLX) validated
this preliminary assumption on the experimental design:
both the behavioral parameters were significantly lower (all
p < 0.05) only during the DROW condition compared to
the others. In other words, such analysis confirms that the
driving task performed during the DROW condition, besides
being notably longer (almost the double) than the others,
was perceived as significantly low engaging compared to the
others.

This evidence is confirmed by the neurophysiological brain
patterns (Figure 4). More specifically, the GFP in the Alpha band
was significantly higher during the DROW condition compared
to the WUP, TAV, and PERFO ones (all p < 0.05), as expected
from the scientific literature (Lim et al., 2014). While EyeBlinks
Rate, Heart Rate, and its Variability highlighted the overall
very low physiological activation of the participants along the
DROW task. This evidence again confirms that the DROW
condition induced a psychophysiological effect on the drivers
compatible with drowsiness insurgence, since the EEG alpha
rhythms increased, as well as the eye blinks rate, while heart rate
and its variability decreased (Borghini et al., 2012).

EEG-Based Approach for Characterizing
Driving Drowsiness
Apart from validating the experimental design,
neurophysiological evidence of a relevant increase of Alpha

activity on both frontal and parietal sites supported our working
hypothesis of deriving the MDrow index from the increased
synchronization of parietal sites in terms of Alpha activity,
according also to previous scientific literature (Eoh et al.,
2005; Borghini et al., 2012). The GFP was so chosen as the
EEG-related indicator for representing in a synthetic way
the synchronous activation in the alpha band of a specific
cortical area, in our case the parietal one. In particular, for
each participant, such indicator computed along the tasks has
been related to the maximum achieved along the OE condition,
i.e., a resting state when the alpha activity is supposed to
achieve the maximum individual values (Klimesch, 2012).
This procedure allowed us to normalize individual scales
and thus perform group analysis. So, the Alpha-OE ratio
was analyzed in order to investigate its behavior along the
DROW condition with respect to the other driving tasks. In
fact, taking into consideration scientific literature related to
the alpha spindles phenomena related to drowsy episodic
events (Wang et al., 2020; Cui et al., 2021), as well as the
neurophysiological results highlighting the overall higher alpha
activity during the DROW task (Figure 4), we expected that
the distribution of the alpha-OE ratio should show higher
median values (i.e., the DROW condition caused an overall
high alpha synchronization) with a large number of values
higher than the median (i.e., alpha spindles should cause
‘‘peaks of alpha synchronization’’ along the task). Actually, the
analysis of alpha-OE ratio distributions along all the driving
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FIGURE 4 | The topographic maps represent the statistical difference between the DROW condition compared to, respectively, the PERFO (first row), TAV (second
row), and WUP (third row) condition in terms of power of EEG activity in Alpha band (all p < 0.05). Red color indicates an increase of the alpha activity, while blue
indicates a decrease.

FIGURE 5 | On the left and center, the median and the skewness of the Alpha-OE ratio index were significantly higher during the DROW condition (p < 0.05). On the
right, the histograms of the Alpha-OE ratio distributions are represented during the PERFO, TAV, and DROW conditions. In particular, the DROW distribution is visibly
larger and more skewed (i.e., there are more greater values) than the others. The asterisk(s) indicate whether the post-hoc paired tests are significant (p < 0.05).

TABLE 2 | The statistical analysis revealed a statistical increase of the Alpha-OE peaks rate, duration and amplitude during the DROW condition (all p < 0.002).

Comparison Alpha-OE peaks rate Alpha-OE peaks amplitude Alpha-OE peaks duration

DROW vs. TAV p = 0.001 p = 0.0008 p = 0.007
DROW vs. PERFO p = 0.0009 p = 0.0005 p = 0.002

tasks confirmed these working hypotheses, revealing how the
distributions of this ratio were almost similar (i.e., without
any significant difference) along the WUP, PERFO, and TAV

tasks, while it was significantly higher along the DROW task,
and even more, with a higher positive skewness. The latter
result is the consequence of the presence of singular higher
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FIGURE 6 | After computing the individual threshold during the WUP condition (thus not included in the following analysis), the Alpha-OE ratio peaks were identified
in each experimental condition.

