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Three-dimensional (3D) kinematic analysis of gait holds potential as a digital biomarker
to identify neuropathologies, monitor disease progression, and provide a high-
resolution outcome measure to monitor neurorehabilitation efficacy by characterizing
the mechanisms underlying gait impairments. There is a need for 3D motion capture
technologies accessible to community, clinical, and rehabilitation settings. Image-
based markerless motion capture (MLMC) using neural network-based deep learning
algorithms shows promise as an accessible technology in these settings. In this study,
we assessed the feasibility of implementing 3D MLMC technology outside the traditional
laboratory environment to evaluate its potential as a tool for outcomes assessment
in neurorehabilitation. A sample population of 166 individuals aged 9–87 years (mean
43.7, S.D. 20.4) of varied health history were evaluated at six different locations in the
community over a 3-month period. Participants walked overground at self-selected (SS)
and fastest comfortable (FC) speeds. Feasibility measures considered the expansion,
implementation, and practicality of this MLMC system. A subset of the sample
population (46 individuals) walked over a pressure-sensitive walkway (PSW) concurrently
with MLMC to assess agreement of the spatiotemporal gait parameters measured
between the two systems. Twelve spatiotemporal parameters were compared using
mean differences, Bland-Altman analysis, and intraclass correlation coefficients for
agreement (ICC2,1) and consistency (ICC3,1). All measures showed good to excellent
agreement between MLMC and the PSW system with cadence, speed, step length,
step time, stride length, and stride time showing strong similarity. Furthermore, this
information can inform the development of rehabilitation strategies targeting gait
dysfunction. These first experiments provide evidence for feasibility of using MLMC
in community and clinical practice environments to acquire robust 3D kinematic
data from a diverse population. This foundational work enables future investigation
with MLMC especially its use as a digital biomarker of disease progression and
rehabilitation outcome.

Keywords: markerless motion capture, deep learning, gait analysis, kinematics, spatiotemporal parameters,
neurorehabilitation, digital biomarkers, feasibility
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INTRODUCTION

Access to accurate methods for human motion capture in
clinical environments is motivated by the need to understand
normal and pathological movement (Andriacchi and Alexander,
2000). Tools available in the clinic, such as pressure-sensitive
mats, are well validated (Bilney et al., 2003; Menz et al.,
2004; Webster et al., 2005), but limited to measurement of
spatiotemporal parameters of gait. Wearable sensors, such as
inertial measurement units (IMU), can be used to track gait
characteristics including joint angles (Rapp et al., 2021), however
the joint angle computation is challenging, and the sensors are
affected by environmental features such as magnetic fields. The
three-dimensional (3D) quantification of human gait informs
rehabilitation and the progression of disease by characterizing the
mechanisms underlying gait impairments (Ferrarin et al., 2005;
Mundermann et al., 2005; Jonkers et al., 2009; Albani et al., 2014;
Pistacchi et al., 2017).

Marker-based motion capture (MBMC) laboratories that
conduct 3D gait analysis provide carefully validated measures,
although some concessions are made. Study participants are
required to travel to the lab, commit time, wear specialized
clothing and shoes, and be extensively instrumented with
reflective markers. It is often necessary to adjust or minimize
clothing to expose anatomical landmarks, which can limit
the pool of individuals willing to participate. Subjects must
then attempt to walk “normally” under observation in an
unfamiliar setting. As a result, there has long been a question
regarding the ecological validity of gait data collected via
motion capture in these dedicated laboratories (Hutchinson
et al., 2019; Mc Ardle et al., 2021). Measurement of joint
kinematics in a representative sample population is desirable
yet to date has remained elusive. Additionally, racial and ethnic
minorities have historically been underrepresented in clinical
research (McCarthy, 1994). Work is being done to provide a
more robust and complete understanding of the potential gait
differences among diverse individuals in the population (Blanco
et al., 2012). Taken together, gait assessment tools enabling
high resolution measurement in participant-facing environments
offer an opportunity to study a more representative sample
population by reducing some of these economic, social, and
cultural barriers. Furthermore, bringing 3D gait analysis directly
into the clinical environment will increase its use as a clinical
outcome measure and digital biomarker of pathology and
disease progression. There is a need for 3D motion capture
technology that can be used outside the controlled motion
capture laboratory environment.

Over the last three decades, the fields of computer vision
and machine learning have developed marker-free techniques
to identify and track human movement (Hogg, 1983; Corazza
et al., 2006; Martinez et al., 2018). Neural network-based methods
for pose estimation have made a significant impact on the field
making it possible to define and track anatomical landmarks
without the use of markers (Mathis et al., 2018; Cronin,
2021). Research has quickly started to examine open-source
frameworks such as OpenPose and DeepLabCut using one or two
camera array systems to measure spatiotemporal gait parameters

(Stenum et al., 2021; Lonini et al., 2022). One study utilizing a
Kinect V2 found the technology performed reasonably well as a
tool for measuring spatiotemporal gait parameters, but not joint
kinematics (Mentiplay et al., 2015).

In the current study we implemented Theia3D (Theia
Markerless Inc., Kingston, ON, Canada), which uses deep
convolutional neural networks to perform 3D human pose
estimation. This technology has been developed, tested for
reliability, and validated with respect to traditional MBMC
methods in a controlled laboratory environment by investigating
a small sample of healthy, young adults. In the developers’ hands,
the Theia3D MLMC system produced reliable 3D gait kinematics
with lower inter-session variability than those reported by
MBMC methods (Kanko et al., 2021a). Furthermore, Theia3D
demonstrated good to excellent agreement for spatiotemporal
parameters when compared to parameters produced by both
a MBMC system and a pressure-sensitive gait mat (Kanko
et al., 2021b). Lower limb 3D kinematic data extracted from
concurrent MBMC and Theia3D MLMC systems were compared,
reporting an average root mean square difference less than
2.5 cm for all corresponding joint centers except hip which
was 3.6 cm (Kanko et al., 2021c). Here we expand on these
findings by investigating the use of Theia3D to quantify 3D
gait kinematics outside the controlled laboratory environment
on a moderately large sample population of varied age
and health history.

The aim of this study was to assess the feasibility of
implementing 3D MLMC technology in community accessible
environments (i.e., community centers, clinic-adjacent facilities,
parks, etc.). Our goal was to successfully mobilize 3D MLMC
technology to a variety of locations and perform overground
gait experiments on a diverse sample population. In addition,
we evaluated agreement of spatiotemporal gait parameters
concurrently measured by MLMC and pressure-sensitive
walkway systems.

MATERIALS AND METHODS

Participants
We studied 166 participants over a 3-month period at
six distinct locations in the community. All individuals
studied met the following inclusion criteria: ability to
provide informed consent, follow three-step commands,
and ambulate 15 m independently, even if requiring an
assistive device or brace. Participants provided electronic
written informed consent prior to enrollment and
participation, with minors providing assent in addition to
the consent of a parent/legal guardian. All procedures were
approved by University of California, Davis Institutional
Review Board (#1386142) and conducted according to the
Declaration of Helsinki.

