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Common spatial pattern (CSP) is an effective algorithm for extracting
electroencephalogram (EEG) features of motor imagery (MI); however, CSP mainly
aims at multichannel EEG signals, and its effect in extracting EEG features with
fewer channels is poor—even worse than before using CSP. To solve the above
problem, a new combined feature extraction method has been proposed in this study.
For EEG signals from fewer channels (three channels), wavelet packet transform,
fast ensemble empirical mode decomposition, and local mean decomposition
were used to decompose the band-pass filtered EEG into multiple time–frequency
components, and the corresponding components were selected according to the
frequency characteristics of MI or the correlation coefficient between its time–frequency
components and the original EEG signal. Furthermore, phase space reconstruction
(PSR) was performed on the selected components after the three time-frequency
decompositions, the maximum Lyapunov index was calculated, and the features were
reconstructed; then, CSP projection mapping was used for the reconstructed features.
The support vector machine probability output model was trained by the obtained three
mappings. Probability outputs by three different support vector machines were then
obtained. Finally, the classification of test samples was determined by the fusion of the
Dempster–Shafer evidence theory at the decision level. The results showed that the
accuracy of the proposed method was 95.71% on data set III of BCI competition II (left-
and right-hand MI), which was 2.88% higher than the existing methods. On data set IIb
of BCI competition IV, the average accuracy was 86.60%, which was 2.3% higher than
the existing methods. This study verified the effectiveness of the proposed method and
provided an approach for the research and development of the MI-BCI system based
on fewer channels.

Keywords: MI-BCI with fewer channels, Dempster–Shafer evidence theory, time-frequency decomposition (TFD),
phase space reconstruction (PSR), common spatial pattern (CSP)
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INTRODUCTION

Brain–computer interface (BCI) is a revolutionary human–
computer interaction with the ability to improve the quality of life
of medical patients, disabled people, and healthy people (Wolpaw
et al., 2000; Cheng et al., 2002; Blankertz et al., 2010). Among
various types of BCI, motor imagery (MI) is an important BCI
paradigm with great potential to be applied in rehabilitation
training for motor dysfunction (Attallah et al., 2020).

In MI-BCI, effectively decoding MI intent based on
electroencephalogram (EEG) signals is an important problem
(Chen et al., 2018; Wang et al., 2018; Jiao et al., 2019; Zhang et al.,
2019). Common spatial pattern (CSP) is often used to extract
features in most MI-BCI studies; this algorithm is recognized
as an effective method to extract features of MI-EEG (Ang
et al., 2008; Wang et al., 2017; Jin et al., 2021; Miao et al.,
2021). However, CSP is mainly applicable to multichannel EEG
signals and is not effective in extracting EEG features with
fewer channels for identification. In addition, the application
of multichannel MI-BCI is limited due to a large number of
channels. In comparison, MI-BCI with fewer channels is more
practical. For MI-BCI with fewer channels, how to effectively
apply CSP to this kind of BCI is a problem worth exploring.

Although CSP has many improved methods in multichannel
MI-BCI and achieved good results, these improved algorithms
cannot be directly used in few-channel MI-BCI. Moreover,
in the case of MI-BCI with fewer channels, due to the lack
of sufficient spatial information, the classification accuracy of
features extracted by CSP is worse than other simple spatial
filtering methods. To solve this problem, Huang et al. (Huang,
2009) regarded multiple frequency bands of each channel as
new channels and used CSP to extract features. As such, this
method can effectively utilize frequency domain information
in the case of fewer channels. However, it cannot completely
replace spatial information. Meng et al. (2013) used multiple
coordinate delays of each channel time series to optimize a
spatial filter and a higher order multiparameter FIR filter at
the same time, thereby enhancing the distinguishability of MI-
EEG signals with fewer channels. Nevertheless, the results of
this method are closely related to the selection of the number
of delay factors, and the number of delay factors is generally
larger, which will seriously affect the computational complexity
of this method. Yang et al. (2015) used phase space reconstruction
(PSR) to decompose EEG with fewer channels into multichannel
signals, but the effect of PSR mainly depends on the delay
parameters. However, the selection of embedded dimension
parameters has less effect on its performance, as PSR is directly
used to expand the channel, and the reconstructed signal still
has the problem of insufficient spatial information. Guan and
Duan (2019) put forward a spectral feature and transformation
method based on multivariate empirical mode decomposition
(MEMD), which has some advantages while suffering from some
problems such as high computational complexity and insufficient
spatial information after decomposition and reconstruction. Xu
et al. (2019) used wavelet transform and CNN to decode MI-
EEG signals. Although this method can improve the classification
accuracy of MI-BCI to a certain extent, it requires a large