FIGURE 7 | The Alpha-OE ratio peaks rate, amplitude and duration during the DROW condition were significantly higher compared to the TAV and PERFO ones (all
p < 0.002). The asterisk(s) indicate whether the post-hoc paired tests are significant (p < 0.05).

values, potentially linked to spindles events, and thus driving
us towards the further development of the drowsiness index.
Also, the similarity of WUP, PERFO, and TAV tasks is an

important result of this study. In fact, these three driving tasks
were different in terms of cognitive demand: with respect to
WUP, PERFO included the specific request of increasing driving
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FIGURE 8 | On the left, the MDrow index was significantly higher during the DROW condition (all p < 0.01). On the right, the MDrow index was higher than zero in
more than 50% during the DROW condition, while its non-zero percentage was lower than 12% during the TAV and PERFO conditions. The asterisk(s) indicate
whether the post-hoc paired tests are significant (p < 0.05).

FIGURE 9 | The time dynamics of the MDrow index (red bold line) along all the experimental conditions show its relationship with the GFP alpha peaks (gray
background line).

speed to improve performance. TAV even included a secondary
task to accomplish while driving. Undoubtedly, these additional
requests varied the cognitive demand by including new mental

processes related to motor coordination, attention, vigilance,
situation awareness, working memory, and even stress, thus
potentially modifying the underlined neurophysiological activity
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FIGURE 10 | In red on the top, the MDrow index. On the bottom, the EEG signals from the parietal sites filtered in alpha band. The MDrow index is sensitive in
recognizing the alpha spindles, in fact it increases while alpha spindles (i.e., synchronization phenomena) occur.

TABLE 3 | The Pearson correlations between the EBR’ and MDrow index
performed during the DROW conditions per each participant.

Participant ID R value p value

Subject 1 0.3618 0.0963
Subject 2 0.8350 0.0004
Subject 3 0.5806 0.0081
Subject 4 −0.41084 0.2357
Subject 5 0.3688 0.0851
Subject 6 0.7635 0.0007
Subject 7 −0.1844 0.1863
Subject 8 0.8381 0.0003
Subject 9 0.7697 0.0011
Subject 10 0.7017 0.0018
Subject 11 0.6993 0.0027
Subject 12 −0.0819 0.4128
Subject 13 −0.0715 0.3965
Subject 14 0.6721 0.0024
Subject 15 0.3848 0.0753
Subject 16 0.3042 0.0846
Subject 17 0.4866 0.0237
Subject 18 0.2548 0.1028
Subject 19 0.4082 0.0376
Positive and significant correlations 10

Values in bold represent statistically significant (p < 0.05) correlations.

(Alizadeh and Dehzangi, 2016; Borghini et al., 2017, 2020;
Protzak and Gramann, 2018). Therefore, the result proved the
robustness of such an index towards psychological phenomena
other than drowsiness.

Reliability and Novelty of the MDrow Index
Once validated the rationale of the drowsiness index from a
physiological point of view, i.e., the possibility of detecting alpha

synchronization events over the parietal sites as a potential
cue of alpha spindles, our study went ahead by looking for
a method for recognizing such ‘‘peaks of synchronization’’.
At this point, we hypothesized that spurious synchronization
phenomena could happen also while driving with a ‘‘normal
state’’, therefore there was the need of establishing an individual
threshold that, if overcome, would indicate a potential ‘‘altered
state’’ (due to drowsiness insurgence). The WUP task, being not
different from PERFO and TAV in terms of data distribution
(Figure 5), was employed as a sort of ‘reference task’ to
estimate the individual thresholds of ‘‘normal state’’, therefore
the Alpha-OE ratio peaks overpassing such a threshold were
detected for each subject and for each task (Figure 6). Firstly,
the analysis of the Alpha-OE ratio peaks’ rate, duration, and
amplitude demonstrated that actually the mental drowsiness
while driving occurred as a punctual phenomenon during the
DROW condition. In fact, the peaks rate was significantly
higher during such a condition compared to the others (all
p < 0.05). Moreover, the peaks amplitude and duration were
significantly higher during the DROW condition (all p < 0.05).
This evidence confirms that during the DROW condition the
alpha spindles were significantly stronger and longer than in the
other conditions. To this regard, coherently with the definition
of EEG GFP, this parameter takes into account and amplifies
all the EEG synchronizations of Alpha rhythms within the time
windows in which it is calculated. Therefore, the more Alpha
peaks occur, the higher the EEG GFP in this band. Consequently,
the EEG GFP in Alpha band relevantly increases in terms
of amplitude and time width when the alpha spindles occur.
The three Alpha-OE ratio parameters were then combined in
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a synthetic index, the MDrow, computed as the convolution,
which is computationally equivalent to a moving average, of the
Alpha-OE ratio index with a rectangular window. The statistical
analysis performed on the MDrow index showed a significant
increase during the DROW condition (all p < 0.05). More
importantly, the non-zero percentage of MDrow index was above
50% during the DROW condition, while it was lower than 12%
during the WUP and PERFO conditions (Figure 8).