As participants were recruited directly from their daily
activities in the community, they wore their own clothing and
footwear. Individuals wearing long-hemmed skirts (i.e., mid-calf
or longer) were excluded as the joints at the knee and hip could
not be tracked by the deep learning algorithm. In accordance with
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COVID-19 precautions, all participants wore face masks covering
the nose and mouth.

Experimental Setup and Procedure
Six locations (Figure 1) were scouted and identified for
experiments. The ideal space offered: (1) a flat surface with
minimum dimensions 9 by 7.5 m, (2) sufficient illumination,
(3) access to electrical power, and (4) visible to community
foot traffic. The first three criteria ensured the experiment was
successfully instrumented, while the last increased the likelihood
of participant recruitment. Minimum space dimensions were
determined by the camera locations required to create a
capture volume for overground walking. Over a 3-month period,
equipment was transported between these six locations based
on space availability, with some sites visited multiple times.
Locations open to public foot traffic required equipment be
broken down and securely stored at the end of each experimental
session. Care was taken to control public foot traffic near
the camera tripods.

The markerless motion capture (MLMC) system was
comprised of eight video cameras (Basler ace acA1300-75gc
GigE, Ahrensburg, Germany) positioned on tripods placed along
the perimeter of a capture volume approximately 6 m long, 4 m
wide, and 2 m high. Cameras were positioned in an elliptical
formation, with four cameras along each side of the walking path;

cameras nearest the ends of the walking path were shifted 0.5 m
to the center. Orange sports cones were placed 10 m apart to
mark the targeted start and end of the walking path. An intrinsic
camera calibration was performed once, prior to all experiments,
using a black-and-white checkerboard pattern (10 by 6 grid of
0.077 m squares). Extrinsic camera calibrations were performed
at the beginning of each experimental session following camera
positioning, lens focus, and aperture checks. An extrinsic cube
calibration object (0.655 m) was centrally positioned in the
capture volume with the +Y/–Y global reference directed in line
with the walking path and +Z directed toward the sky. Video
data from the cameras were synchronized and recorded at 60 Hz
using AccuPower 4.0 software (v1.3.6.1978 Treadmetrix, Park
City, UT, United States). The resulting two-dimensional (2D)
video data were calibrated using Theia3D (v2021.2.0.1675).

In a corollary experiment, we assessed agreement of
spatiotemporal parameters measured by the MLMC system and
a pressure-sensitive walkway (PSW) (Stepscan, Charlottetown,
PE, Canada). We used an 8.4 m long PSW positioned on the
floor central to the motion capture volume at two of the six
sites (Locations 4 and 5). The PSW was constructed using 14
tiles (0.6 m square); the center of the walkway was instrumented
(6 tiles, each with 14,400 pressure sensors), while the remaining
were dummy tiles – identical in appearance but not instrumented.
Data from the PSW system were sampled at 100 Hz.

FIGURE 1 | Still images recorded by the markerless motion capture video cameras during gait experiments performed at each of the six experimental locations.
Each image shows a participant walking. Human pose identification is indicated by the blue rectangle outlining the participant. The estimated three-dimensional pose
generated by Theia3D is represented by the blue skeleton overlaid on the subject image. (A) Location 1, spare office-style room. (B) Location 2, community event
room. (C) Location 3, clinic-adjacent lobby. (D) Location 4, spare storage-style room. (E) Location 5, outdoor event at a sports field. (F) Location 6, conference
center breakout room.
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TABLE 1 | Overview of feasibility measures assessed at each of the six experimental locations.

Feasibility measures Questions Locations Success rate

1 2 3 4 5 6

Implementation 29/30 96.7%

Location features Does the location contain enough space to produce the designed motion capture volume?
(min 9 × 7.5 m for this OG experiment)

Yes Yes Yes Yes Yes Yes 6/6 100%

Does the space have an accessible power source to operate equipment within reach of 20-foot extension cord? Yes Yes Yes Yes Yes Yes 6/6 100%

Does the space have a constant, sufficient light source? Yes No Yes Yes Yes Yes 5/6 83.3%

System mobility Could equipment and supplies be packed, transported, and couriered to and from testing sites? Yes Yes Yes Yes Yes Yes 6/6 100%

Data management Could recorded data be securely stored? Yes Yes Yes Yes Yes Yes 6/6 100%

Practicality 38/42 90.5%

Participant investment Could the participant complete the experiment without additional travel? Yes Yes Yes Yes Yes Yes 6/6 100%

Was the average time commitment under 30 min? (This total time includes wait time, IRB consent, electronic
questionnaire, and gait experiment)

Yes Yes Yes Yes No Yes 5/6 83.3%

Were participants tested in the clothes in which they arrived? (With the exception of long skirts.) Yes Yes Yes Yes Yes Yes 6/6 100%

Research investment Could the system be unpacked, set up, calibrated and ready for use within 1 hour of arriving on site? Yes Yes Yes Yes Yes Yes 6/6 100%

Could the system be mobilized, set up and experiment performed with a minimum of four people? Yes Yes Yes Yes No Yes 5/6 83.3%

Was it possible to access and recruit a minimum of 10 participants each time the equipment was set up? Yes Yes Yes Yes Yes No 5/6 83.3%

Could the 3D kinematic data be quickly extracted and efficiently processed? Yes No Yes Yes Yes Yes 5/6 83.3%

Expansion 24/24 100%

3D Kinematics Did the MLMC system produce a full-body 3D kinematic model outside a controlled laboratory setting?
(min 3 consecutive gait cycles of full body kinematics for each pass through the capture volume)

Yes Yes Yes Yes Yes Yes 6/6 100%

Did the MLMC system produce a full-body 3D kinematic model in the presence of background activity? Yes Yes Yes Yes Yes Yes 6/6 100%

Diverse population Did location provide access to a sample population representative of the surrounding metropolitan area? Yes Yes Yes Yes Yes Yes 6/6 100%

Did the MLMC system produce a full-body 3D kinematic model for participants using assistive device (walker, cane)? Yes Yes Yes Yes Yes Yes 6/6 100%
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Participant details including height, weight, and leg-length
were measured onsite using a portable stadiometer (213 Seca,
Chino, CA, United States), digital scale (PD759L, MyWeight,
Phoenix, AZ, United States), and measuring tape (length 150
cm). Demographics and health history were gathered using
an electronic questionnaire. Investigators defined the categories
of the demographics for ethnicity, race, biological sex, and
gender. These data were managed using Research Electronic Data
Capture (REDCap), an electronic data capture tool hosted at
the University of California, Davis Clinical and Translational
Sciences Center (Harris et al., 2009, 2019).

The motion capture experiment involved two overground
walking tasks: self-selected (SS) and fastest comfortable (FC)
walking. For both tasks, the participant was positioned at one
end of the walking path and instructed to walk across the
room toward the orange cone positioned at the opposite end
of the walking path. The experimenter provided a verbal “Go”
command to signal the participant to start each walking pass.
Participants were instructed to, “walk as you usually do” for the
SS walking task and to “walk as fast as possible, as if you are in a
crosswalk and notice oncoming traffic” for the FC walking task.
To acquire a minimum of 12 full gait cycles per leg for each task,
participants repeated approximately 6–8 passes per task with the
SS task completed first. At locations where both the MLMC and
PSW systems were implemented, kinematic and spatiotemporal
data were recorded concurrently.