number of training data sets and is not suitable for the study
of a few-channel MI-BCI. Wang and He (2004) used means of
frequency decomposition and weighting synthesis strategy for
recognizing imagined right- and left-hand movements. Although
this method has a certain effect on MI-BCI signal decoding, it
is only suitable for multichannel MI-EEG decoding and cannot
effectively solve the problem of insufficient spatial information of
few-channel MI-EEG signals.

In view of the above problems of CSP applied to MI-
BCI with fewer channels, this study proposed a combined
feature extraction method called TFD-PSR-CSP. This method
utilizes different time–frequency decomposition (TFD) methods
(involving wavelet packet transform [WPT], fast ensemble
empirical mode decomposition [FEEMD, and local mean
decomposition [LMD]) combined with PSR, which expands
the EEG signals from fewer channels into multichannel EEG.
Finally, features were extracted by CSP. Afterward, considering
the nonlinear and nonstationary characteristics of EEG signals,
in this study, three different support vector machine (SVM)
probability outputs were obtained by introducing a sigmoid
function for probability mapping of SVM outputs. Finally, the
Dempster–Shafer (D–S) evidence theory is used for decision-
making fusion to determine the category of test samples.
This study is organized as “Materials and methods,” “Results,”
“Discussion,” and “Conclusion” sections.

MATERIALS AND METHODS

EEG Data Set and Preprocessing
EEG Data Set
To evaluate the performance of TFD-PSR-CSP and D–S
evidential theory in the identification of MI intention with fewer
channels, data set III of BCI competition II (denoted as data set
1) and data set IIB of BCI competition IV (denoted as data set 2)
are adopted, which are briefly described as follows:

Data set 1: A female subject, aged 25 years, in good health
performed left- and right-hand MI; and a single trial lasted
for 9 s, totaling 280 trials, all of which were completed on the
same day and were divided into seven groups. Three bipolar
EEG channels were recorded before and after C3, CZ, and
C4. The EEG sampling frequency was 128 Hz, and band-
pass filtering was performed at 0.5–30 Hz. Finally, the data
set is distributed equally into training and testing sets, each
consisting of 140 trials.

For additional details, see http://www.bbci.de/competition/ii/.

Data set 2: In total, nine healthy subjects, all of whom
had normal eyesight or eyesight corrected to normal, and
all of them were right-handed. All subjects participated in
five groups (five sessions) of the left- and right-hand MI
experiments, among which the first two sessions had no
feedback and the last three sessions had feedback. Each subject
conducted 160 trials with feedback (80 trials for the right
hand, and 80 for the left hand). Three bipolar leads (C3,
CZ, and C4) were recorded with a sampling frequency of
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250 Hz, 0.5–100 Hz band-pass filtering, and 50 Hz notch
processing. According to some studies (Zhang et al., 2019)
and (Bustios and Rosa, 2017), only the third session data were
used for evaluation. Each subject performed 160 trials, i.e., 80
trials per class. For additional details, see http://www.bbci.de/
competition /iv/.