The repeated measure correlation analysis showed that the
MDrow index was significantly correlated with the EBR’ during
the DROW condition. The analysis of the EBR’ confirmed that
participants’ eye blinked significantly more frequently during
the DROW condition compared to others (all p < 0.05).
However, the Pearson’s correlations between the MDrow index
and the EBR’ per each participant were varying between a large
range, and for some of them, they were negative. This can
be explained by hypothesizing that along the entire DROW
condition factors other than the driving drowsiness impacted the
EBR’ variations. It can be argued that in the first part of the
DROW condition when the driving drowsiness was supposed
to be less present compared to the final part of the condition,
the participants’ eye movements were still detected as the result
of other confounding factors (e.g., driving effort requested
to the participants, variation of brightness, mind wandering,
unconditional reflexes, etc.) undermining the reliability of the
index (i.e., EBR) itself (Gonçalves and Bengler, 2015; Bajaj et al.,
2021). Such a hypothesis is supported by the time dynamics
of the MDrow along the experimental conditions (Figure 9).
During the final part of the DROW condition, the MDrow index
relevantly increases, while it is almost constantly zero along the
other conditions. These considerations, taken together with the
statistical analysis performed on the ECG parameters, which
showed a significant difference in the HR and HRV only between
the DROW and PERFO conditions, are highly supporting the
hypothesis that other physiological measures based on ocular
blinking and heart activity are able to discriminate prolonged
states, but are less sensitives towards episodic shorts events
such as alpha spindles. In other words, the EEG MDrow
index has a higher time resolution enabling the detection of
such events.

Limitations and Future Improvements
Despite the promising results, there are some limitations and
future improvements to be discussed. The experimental protocol
was designed to induce mental drowsiness while performing
the last condition (DROW), since the participants were asked
to perform a simulated driving task for about 10 min on a
monotonous and very low-speed track. It can be argued that
the proposed MDrow index would be exclusively sensible to
specific driving conditions. However, the present study aimed
at validating the reliability of a synthetic EEG-based index in
detecting driving drowsiness. A future step will consist in the
application of such an approach in a more realistic context. A
potential limitation of the presented work is the need of collecting
the EEG signal from all the parietal channels, which could result
in a high grade of invasiveness of the proposed methodology. The
current implementation of the MDrow index is a starting point.

Future work will consist of evaluating the driving drowsiness
through an MDrow index derived from a simplified EEG
system configuration, with the objective of reducing the required
number of EEG channela. In this context, the MDrow index
derived from only the frontal EEG channel will be tested.
Collecting the EEG signal from such a region would imply a
lower grade of invasiveness, paving the way to apply the proposed
approach also in realistic driving environments. In addition,
recent technological progress in EEG sensors and devices will
bring to less and less invasive systems (Di Flumeri et al., 2019a),
promoting the application of EEG-based monitoring techniques
in daily life.

CONCLUSION

The present study, through a simulated driving protocol,
aimed at developing and validating an innovative and synthetic
EEG-based index to evaluate driving drowsiness. The results
confirmed the reliability of the proposed MDrow index in
detecting mental drowsiness while driving. Furthermore, the
MDrow index resulted to be more reliable and more sensitive
in detecting the driving drowsiness episodes compared to the
eye movement and ECG-derived parameters. The MDrow index
was defined as the convolution between a parameter derived
from the EEG GFP in the Alpha band and a rectangular window
and, therefore, is compatible with an online implementation for
the mental drowsiness evaluation while driving. In conclusion,
the present work, besides the obtained results, paves the way
to deploy the neurophysiological evaluation of the driving
drowsiness in a realistic environment in order to positively
contribute to road traffic safety.
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