Data Analysis
Feasibility measures for this experiment were developed based
on guidelines outlined by Bowen et al. (2009), with three areas
of focus: (1) the implementation of MLMC in community spaces
offering the research team limited environmental control, (2)
the practicality of mobilizing MLMC with respect to investment
from both the research team and study participants, and (3) the
expansion of MLMC from lab to public living domain, including
testing a diverse population. An overview of these measures is
provided in Table 1. Feasibility measures were structured as yes
or no questions. The success of each feasibility measure was
considered separately for each experimental site (Locations 1–6).

To extract 3D kinematic data from the MLMC system,
synchronized videos of identical length were processed en masse
using the Theia3D companion application TMBatch. A model
with 6 degrees-of-freedom (DOF) at the pelvis, 3 DOF at the
hip, 3 DOF at the knee, and 3 DOF at the ankle was used to
estimate a 3D pose of the subject completing the walking task
(Figure 1). The 4 × 4 pose estimates for each body segment
were exported to Visual3D Professional (v2021.06.02, C-Motion,
Inc., Germantown, MD, United States) for further analysis. The
skeletal model automatically generated in Visual3D was edited to
add a position reference for the alternating +Y and –Y walking
directions. Theia3D can detect and generate multiple 3D poses
when additional persons are visible on camera. To identify
the study participant’s estimated 3D pose from this group, an
automated algorithm was developed and run in Visual3D which
referenced 3D pose position relative to the global origin. The
selected model was used to calculate joint center positions
which represent direct estimates of those positions from the

deep learning algorithm. Lower limb joint angles were calculated
using a Cardan sequence equivalent to the joint coordinate
system (Grood and Suntay, 1983). Gait events [i.e., initial contact
(IC) and toe off (TO)] were identified using a coordinate-
based algorithm measuring the maximal displacement of the
heel and toe from the pelvis in the direction of walking
progression (Zeni et al., 2008) with quality checks of event
detection performed in Visual3D. Time-series segment positions,
kinematic measurements, and gait events were exported to
MATLAB (v2020a, Mathworks, Natick, MA, United States) for
further analysis.

Spatiotemporal gait parameters were measured parallel to
the direction of walking progression (Huxham et al., 2006).
Metrics included: cadence, speed, step length, stride length, stride
width, step time, stride time, stance time, swing time, single
limb support time, and double limb support time. MLMC system
values were defined in MATLAB using the foot segment position
and gait events extracted from Visual3D. PSW system values
were automatically defined in the Stepscan software (v2.5.26.0,
Stepscan Technologies, Inc., Charlottetown, PE, Canada) using
the position and timing of footprints and exported to MATLAB
for further analysis. Data quality checks were performed in the
Stepscan software to exclude footprints which did not occur
entirely within the pressure-sensitive walking area. Stepscan
provides both the contralateral and ipsilateral step associated with
each full stride. Only the ipsilateral step associated with each
stride was included in this analysis.

To determine the likely magnitude of the difference in
spatiotemporal parameters produced by the MLMC and PSW
systems, the mean difference and percent error of absolute
difference between the two systems were calculated. Mean
differences are defined relative to the PSW system where a
negative value indicates the PSW value is less than the MLMC
value. The spread of mean differences with 95% limits of
agreement (LOA) was assessed using the Bland-Altman method
(Bland and Altman, 1986). Intraclass correlation coefficients
(ICC) for agreement (2,1) and consistency (3,1) were calculated
in Statistical Product and Service Solutions (SPSS) (v27, IBM
SPSS Statistics, Armonk, NY, United States) to determine inter-
instrument reliability for each pair of spatiotemporal metrics
(Shrout and Fleiss, 1979; McGraw and Wong, 1996). ICC
values < 0.5 were interpreted as poor, 0.5–0.75 as moderate, 0.75–
0.9 as good, and >0.9 as excellent (Portney and Watkins, 2009).

RESULTS

Feasibility Measures
In the area of implementation, five feasibility measures were
considered at six experimental locations resulting in an overall
success rate of 96.7% (29/30). All six locations afforded the
required physical location features except Location 2 which
did not provide sufficient illumination. Both mobility of the
MLMC system and data management were implemented with a
100% success rate. In the area of practicality, an overall success
rate of 90.5% (38/42) was demonstrated. Considerations for the
minimization of participant investment was fully successful at
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all experimental locations except Location 5. The investment
of the research team was 100% successful with respect to a
fast and efficient setup time. Consideration of staff number
to participant yield ratio was 83.3% successful. Location 5
required an expanded research team (12 staff), and Location
6 only involved three participant experiments. Procedures to
process data quickly and efficiently were 83.3% successful. Data
collected at Location 2 required additional attention during
analysis. Lastly, in the area of expansion, an overall success rate
of 100% (24/24) was observed. Full-body 3D kinematics were
produced at all experimental locations regardless of background
activity or the presence of assistive devices including canes and
walkers. A diverse population, representative of the surrounding
metropolitan region, was successfully enrolled and tested at all
six locations. An overview of the feasibility results can be found
in Table 1.

Pressure-Sensitive Walkway Comparison
A subset of 46 participants (32 female) aged between 13
and 86 years [mean 45.9, (S.D. 22.9)] was used to compare
spatiotemporal parameters measured concurrently with both the
MLMC and PSW systems. The average number of gait cycles
identified by the PSW system was 17.7 ± 5.4 for SS and 16.7 ± 5.5

for FC as compared to 25.1 ± 5.4 for SS and 25.8 ± 6.95 for FC
identified by the MLMC system.

Overall, mean spatiotemporal values reported by both
systems were quite similar. Tables 2A,B report the means and
comparative difference measures between the two systems for the
SS and FC tasks, respectively. The majority of these parameters
measured small differences between the PSW and MLMC systems
although values for cadence, speed, step time, stride time,
and stride length appeared practically identical (mean absolute
difference < 1% of mean PSW values). Cadence revealed mean
differences < 0.29 steps/min for both SS and FC, and Bland–
Altmann LOA approximately ± 2 steps/min. Speed revealed a
mean difference of –0.01 m/s for SS, essentially 0.00 m/s for
FC, and an approximate LOA of ±0.03 m/s. Step length and
stride length both revealed mean differences of –0.6 cm for
SS and –0.2 cm for FC, respectively, and approximate LOA of
±2.0 cm. Stride width revealed a mean difference of –1.2 cm
for SS and –1.8 cm for FC respectively. The LOA ranged –
5.2 – 2.9 cm for SS and –5.3 – 2.2 cm for FC. All temporal
measures revealed mean differences of 0.02 s or less. Step time
revealed mean differences of –0.001 s and LOA of ±0.01 s for
both tasks. Stride time revealed a mean difference of 0.001 s
and LOA of ±0.02 s for SS and –0.002 s and LOA of ±0.01 s
for FC. Stance time produced a mean difference of –0.02 s

TABLE 2A | Mean, standard deviation (SD), mean difference and standard deviation of differences, Bland–Altman limits of agreement (LOA) over a 95% confidence
interval (CI), intraclass correlation coefficient (ICC) values, lower bounds and upper bounds of agreement [ICC(2,1)] and consistency [ICC(3,1)] for the comparison of
spatiotemporal measures extracted by the pressure-sensitive walkway (PSW) and markerless motion capture (MLMC) for the self-selected (SS) walking speed task.