Pretreatment
In this study, for each trial of data set 1, the data segment of 0.5–
3 s after the prompt was extracted; for each trial of data set 2,
the data segment of 0–4 s after the prompt was extracted, and
the prompt time was 0 s. Studies have shown that the frequency
range of EEG-based MI-BCI signals is generally 8–30 Hz; so in
this study, the original EEG data were filtered at 8–30 Hz by the
5th-order Butterworth band-pass filter.

Method
General Idea and Fusion Algorithm Flow
The overall research idea and fusion algorithm flow of the
proposed method are shown in Figure 1. First, the EEG data
set was divided into a training set and a testing set, and TFD-
PSR-CSP was used to extract features from the training data
set. Specifically, WPT + PSR, FEEMD + PSR, and LMD + PSR
were used for time–frequency decomposition and reconstruction,
and features were extracted by CSP to construct feature vectors.
Then, the SVM classifier was trained. A sigmoid function
was introduced to map the classification results to probability,
and three SVM probability output models were obtained
through training.

After establishing the probability output model of SVM on the
training set, TFD-PSR-CSP extracted features from any trial on
the test set. Then, the probability output of each category of the
test sample was obtained through the trained SVM probability
output model. Finally, the classification result was obtained
through D–S evidence theory fusion.

TFD-PSR-CSP Method and Its Specific Design
TFD-PSR-CSP first carried out TFD on the preprocessed EEG
data to obtain effective time–frequency information, then carried
out PSR to expand the EEG signal with few channels into
multichannel EEG, and finally extracted features with good
separability by CSP. The method and specific design are
described below.

(1) Time–frequency decomposition (TFD)

In this experiment, three different TFD methods were used:
WPT, FEEMD, and LMD.

(1) Wavelet packet transform (WPT)

WPT is an adaptive time–frequency localization analysis
method whose time window and frequency window can be
changed (Ting et al., 2008). The sampling frequencies of data
set 1 and data set 2 in this study were 128 and 250 Hz,
respectively. According to the Nyquist sampling theorem, the
best decomposition layers of WPT were layers 3 and 4. For an
arbitrary trial on data set 1 and data set 2, WPT was performed on

the EEG signals of C3, C4, and CZ channels, and the db4 wavelet
was used after comparing the results of each wavelet base.

Each node in the 3rd or 4th layer was reconstructed, the energy
ratio in each frequency range was calculated, and the related node
signal was selected as the object of subsequent processing. In
this way, the original 3-channel (C3, CZ, and C4) signals were
expanded into 12-channel EEG data after WPT. Figures 2A,B
illustrates the EEG waveform and the energy ratio of the first
five nodes in layer 3 after WPT of the C3 channel of the EEG
signal in data set 1.

(2) Fast ensemble empirical mode decomposition (FEEMD)

Fast ensemble empirical mode decomposition is suitable
for processing nonlinear and nonstationary signals, which can
effectively solve the mode aliasing problem in empirical mode
decomposition (EMD) and further reduce the computational
complexity (Wang et al., 2014; Chen and You, 2017; Dai et al.,
2021). In this experiment, FEEMD was used to decompose
the preprocessed EEG data in time and frequency, which
mainly involved setting two parameters, namely, the amplitude
coefficient of the white noise sequence and the number of times
EMD was executed.

For convenience, taking the EEG signal of the left-hand MI C3
channel of data set 1 as an example, the amplitude coefficient of
the white noise sequence was determined to be 0.2 by the grid
search method, and EMD was executed 40 times. Each channel
to be decomposed was divided into 10 intrinsic mode function
(IMF) components. It can be seen from the spectrogram of each
component in Figure 2C that the frequency ranges of IMF1,
IMF2, IMF3, and IMF4 were 8–30, 8–16, 0–12, and 0–6 Hz,
respectively, and the amplitude of each component decreased
with the increase of decomposition number. Comparing the
frequency bands of these four components and considering the
frequency range of MI-EEG, the first three components (IMF1–
IMF3) were selected to form a new EEG signal as the object of
subsequent processing. In this way, the original 3-channel (C3,
CZ, and C4) signals were expanded into 9-channel EEG data after
passing through FEEMD.