PSW
Mean (SD)

MLMC
Mean (SD)

Mean (SD) Diff,
% error

LOA, 95% CI Agreement: ICC(2,1)

(95% CI)
Consistency: ICC(3,1)

(95% CI)

Lower Upper

Cadence (steps/min) 109.72 109.43 0.29, 0.75% −0.02 0.6 0.997 (0.994–0.998) 0.997 (0.995–0.998)

(9.77) (9.65) (1.04)

Speed (m/s) 1.23 1.23 –0.01, 0.95% −0.01 −0.002 0.999 (0.998–0.999) 0.999 (0.998–1)

(0.23) (0.23) (0.01)

Step Length (m) 0.670 0.676 –0.006, 1.25% −0.008 −0.004 0.998 (0.988–0.999) 0.999 (0.998–0.999)

(0.106) (0.105) (0.007)

Stride Length (m) 1.343 1.349 –0.006, 0.76% −0.009 −0.003 0.999 (0.998–1) 0.999 (0.999–1)

(0.214) (0.211) (0.011)

Stride Width (m) 0.125 0.136 –0.012, 17.14% −0.018 −0.005 0.874 (0.700–0.939) 0.899 (0.818–0.944)

(0.037) (0.031) (0.021)

Step Time (s) 0.55 0.55 –0.001, 0.76% −0.003 0.001 0.997 (0.995–0.998) 0.997 (0.995–0.998)

(0.05) (0.05) (0.006)

Stride Time (s) 1.11 1.11 0.001, 0.5% −0.001 0.004 0.998 (0.997–0.999) 0.998 (0.997–0.999)

(0.11) (0.10) (0.01)

Stance Time (s) 0.72 0.73 –0.02, 2.84% −0.02 −0.01 0.976 (0.875–0.991) 0.986 (0.974–0.992)

(0.08) (0.08) (0.02)

1st Dbl. Sup. Time (s) 0.16 0.18 –0.02, 13.16% −0.02 −0.01 0.803 (0.397–0.916) 0.866 (0.757–0.926)

(0.03) (0.03) (0.02)

Single Sup. Time (s) 0.39 0.37 0.02, 5.27% 0.01 0.02 0.841 (0.365–0.939) 0.903 (0.825–0.946)

(0.04) (0.03) (0.02)

2nd Dbl. Sup. Time (s) 0.16 0.18 –0.02, 13.74% −0.02 −0.01 0.813 (0.169–0.932) 0.897 (0.814–0.943)

(0.03) (0.03) (0.02)

Swing Time (s) 0.39 0.37 0.02, 5.15% 0.01 0.02 0.859 (0.342–0.949) 0.920 (0.856–0.956)

(0.04) (0.03) (0.02)
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TABLE 2B | Mean, standard deviation (SD), mean difference and standard deviation of differences, Bland–Altman limits of agreement (LOA) over a 95% confidence
interval (CI), intraclass correlation coefficient (ICC) values, lower bounds and upper bounds of agreement [ICC(2,1)] and consistency [ICC(3,1)] for the comparison of
spatiotemporal measures extracted by the pressure-sensitive walkway (PSW) and markerless motion capture (MLMC) for the fastest comfortable (FC)
walking speed task.

PSW
Mean (SD)

MLMC
Mean (SD)

Mean (SD) Diff,
% error

LOA, 95% CI Agreement:
ICC(2,1) (95% CI)

Consistency:
ICC(3,1) (95% CI)

Lower Upper

Cadence (steps/min) 136.17 135.95 0.22, 0.84% −2.53 2.97 0.997 (0.995–0.999) 0.997 (0.995–0.999)

(13.86) (13.93) (1.40)

Speed (m/s) 1.85 1.85 0.0006, 0.67% −0.03 0.03 0.999 (0.999–1) 0.999 (0.999–1)

(0.36) (0.36) (0.02)

Step Length (m) 0.812 0.814 −0.002, 0.92% −0.022 0.017 0.998 (0.997–0.999) 0.998 (0.997–0.999)

(0.140) (0.140) (0.012)

Stride Length (m) 1.624 1.637 −0.002, 0.61% −0.029 0.023 0.999 (0.998–1) 0.999 (0.998–1)

(0.280) (0.281) (0.017)

Stride Width (m) 0.126 0.142 -0.018, 17.96% −0.053 0.022 0.864 (0.52–0.945) 0.911 (0.836–0.951)

(0.036) (0.033) (0.023)

Step Time (s) 0.45 0.45 −0.0007, 0.83% −0.01 0.01 0.997 (0.995–0.999) 0.997 (0.995–0.999)

(0.04) (0.05) (0.005)

Stride Time (s) 0.89 0.89 −0.002, 0.5% −0.01 0.01 0.999 (0.998–0.999) 0.999 (0.998–1)

(0.09) (0.09) (0.01)

Stance Time (s) 0.56 0.57 −0.02, 3.6% −0.05 0.02 0.972 (0.758–0.991) 0.986 (0.974–0.992)

(0.07) (0.06) (0.02)

1st Dbl. Sup. Time (s) 0.11
(0.03)

0.13
(0.02)

−0.02, 20.23%
(0.02)

−0.05 0.02 0.793 (0.294–0.918) 0.866 (0.744–0.93)

Single Sup. Time (s) 0.33 0.31 0.02, 6.34% −0.02 0.05 0.8 (0.313–0.921) 0.871 (0.753–0.932)

(0.03) (0.03) (0.02)

2nd Dbl. Sup. Time (s) 0.11
(0.03)

0.13
(0.02)

−0.02, 18.02%
(0.02)

−0.05 0.02 0.821 (0.213–0.935) 0.899 (0.816–0.945)

Swing Time (s) 0.33 0.32 0.02, 5.56% −0.02 0.05 0.857 (0.354–0.948) 0.918 (0.849–0.955)

(0.03) (0.03) (0.02)

and swing time a mean difference of 0.02 s for both tasks.
The LOA for stance time ranged between –0.05 – 0.02 s while
the LOA for swing time ranged from –0.02 – 0.05 s. Both
1st double limb support time and 2nd double limb support
time revealed mean differences of –0.02 s and an LOA range
approximately –0.05 – 0.02 s for both walking tasks. Single
limb support time and swing time, which capture the same
epoch characteristics in opposite legs, performed similarly.
Both single limb support time and swing time revealed mean
differences of 0.02 s and an LOA range approximately –0.02 –
0.05 s.