(3) Local mean decomposition (LMD)

Local mean decomposition is an adaptive time–frequency
analysis method for nonstationary signals proposed by Smith
(Smith, 2005; Liu et al., 2018). The original signal x (t) can be
expressed as the sum of the product function PFi (t) and the
residual un (t), as follows:

x (t) =
n∑

i=1

PFi (t)+ un (t) . (1)

For convenience, taking the EEG signal of channel C3 of data set
1 as an example, first, the preprocessed EEG signal is decomposed
into several PF components by LMD, as shown in Figure 2D.
In Figure 2D, the frequency ranges of PF1, PF2, and PF3 are
0–30, 0–16, and 0–7 Hz, respectively, and the frequency ranges
of PF4 and PF5 are significantly lower than 8 Hz. Considering
the frequency range of MI-EEG and calculating the correlation
coefficient between EEG data before LMD and PF components
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FIGURE 1 | Flowchart of fusion algorithm proposed in this study.

after LMD, the correlation coefficients with PF1, PF2, and PF3
are 0.9194, 0.2420, and 0.0015, respectively. Therefore, PF1 and
PF2 are selected to form a new EEG signal as the subsequent
processing object. In this way, the original 3-channel (C3, CZ, and
C4) signals are expanded into 6-channel EEG data after LMD.

The numbers of expanded channels of the original EEG data
after WPT, FEEMD, and LMD are 12, 9, and 6, respectively. The
following PSR is used to further expand the spatial information.

(2) Phase space reconstruction (PSR)

Electroencephalogram signals have chaotic characteristics.
PSR is an effective method for analyzing chaotic time series,
and studies have shown that it is suitable for extracting MI-
EEG features (Meng et al., 2013). Takens (1981) put forward the
embedding theorem and used the delayed coordinate method
to analyze chaotic time series x =

{
x(i)|i=1,2,....N

}
and carry out

reconstruction. The resulting reconstructed signal y (i) is

y(i) =
{
x(i), ......x(i+ (d − 1)τ)

}
1 ≤ i ≤ n− (d − 1)τ, (2)

where τ is time delay, and d is embedded dimension. In this study,
the C-C method proposed by Kim et al. (1999) is used to select the
values of τ and d.

To clearly explain how WPT + PSR, FEEMD + PSR, and
LMD + PSR are formed, the original 3-channel MI-EEG data
were reconstructed by WPT, FEEMD, and LMD, and the
number of channels was expanded to 12, 9, and 6 channels,
respectively. Although these three TFD methods expanded the
spatial information of EEG with few channels, the expansion is
limited. To further expand the spatial information of EEG, we
use the C-C method proposed by Kim et al. based on the idea
of the embedded window method to calculate the time delay τ

and embedded dimension d of the above three kinds of TFD
EEG data, and then we use the searching method to select the
best parameter values. Then, based on the optimal parameter
values and the actual computational complexity, the embedding
dimensions of WPT, FEEMD, and LMD processed data were
selected as 2, 2, and 3, respectively, by PSR. In this way, the
EEG data after three different TFDs were further processed by
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FIGURE 2 | Time domain, frequency spectrum, and energy ratio diagram of each component of EEG signal after TFD. (A) EEG waveform of the first 5 nodes of layer
3 after WPT; (B) EEG energy ratio diagrams of the first 5 nodes of layer 3 after WPT; (C) Spectrum diagram of each IMF component after FEEMD; (D) Spectrum
diagram of each PF component after LMD.

PSR, and the number of channels was extended to 24, 18, and 18
channels, respectively.

(3) Common spatial pattern (CSP) algorithm

After the original 3-channel EEG signal was expanded into
a multichannel signal by TFD-PSR, CSP was proposed to
extract features.