Intraclass correlation coefficients for agreement [ICC(2,1)]
indicated excellent agreement [ICC(2,1) > 0.9] for cadence,
speed, step length, stride length, step time, stride time, and
stance time, and good agreement [ICC(2,1) > 0.75] for stride
width, 1st double limb support time, 2nd double limb support
time, single limb support time, and swing time. The ICC(2,1)

lower bound of 0.169 for 2nd double limb support time of the
SS task indicates the possibility of poor agreement. Intraclass
correlation coefficients for consistency [ICC(3,1)] indicated
excellent consistency [ICC(3,1) > 0.9] between instruments for
cadence, speed, step length, stride length, step time, stride time,
stance time, swing time and good agreement [ICC(3,1) > 0.75]
for stride width, 1st double limb support time, 2nd double limb

support time, and single limb support time. Both stride width
and single limb support time showed higher consistency in the
FC task compared to the SS task.

DISCUSSION

Considerations of Feasibility
Implementation
The successful implementation of 3D MLMC outside the lab was
first and foremost based on the physical features of the space:
floor dimensions, light source, and power access.

The minimum floor dimensions identified for this experiment
(9 by 7.5 m) were informed by the requisite motion capture
volume for our objectives. Methods to design the capture
volume for a 3D MLMC system are similar to a traditional
3D MBMC lab where both the movement task (overground
walking) and video camera specifications (8 cameras, 1280 by
1024 px resolution, 6 mm lens focal length) are considered
(Winter, 2009). Additionally, in accordance with Theia3D
specifications, the algorithm performs optimally when the
height of the subject is at least 500 px. Considering these
three features, our team optimized camera orientation to
extend the motion capture volume, maximizing the number
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of gait cycles recorded in both directions with each pass. We
operationalized our procedures to have participants start each
walking pass outside the capture volume, ensuring they were
up to speed by the time the biomechanical model was fully
identified inside the capture volume. This approach enabled
us to use data from every stride within the targeted walkway
of the capture volume. The tradeoff with this design is a
period of 1–2 m at both ends of the 10-m walkway where
the model is not yet fully identified. While these attributes
were the appropriate methodology for our purposes, it did
introduce a need for additional quality checks during gait
detection. Experiment configurations where the model remains
within the capture volume (i.e., walking on a treadmill,
isolated joint movements, or sit-to-stand) would likely not
experience this issue.

To operate the MLMC equipment, access to a power source
was a requirement we considered prior to selecting experimental
locations. The power source needed to be accessible using a 20-
foot extension cord. This necessity made the proximity of the
power source a defining feature when planning the orientation
of the experimental walkway within each unique space. To
successfully perform experiments at Location 5, an outdoor space
without access to a permanent power source, an electric generator
was provided by the event coordinators.

Sufficient illumination of the environment proved vital to
successful data collections. Even though it was not necessary to
control the color of the subject’s clothing relative to background,
we found it was necessary for the space to be well lit. Location
2 was a spacious community room that relied mostly on natural
light that streamed through high windows and skylights. While
it was possible to produce a 3D biomechanical model for all
tested participants at this site, the model was consistent over a
shorter capture volume as compared to the other five locations.
As a result, each walking pass yielded fewer gait cycles at this
site. However, Location 2 was adjacent to an arboretum with
walking trails and public parking, making it an excellent source
for recruiting participants into the study on location. For this
reason, it might be worth returning to Location 2 with additional,
portable light sources to determine how much experimental
conditions could be improved. Location 5 also used sunlight for
illumination. In this case, because the experiment was initiated in
the late afternoon, and finished near dusk, data collected toward
the end of the day required more hands-on attention to process.

The MLMC system can be mobilized. The ability for the
research team to easily mobilize and transport equipment
between sites also factored into the practicality of using the
MLMC system outside the lab. All equipment and supporting
supplies were efficiently packed and transported to all six
locations using a single vehicle. When scouting locations for
these experiments, ease of access was also considered in the
form of ramps, elevators, and proximity from vehicle to the
experimental setup.

Related to mobilization, the management of data file size and
security are also a consideration for successful implementation.
Depending on video sampling frequency and trial length, the raw
video files, in combination with the processed data files created
by Theia3D, can be much larger compared to marker-based data

files. By design of the deep learning algorithm requirements, these
video files include identifiable participant features, most notably
facial features. As a result, both our institutional information
security and privacy practices, and our IRB, required use of
approved, secure data storage that can manage large files and be
implemented in the field.

Practicality
Resolving that it is indeed possible to mobilize and implement
MLMC outside the lab, we next consider whether such
an application is practical for both the participant and
the research team.

The time commitment required by participants was generally
minimized with respect to traditional MBMC experiment
methods. Participants were not required to travel to a dedicated
experiment location as they were recruited on site. On average,
participants spent 20 min with the research team during
which they: provided informed consent, completed their health
history/demographics questionnaire, and performed the walking
experiment. Location 5 was an exception. This location involved
a university sponsored event limited to a 2 hour period, attended
by numerous individuals interested in and willing to participate,
resulting in a long queue. In parallel to the data collection,
the research team also processed data on site to provide each
participant with an individualized gait report. At this event,
the research team achieved a maximum of 8.5 complete gait
studies per hour! In comparison, this threshold is unlikely to
be achieved by MBMC without additional resources in the form
of multiple reflective marker sets, research personnel trained
to place markers, participants willing to commit to a longer
preparation time, and the adjustment/removal of clothing to
track markers. In fact, experiments performed at Location 5
highlight the potential of MLMC to efficiently capture a large
quantity of full-body 3D kinematic gait (motion) studies.

Participants were enrolled onsite and in the moment,
thus were studied wearing their normal attire, which ranged
from business casual trousers and shoes to hiking shorts.
Monochromatic clothing did not appear to challenge the
processing algorithm. However, long-hemmed skirts did not
allow specific features of the legs to be tracked. When recruiting
individuals in the community, those wearing long-hemmed skirts
(i.e., mid-calf or longer) were given the option to change into
shorts in order to participate in the study. We recognize that
use and, perhaps more importantly, type of footwear affect a
person’s gait (Franklin et al., 2015; Wiedemeijer and Otten, 2018).
However, the focus of this study was to measure gait “in the wild”
with as little adjustment and interaction from the research team as
possible. People wearing heeled shoes were prompted to remove
their shoes and walk barefoot. However, if they opted to walk in
heeled shoes, the data were still collected but tagged for special
consideration. Anecdotally, we noted that a 3D biomechanical
model did appear to appropriately estimate the ankle and foot
segment of participants wearing high-heeled shoes. This feature
bears further investigation in the future.

The entirety of this study was conducted in public spaces
at the height of a contagious global pandemic. Without the
necessity to instrument the body with markers or IMU’s, we had
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limited need to come in close physical contact with participants
enabling us to continue our active research program despite
pandemic restrictions. The deep learning algorithm developed
by Theia3D was trained to identify 51 salient features consisting
of joint locations and other identifiable surface features of
the human body including the face. Prior to the start of this
study, we investigated how the algorithm would respond if the
mouth and nose were occluded by a face mask. While these
results are not presented here, this preparatory exploration did
inform our methods. As such, all subjects wore face masks over
mouth and nose while completing walking tasks, and the deep
learning algorithm successfully resolved facial features to enable
biomechanical models.

Mobilizing the MLMC system does increase the burden to
the research team in terms of resources to set up and break-
down equipment for each experimental session. However, once
onsite at all six locations, the system could be unpacked, set-
up, calibrated, and ready for use in under 1 hour. This short
setup time left a full 8-h day open to collect data. On average,
we successfully recruited and studied 15.6 individuals per day on
location. We typically went into the field with four lab members.
The unique circumstances of Location 5 (high-density crowd
for a time-limited period) led the team to expand to a staff
of twelve. Location 6 was also a unique setup for the opposite
reason. Here, the MLMC system was setup in an auxiliary
space to our lab with the express purpose of only testing a
small handful of individuals, thus the minimum threshold of
ten participants was not met. Testing in locations with high
foot traffic, such as Locations 2 and 5, show the quantity and
diverse quality of the population which can be accessed each
day, easily justifying the researcher’s investment to mobilize
the MLMC system.

We utilized batch processing methods to collect, analyze,
report, and securely back-up the data collected onsite at each
experimental location quickly and efficiently. Tools including
unique MATLAB programs and the Microsoft Windows
command Robust File Copy (robocopy) were used to transfer files
between the AccuPower, Theia3D, and Visual3D file workspaces
prior to running respective pipelines on the data in those spaces.
When used all together, it was possible for us to quickly process
data for two applications: (1) collect a full day’s worth of data,
then batch process it after returning to our home workspace,
and (2) process data for each individual as it was collected. To
reduce the waiting time for interested individuals, we employed
the first method at most of our experimental locations, especially
where foot-traffic was high. The second method was employed
at Location 6 where we demonstrated it was possible to collect,
process, analyze, and report measures of gait in under an hour.
The insufficient illumination at Location 2 also appeared to affect
the performance of the Theia3D algorithm. Data collected at
Location 2 could not be batch processed because they required
considerable hands-on processing attention which extended the
overall processing time and practicality consideration. The ability
to process data and produce results quickly and efficiently
demonstrates the practical use of this system to researchers
with studies collecting large quantities of 3D kinematic data
in the field. This capacity is also of interest for clinicians who

require fast turnaround of 3D kinematic gait measures to aid in
neurorehabilitation assessments.

Expansion
The MLMC system demonstrated successful expansion outside
the controlled environment of a typical motion capture
laboratory. Specific to this overground walking experiment, we
established a minimum requirement of three consecutive gait
cycles with full-body 3D kinematics to be recorded for every
participant at all six locations. On average, each pass through
the capture volume recorded 5 and 4 gait cycles for the SS
and FC walking tasks, respectively. The number of gait cycles
acquired with each pass was dependent on the individual’s leg
length and gait speed. At five of the six locations, it was possible
to implement the camera setup described in this paper and
successfully create a motion capture volume with a 6-m-long
walkway. Even though Location 2 provided the necessary floor
dimensions to recreate the camera setup, insufficient illumination
resulted in a shorter walkway (approximately 4 m) where the full-
body 3D kinematic model was cleanly produced. This led to fewer
full gait cycles detected with each pass, yet still met the minimum
requirement of three consecutive gait cycles.

Background activity is a necessary consideration of the
feasibility of using the MLMC system in community and
clinical environments where extraneous activities are constant
throughout the day. The Theia3D algorithm produced a full-body
3D kinematic model for all participants, regardless of background
activity, both inside and outside the motion capture volume.
Background activity unassociated with our experiments (i.e.,
foot traffic, people seated in waiting rooms, regular workplace
movements) was captured during data collections at all six
experimental locations. For example, at Location 2, individuals
were continuously moving along the perimeter of the room,
outside the camera capture space. We staged a subject intake
station (measurement of height, weight, and leg length) along one
side of the room, and a seated waiting area for companions of
study participants on the opposite side of the room. This layout
resulted in constant peripheral activity during experiments.
Location 3, a clinic-adjacent lobby with heavy foot traffic,
experienced constant background activity as both the public and
clinical staff walked around the camera setup. Location 5 was
buzzing with activity as hundreds of event attendees explored the
space surrounding the MLMC camera setup. For crowd control
we used brightly colored cones and strategically positioned
equipment to discourage activity too close to the cameras, yet
the occasional rogue bystander did persist and walk through
the capture volume while data acquisition was in progress.
Regardless of this uncontrolled background activity, a full-body
3D kinematic model was created for all study participants.

For MLMC to truly be useful in clinical settings such
as rehabilitation gyms, the Theia3D algorithm must also
successfully estimate the 3D pose of the studied individual in
the presence of additional persons and objects within the motion
capture space. Several individuals who met the inclusion criteria
of this study had the potential to become unsteady on their
feet while completing the walking tasks. In these cases, per
experimental protocol, a member of our team acted as a safety
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spotter trailing approximately arm distance from the participant
through the capture volume. In each of these data sets, a 3D
biomechanical model was defined for both the studied individual
and spotter. Several individuals completed the walking tasks with
the use of an assistive device (walker or cane) where there was
potential to obstruct the frontal view of the lower body. The
MLMC system did produce a full-body 3D kinematic model for
these individuals.

The ability to mobilize the MLMC system into local
community environments enabled us to study a broader and
more diverse sample representing the demographics of the
surrounding community. The final data set was comprised of 166
subjects (99 female) aged between 9 and 87 years [mean 43.7,
(S.D. 20.4)]. The demographic composition included ethnicity
(13.3% Hispanic or Latino, 82.5% Not Hispanic or Latino);
race (1.8% American Indian/Alaska Native, 21.1% Asian, 4.8%
Black or African American, 0.6% Native Hawaiian or Other
Pacific Islander, 59.6% White, 6.0% multiracial); biological sex
(59.6% female, 40.4% male); and gender (57.8% Female, 40.4%
Male, 1.2% Genderqueer/Gender Non-Conforming). The health
history of the sample population included 3 stroke survivors, 3
people with spinal cord injuries, 4 people with vertigo, and 16
people with a history of concussion. Six percent of our sample
reported a history of neurologic impairment including, but not
limited to: brain lesion, Parkinson’s disease, tremor, or peripheral
nerve impairment; 7.8% reported a joint replacement of the hip
or knee; and 60.2% indicated a major musculoskeletal injury
including, but not limited to: broken bones, torn ligaments,
and muscle or tendon injury. Three individuals completed the
walking tasks with the use of an assistive device (walker or cane).

Our study focused on the mobilization of the MLMC system
by testing it in different locations. However, the feasibility
measures of this study suggest this system could be implemented
as a highly productive gait assessment tool positioned in busy
rehabilitation gyms and clinical spaces on a longer term basis.
Cameras could be securely mounted at the edge of the space,
and used when needed, regardless of other background activity
in the space. Here the utility of the system is demonstrated by the
minimal investment required of the participant, who is already
at the clinic location for treatment and need only perform the
prescribed movement tasks. It is possible to provide outcome
measures the day of the test assessment, and also provide prolific
periodic assessments for the purposes of longitudinal monitoring.