The main idea of the CSP algorithm is to diagonalize two
kinds of covariance matrices at the same time, i.e., maximize
one kind of variance and minimize the other kind of variance,
to find a set of optimal spatial filters and obtain the feature
vector with the best separability by projection. Before the
feature extraction algorithm is applied, band-pass filtering and
centralized processing are generally required for data, so the
spatial covariance matrix of these two types of data is expressed
as:

C1 =
1
n1

n1∑
i=1

Xi1 XT
i1 C2 =

1
n2

n2∑
i=1

Xi2 XT
i2, (3)

where Xi,1,Xi,2 ∈ RN∗T represent the two types of EEG data
obtained from the i-th experiment, N represents the number
of channels, T represents the number of sampling points, and
n1 and n2 are used to represent the number of experiments of
these two categories.

The mathematical principle of the CSP algorithm is to
maximize the following objective function (Lotte and Guan,
2011):

J (w) =

(
wT c1 w
wT c2 w

)
s.t. ||w||2 = 1 (4)

where w is the spatial filter.
The optimization problem of the Rayleigh quotient can be

transformed into the generalized eigenvalue problem. By solving
the generalized eigenvalue problem, the optimal spatial filter can
be obtained.

c1 w = λ c2 w, (5)

where λ is a generalized eigenvalue, and w is a generalized
eigenvector. The eigenvalue λ is used to calculate the variance
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ratio between the two classes. The spatial filter wcsp is
composed of n eigenvectors corresponding to maximum and
minimum eigenvalues.

Finally, the original signal Xi is passed through the spatial filter
wcsp to obtain the projection signals Zi :

Zi = wT
csp Xi . (6)

D–S Evidence Theory
After features are extracted by TFD-PSR-CSP, the sigmoid
function is used to map SVM outputs to obtain three different
SVM probability outputs, and D–S evidence theory is used to
determine the classification of the final test samples by decision-
level fusion.

Dempster–Shafer evidence theory is a decision-making
method for uncertain reasoning proposed and improved by
Dempster and Shafer (Dempster, 1967; Shafer, 1976; Jin et al.,
2021). It combines multiple pieces of evidence by rules to make
decisions under a known identification framework to obtain
higher correct recognition and reliability (Mathon et al., 2010).

To use the D–S evidence theory for decision-level fusion in an
MI-EEG signal classification problem, this experiment introduces
the sigmoid function to map the probability (Platt, 1999) of
an EEG sample category output by SVM belonging to the left-
handed MI category {L} or the right-handed MI category {R}. The
recognition framework is defined as follows:

2 = {{L} , {R}} . (7)

The power series 22 of the identification framework is as follows:

22
= {∅, {L} , {R} , 2} , (8)

where ∅ is an empty set. According to the trained SVM
probability output model, the corresponding probability P {L}
or P {R} of the test sample category {L} or {R} is obtained,
and then the basic probability assignment (BPA) value of each
focal element under the recognition framework is calculated by
formulas (9)–(11).

S ({L}) = P ({L})
(

1−
Nsv

l− 1

)
. (9)

S ({R}) = P ({R})
(

1−
Nsv

l− 1

)
. (10)

S (2) =
Nsv

l− 1
. (11)

where S ({L}) and S ({R}) represent the BPA values of categories
{L} and {R}, respectively, S (2) represents the BPA values of the
identification framework, Nsv represents the number of support
vectors in the SVM probabilistic output model, and l represents
the total number of samples.

After obtaining the BPA value of each focal element under the
identification framework, the BPA values of each focal element
are fused by D-S evidence theory combination rules (12), (13).
Assuming that ∀A ⊂ 2 exists, the combination rules of n mass

functions in the recognition framework 2 are as follows:

(m1⊕m2 ...mn) =
1
K
∑

A1 ∩A2 ∩An 6=∅
m1 (A1) ∗m2 (A2) ∗mn (An) ,

(12)

K =
∑

A1 ∩A2 ...∩An 6=∅
m1 (A1) ∗m2 (A2) ...mn (An) (13)

= 1−
1
K

∑
A1 ∩A2 ∩An=∅

m1 (A1) ∗m2 (A2) ∗mn (An) .