Spatiotemporal Parameter Agreement
To aid clinical interpretation, we assessed the agreement of
spatiotemporal parameters measured by the MLMC system in
comparison to a standard PSW system. Our results showed
that, when implemented outside the laboratory, spatiotemporal
parameters measured using MLMC showed good to excellent
agreement with the PSW system. These findings are consistent
with the pressure-sensitive gait mat comparison performed inside
the laboratory (Kanko et al., 2021b). Cadence, speed, step length,
step time, stride length, and stride time revealed remarkably
similar measurements. Even though the length of the walkway
used by the PSW and MLMC system was similar (approximately
6 m) the MLMC system detected on average 57.6% more gait

cycles for SS task, and 64.9% for FC task. This was because the
partial foot falls at the edges of the PSW walkway were excluded
from analysis. Increasing the length of the active sensor portion
of the PSW system would increase the number of full gait strides.
However, the active portion of our walkway was comparable in
length to commercially available gait mats used widely in clinical
and research facilities.

Similarities in temporal measurements between the MLMC
and PSW are notable. However, considering the different
sampling frequencies of the two systems (PSW – 100 Hz,
MLMC – 60 Hz), future work should assess activities at
frequencies higher than walking (i.e., running). There is a
consistent asymmetry in all temporal measures whose definitions
includes toe off (TO). This is observed in the average mean
difference, where stance time is shifted slightly negative and
swing time slightly positive (Tables 2A,B). This offset (0.02 s)
could be explained by the different sampling frequencies. Of
note, stride time does not reflect this offset but does not include
TO in its definition. One potential reason for the small offset
is the pressure threshold (10 kPa) used by the PSW system to
detect foot contact with the floor. The largest mean difference
calculated for all temporal metrics was 0.02 s, a value much
lower than the 0.07 s for double support time measured by
Kanko et al. (2021b) in the lab setting. We report the stance
phase of the gait cycle as three distinct epochs: (1) 1st double
limb support, (2) single limb support, and (3) 2nd double limb
support. Differentiation between the first and second periods of
double limb support is an important feature of gait representing
limb loading/weight acceptance and pre-swing functions of gait,
respectively (Perry and Burnfield, 2010).

Spatial measurements in the direction of walking progression
(step length and stride length) were virtually the same between
the two systems. The slight difference in stride width between the
two systems is not surprising. The foot position defined by the
PSW system outlines the entire foot, whereas the MLMC system
modeled the foot segment whose proximal position starts at the
ankle joint center.

Case Studies – Detecting
Neuropathology With 3D Kinematics
A small, but significant, subset of our community dwelling
sample self-reported neuropathologies. Here we examine three
case examples: a 61 year old male with Parkinson’s Disease; a
77 year old female stroke survivor with resulting hemiparesis who
used a wheeled walker; and a 66 year old male with an incomplete
spinal cord injury (iSCI) to the thoracic region. From our full
sample, a subset of 28 participants (18 female) aged 9 to 67 years
[mean 29.8 (S.D. 13.9)] self-reported no history of neurologic,
musculoskeletal, or other health-related conditions. Data from
this subset were used for reference comparison.

Spatiotemporal Parameters
Illustrated in Figure 2 are eight spatiotemporal parameters
quantified using MLMC including: speed, cadence, stride time,
step time, single limb support time, step width, stride length,
and step length. In the first case, the 61 year old gentleman
with Parkinson’s Disease (PD), spatiotemporal parameters reveal
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FIGURE 2 | Spatiotemporal gait parameters acquired using markerless motion capture during self-selected (SS) walking task. Bars represent single subject mean
(SD) for: Case 1 – 61 year old male with Parkinson’s disease (PD), Case 2 – 77 year old female stroke survivor with hemiparesis (Stroke), and Case 3 – 66 year old
male with incomplete Spinal Cord Injury (iSCI). Gray shaded region in each plot represents mean (SD) from our reference control group. Error bars of individual
subject means reflect SD of all steps taken. Individual cases are discussed in detail in Section “Case Studies – Detecting Neuropathology with 3D Kinematics.” These
data reveal differences with respect to reference controls in one (PD, iSCI) to six (Stroke), but not all eight, spatiotemporal parameters in any individual. Notably,
analysis of spatiotemporal variables only might not identify Cases 1 and 3 with neurologic pathologies. Furthermore, these descriptive differences provide little-to-no
explanation regarding the causal mechanism of gait dysfunction.

few differences in comparison to our reference population.
Speed, stride length, and step length in this individual reach
the low boundary of our reference range, while only step
width falls above the reference range. On their own, these
spatiotemporal parameters do not provide evidence of significant
gait dysfunction in this individual. In the second case, the 77 year
old woman with post-stroke hemiparesis, speed, cadence, stride
time, step time, stride length, and step length fall outside the
reference range, recaptiulating her slower than normal walking
speed. Notably, for this individual both step width and single limb
support time fall within the reference range, a counterintuitive
observation given her underlying pathology, but potentially
explained by use of a wheeled walker for external support. For the
third case, the 66 year old gentleman with iSCI, spatiotemporal
parameters fall within the reference range, with the exception of
step width, which is distinctly higher, and stride and step length,
both of which reach the lower boundary.

3D Kinematics
Illustrated in Figure 3 are hip, knee, and ankle kinematics in
sagittal, frontal, and transverse planes acquired with MLMC
during SS for the same three cases described above. All data are
time-normalized to the gait cycle and presented against reference
controls to aid interpretation.

In contrast to expectation established by spatiotemporal
parameters, the first case, Parkinson’s disease, illustrates a
notable asymmetry at all three joints: hip, knee, and ankle.

Prominent sagittal plane deviations include: deficient hip
extension, distorted knee flexion/extension curve in stance
indicative of walking on flexed knees (L > R), delayed and
deficient ankle plantarflexion, and failure to attain neutral
dorsiflexion in terminal swing (R > L). Frontal plane angles
reveal excessive hip circumduction (R > L) and knee varus (R),
both of which are known compensatory strategies to effect limb
shortening and assure foot clearance during swing. Transverse
plane rotations also reveal deviations at the hip (L) and knee (R)
as additional compensations for deficient hip and knee extension
in stance and reduced foot clearance in swing. Importantly,
concurrent evaluation of data from all three joints and planes of
motion reveals the mechanisms of critical gait deficiencies. This
information could inform development of targeted intervention
strategies, improve rehabilitation efficacy, and provide sensitive
outcome metrics.