In these formulas, Kis the normalization factor, and 1− 1
K

indicates the conflict degree of evidence. The mass function
indicates the trust degree of each category after classification,
and the trust level of category Ai is m (Ai). When expressed by
probability, m (Ai) represents the probability of class A in the i-
th probability output model, and Ai represents class A in the i-th
probability output model.

After obtaining the fused BPA values Sf ({L}), Sf ({R}),
andSf ({2}), the classification of the final test samples is
determined according to the following decision rules:

Decision rules: If a test sample belongs to class � ,
� ∈ {{L} , {R}}, therefore should satisfy the following conditions:

(1) Sf (�) = max
(
Sf ({L}) , Sf ({R}) , Sf ({2})

)
;

(2)Sf (�)− Sf (3) > ε1, ε1 ∈ {{L} , {R}}andε1 6= �;

(3) Sf (2) < ε2 .

In this experiment, ε1 = 0, ε2 = 0.1.

RESULTS

Classification Accuracy of TFD-PSR-CSP
Combined With D–S Evidence Theory
The last column in Table 1 shows the classification accuracy of
the proposed method on data set 1 and data set 2, which are 95.71
and 86.60± 11.14%, respectively.

Figure 3 shows the classification accuracy of the proposed
method, traditional CSP, and different time–frequency
decomposition and reconstruction methods. The results
show that TFD and PSR achieve better classification accuracy
than traditional CSP methods by effectively combining with CSP.
At the same time, the proposed method in this study achieves the
highest classification accuracy in all subjects.

Kappa Value of TFD-PSR-CSP Combined
With D–S Evidence Theory
In the last column of Table 2, the kappa values of the proposed
method in data set 1 and data set 2 are given, which are 0.91 and
0.74± 0.229, respectively.

Figure 4 shows the kappa value of the proposed method,
traditional CSP, and different time–frequency decomposition
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TABLE 1 | 5 × 5 cross-validation classification accuracy of proposed methods and different methods using BCI competition II data set III and competition IV data set IIb.

Data set Participant Method

CSP FEEMD +
CSP

LMD +
CSP

WPT +
CSP

PSR +
CSP

FDM TFD-PSR-CSP + D-S
evidence theory

Data set 1 a 84.29 91.43 87.14 90 88.57 92.86 95.71

Data set 2 b 77.5 82.5 81.25 82.25 83.75 82.5 86.25

c 55.83 61.67 64.17 63.33 59.17 56.67 68.51

d 56.25 66.25 63.75 62.5 61.25 60 68.75

e 90 97.5 95 96.25 91.25 90 100

f 86.25 91.25 92.5 92.5 90 86.25 96.25

g 81.25 85 86.25 87.5 87.5 88.75 91.25

h 76.75 81.25 82.5 80 80 75 83.75

i 83.75 87.5 86.25 87.5 86.25 81.25 92.5

j 80 88.75 87.5 88.75 82.5 86.25 93.75

Mean ± SD 76.40 ± 12.26 82.41± 11.57 82.13± 11.16 82.29± 12.0 80.21± 11.90 78.52± 12.31 86.60 ± 11.14

P value P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.0547 P < 0.001

FIGURE 3 | Classification accuracy of all participants in data set 1 and data set 2.

and reconstruction methods. The results show that except
FDM method, other methods obtain higher kappa values than
traditional CSP. At the same time, the proposed method in this
study achieves the highest kappa value in all subjects.

DISCUSSION

To make better use of the D–S evidence theory for decision-level
fusion to get the final test sample category, this study employs
three different TFD methods with PSR-CSP + SVM training
to get three different probability output models. The following

compares the proposed method with traditional CSP and
different time–frequency decomposition reconstruction methods
and also with other existing methods.

Comparison of TFD-PSR-CSP and D-S
Evidence Theory With Traditional CSP
and Different Time–Frequency
Decomposition Reconstruction Methods
Classification Accuracy
It can be seen from Table 1 that the classification accuracy
of the proposed method was improved from 84.29 to
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TABLE 2 | 5 × 5 cross-validation kappa value of proposed methods and different methods using BCI competition II data set III and competition IV data set IIb.

Data set Participant Method

CSP FEEMD +
CSP

LMD +
CSP

WPT +
CSP

PSR +
CSP

FDM TFD-PSR-CSP + D-S
evidence theory

Data set 1 a 0.69 0.83 0.75 0.80 0.77 0.86 0.91

Data set 2 b 0.55 0.65 0.63 0.65 0.68 0.65 0.73

c 0.12 0.23 0.28 0.27 0.18 0.13 0.37

d 0.13 0.33 0.28 0.25 0.23 0.20 0.38

e 0.8 0.95 0.9 0.95 0.83 0.8 1

f 0.73 0.83 0.85 0.85 0.8 0.73 0.93

g 0.63 0.7 0.73 0.75 0.75 0.78 0.83

h 0.53 0.63 0.65 0.6 0.6 0.5 0.65

i 0.68 0.75 0.73 0.75 0.73 0.63 0.85

j 0.6 0.77 0.75 0.77 0.65 0.73 0.88

Mean ± SD 0.53 ± 0.245 0.65± 0.231 0.64± 0.223 0.65± 0.243 0.61± 0.238 0.57± 0.248 0.74 ± 0.229

P value P < 0.001 P < 0.001 P < 0.001 P < 0.001 0.0557 P < 0.001

FIGURE 4 | Kappa values of all participants in data set 1 and data set 2.

95.71% compared with the traditional CSP on data set 1.
In addition, before extracting features from EEG data by
CSP, using PSR, the degree was increased from 84.29 to
88.57%, which indicated the effectiveness of PSR in the
intention identification of MI with fewer channels. TFD
not only expanded the number of channels of original EEG
data but also achieved better classification accuracy when
combined with CSP than traditional CSP; this also showed

the effectiveness of TFD in the intention identification of MI
with fewer channels.

It can also be seen from Table 1 that on data set 2, the
average classification accuracy of the method proposed in this
study changed from 78.52 ± 12.31 to 86.60 ± 11.14% compared
with FDM (direct fusion of features extracted from three different
TFDs combined with PSR-CSP). In addition, the classification
accuracy of traditional CSP and other methods was tested by the
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paired t-test, and the P-values of other methods were far less than
0.005, except for FDM (P-value is 0.0547). The above showed
that the fusion of D–S evidence theory after extracting features
by different TFDs combined with PSR-CSP was better than FDM.

Kappa Value
It can be seen from Table 2 that the kappa value or mean
value of the proposed method was increased by 0.22 and 0.21,
respectively, compared with the traditional CSP on data sets
1 and 2. In addition, before extracting EEG features by CSP,
TFD, and PSR were used to expand the number of original EEG
data channels to increase the amount of spatial information, and
the kappa value or mean value was improved. This showed the
effectiveness of TFD and PSR in the intention identification of MI
with fewer channels. Compared with FDM, the kappa values of
data sets 1 and 2 increased from 0.86 to 0.91 and from 0.57 to 0.74,
respectively, which indicated that the D–S evidence theory fusion
was superior to FDM after different TFD and PSR combined with
CSP to extract features.

Feature Distribution
To compare the distribution differences of features extracted by
different methods, Figure 5 presents the distribution of features
extracted by these methods on data set 1 (for convenience, only
the two preferred features in each method are displayed). It can
be seen from Figure 5 that the feature distribution obtained by
combining three different TFD methods and PSR with CSP in
this study was more separable than that obtained by a single CSP.