As might be expected, in the second case, post-stroke
hemiparesis, sagittal plane deviations reveal significant
asymmetry and salient gait deviations. Notable, however,
are not only deficiencies in the magnitude of joint angles at key
gait events, but disrupted timing of the gait pattern, particularly
attainment of peak hip flexion near the stance-to-swing
transition and delayed plantarflexion. Again, ankle dorsiflexion
fails to reach neutral in late/terminal swing bilaterally, although
curiously, foot clearance is worse in the less affected (L) side.
In this individual, prominent compensations occur in the
transverse plane including excessive external hip rotation (L) and
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FIGURE 3 | Gait kinematics acquired using markerless motion capture during self-selected (SS) walking task. Plots are presented in columns for: (1) Case 1 –
Parkinson’s disease (PD), (2) Case 2 – Stroke, and (3) Case 3 – incomplete Spinal Cord Injury (iSCI). Joint angle curves are presented in rows: (1) hip sagittal plane
(flexion/extension), (2) knee sagittal plane (flexion/extension), (3) ankle sagittal plane (dorsiflexion/plantarflexion), (4) hip frontal plane (abduction/adduction), (5) knee
frontal plane (varus/valgus), (6) hip transverse plane (internal/external rotation), and (7) transverse plane (internal/external rotation) angles for: knee – Case 1 | PD, or
ankle (Cases 2–3) | Stroke and iSCI. For all plots: gray shaded area reflects reference control group ensemble average (SD); gold individual subject right leg; and blue
individual subject left leg. Vertical cursor at ∼63% gait cycle denotes toe off for the respective group or leg. Individual subject curves falling outside reference range
can be interpreted as gait deviations. Visualization of data across multiple concurrently occurring joint angles/axes enables interpretation of causal mechanisms of
gait dysfunction and informs targeted rehabilitation interventions. Furthermore, longitudinal studies enable use of gait kinematics as a sensitive outcome measure
specific to the individual’s impairments. All data were acquired using markerless motion capture (Theia3D) with participants wearing their usual attire and footwear.
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ankle rotation (R), both of which are compensations that can
contribute to limb shortening.

Spatiotemporal parameters suggest minimal gait impairment
for the third case, the individual with iSCI. Yet, kinematics reveal
obvious deviations in all three planes of motion that fall outside
the reference and error ranges. In the sagittal plane, the timing
of peak hip flexion is disrupted bilaterally, while the magnitude
of hip range of motion is deficient in both flexion (L > R)
and extension on the right side. Also on the right side, the
timing and magnitude of stance phase knee flexion are aberrant
indicating excessive flexion in midstance on the right; both
sides reveal markedly reduced peak knee flexion during swing.
At the ankle, deficient dorsiflexion in stance indicates failure
of tibial advancement. Right sided plantarflexion is delayed
and reduced and, again, insufficient dorsiflexion in late swing
indicates problematic foot clearance. Combined frontal and
transverse plane deviations reflecting exaggerated hip internal
rotation, knee valgus, and ankle external rotation (R) during
stance place the limb in a guarded and close-packed position
signaling compensation for weakness.

How Do 3D Kinematics Add Value for
Neurorehabilitation?
Taken together, the three cases of individuals affected with
neuropathologies illustrate the limitations of relying solely on
information provided by spatiotemporal parameters. A variety
of tools now available (pressure-sensitive gait mat, mounted
inertial measurement sensors, step counter; Hausdorff et al.,
1997; Hollman et al., 2011; Fang et al., 2018) make efficient
acquisition of spatiotemporal parameters feasible in clinical
settings. Yet, it remains unclear how many of these parameters
are acquired, interpreted, and used for clinical decision making
or outcomes assessment. Even in an ideal setting where
such measures are systematically acquired, spatiotemporal
parameters merely describe the presence of gait differences
without understanding of the underlying cause(s). Moreover,
spatiotemporal data are not sufficient to inform development of
targeted neurorehabilitation interventions.

To underscore this point, our case examples of Parkinson’s
disease and iSCI reveal some spatiotemporal parameters slightly
outside of the reference range, but these do not fully illustrate
the nature of these individuals’ gait and mobility impairments.
Based on spatiotemporal parameters alone, the gentleman with
Parkinson’s disease might be prescribed a generalized exercise
program to improve his fitness with the goal of increasing
walking speed, step and stride length, and conceivably reducing
gait variability. In contrast, kinematic analysis suggests multiple
targets of musculoskeletal intervention to assure, potentially
restore, optimal joint mobility at the hips, knees (L > R), and
ankles. While some perspectives might recommend an orthotic
to assure foot clearance in terminal swing, an alternative would
be further kinematic analysis to understand the dynamic hip-
knee interaction at the stance-to-swing transition (Little et al.,
2014). Kinematic data available from MLMC make such analysis
tractable and so doing would generate a high level of insight
regarding effective strategies for successful neurorehabilitation of
this individual.

Due to long standing sequelae and multiple co-morbid
conditions reported by the stroke survivor presented in our
second case, expectations of neurorehabilitation should be
realistic. Even so, strategies targeting reduced hip range of motion
and deficient ankle plantarflexion on the more involved (right)
side would mitigate problems with foot clearance and limb
advancement (Little et al., 2014) while concurrently increasing
gait speed (Jonkers et al., 2009), stride and step length,
and reversing secondary compensations leading to inevitable
musculoskeletal deterioration.

Perhaps most noteworthy of these examples is the third
case, the gentleman with iSCI, whose modest spatiotemporal
deviations might typically be attributed to aging. As a result,
any significant concern regarding more severe underlying
sensorimotor impairments might be overlooked and left
unaddressed by neurorehabilitation. Instead, frontal and
transverse plane kinematics reveal a multi-joint compensation
most likely due to weakness or more severe pathology on his right
side. Multiple, targeted neurorehabilitation strategies could be
used to address these impairments. Attention to musculoskeletal
impairments is not intended to overshadow the use of MLMC
to evaluate interventions that target coordination and timing
of motor activity, which may be more familiar approaches
for certain neuropathologies. Our purpose with the current
study is not to prescribe or promote specific rehabilitation
approaches, but rather to consider current and evolving tools
and how they can enhance understanding and better inform
neurorehabilitation.

The utility of any emerging technology for assessment of gait,
mobility, or balance in age-related and neurologic conditions
lies in its capacity to provide information regarding detection of
underlying disease conditions, disease progression, and clinical
outcome. For utility in neurorehabilitation, specifically, it is
necessary to acquire information regarding the underlying
mechanisms contributing to altered gait and balance parameters.
While traditional 3D motion capture methods offer these
attributes, the tools, resources, and expertise required for their
use have limited its accessibility and feasibility for use in
clinical and rehabilitation settings. Here we provide evidence
for feasibility of using MLMC in public, participant-facing
environments including settings similar to busy, high activity
rehabilitation clinics.

In this study, we took MLMC technology and ventured outside
the traditional motion capture lab and into the ‘real world’ of
our local community to assess characteristics of gait in more
ecologically valid environments. These first experiments provide
evidence of feasibility including not only its use in community
environments, but feasibility of acquiring robust 3D kinematic
data from a diverse population. Of note, data presented here
show it is now feasible to acquire high resolution 3D motion data
in the clinical or clinic-adjacent setting. The technology can be
brought to the patient/client/participant rather than vice versa,
and high-resolution data can be acquired without interruption
to regular clinical operations. Access to this information
offers unparalleled advantages for the rehabilitation clinician
managing cases of complex neuromotor dysfunction. Rather
than relying on observation, gross approximations (e.g., clinical
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scales), estimates (e.g., gait speed, spatiotemporal parameters),
or proxy measures of clinical status to understand motor
dysfunction, the high-resolution information generated from
3D motion capture makes it possible to develop rehabilitation
strategies based on the individual’s specific movement deviations.
Whether neurorehabilitation targets strengthening strategies,
pharmacologic agents, or biologic interventions such as stem cell
infusions, 3D gait analysis provides a robust and sensitive digital
biomarker. This foundational work enables future investigation
with MLMC especially its use as a digital biomarker of disease
progression and rehabilitation outcome.
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