To intuitively compare the distribution of features proposed
by different methods, Table 3 shows the upper quartile difference
and median difference of each characteristic box diagram; the
difference between the upper quartile difference and the median
difference indicates the separability of left- and right-hand
feature distribution. The separability difference of WPT-PSR-CSP
(0.00559 to –1.41e-03) was larger than the separability difference
of WPT-CSP (0.00293 to –1.82e-04), which indicated that PSR
can improve the separability of the left- and right-hand MI
features in the intention identification of MI with fewer channels.
In addition, the Fisher score (FS) was calculated for the features
extracted by each method. The FS value of the proposed method
was much larger than that of CSP, which also indicated that the
features extracted from the original EEG by three different TFD
methods and PSR combined with CSP had better separability.

Performance Analysis of D–S Evidence Theory in
Decision Fusion Layer
To analyze the performance of the D–S evidence theory in the
decision fusion layer, Table 4 shows the BPA of the single-feature
domain and multifeature domain fusion of two test samples.
The largest BPA in the single feature domain of test sample 1
in Table 4 is S2 {L} (0.5985). After the fusion of D–S evidence
theory, S {L} is increased to 0.8269, and the uncertainty S {2} is
decreased from the minimum of 0.1188–0.0282. Therefore, the
D–S evidence theory can be used to improve BPA and reduce the
uncertainty of categories.

For test sample 2 in Table 4, the BPA (0.4617) of S∗1 {L}
is larger than the BPA (0.0883) of S∗1 {R}, and the BPA values
of S∗2 {R}andS∗3 {R} are larger than those of S∗2 {L}and S∗3 {L},

respectively. After D–S evidence theory fusion, the BPA of S∗f {L}
(0.5408) is higher than S∗f {R} (0.4241), while S {2} decreases
from 0.1188 to 0.0351. The final test sample category is judged
as {L}, which is in line with the true category of the sample. If the
test sample category is judged as {R} according to the traditional
voting principle, which is inconsistent with the true category,
it shows that the fusion of D–S evidence theory can not only
reduce the uncertainty of the test sample but also improve the
classification accuracy.

Comparison of TFD-PSR-CSP and D–S
Evidence Theory With Existing Methods
To compare the performance of the proposed method with
the existing methods (both for data set 1 and data set 2), the
classification accuracy of data set 1 is compared, and the kappa
value and classification accuracy of data set 2 are compared.
The best accuracies and kappa values are highlighted in bold in
Tables 5–7.

Comparison of Results of Data Set 1
Table 5 compares the classification accuracy of the method
proposed in this study with the existing methods on data set 1.
The features adopted by these methods are different from the
classification algorithm, and the results are different. It can be
seen from Table 5 that the proposed method has achieved better
classification accuracy, reaching 95.71%, which is 2.88% higher
than the highest classification accuracy obtained by the existing
method (the method proposed by Ge et al.).

Comparison of Results of Data Set 2
(1) Kappa value comparison

Table 6 compares kappa values of the methods proposed in
this study and the methods adopted by the top four in the BCI
competition on data set 2. It can be seen from Table 6 that the
average kappa value of the method proposed in this study is
higher than that of other methods in the table, and all subjects
have achieved better performance.

(2) Comparison of classification accuracy

Table 7 compares the classification accuracy of the proposed
method with the existing methods on data set 2. It can be seen
from Table 7 that the proposed method has achieved better
average classification accuracy, reaching 86.60%, which is 2.3%
higher than the highest average classification accuracy obtained
by the existing methods (the method proposed by Yu et al.), but
the classification accuracy on subjects 7 and 8 is slightly lower
than that of some existing methods.

Compared with multichannel MI-BCI, MI-BCI with fewer
channels may be more easily accepted by users. To solve the
inapplicability of CSP in MI-BCI with fewer channels, this study
proposed that TFD-PSR-CSP expands the spatial information
of MI-EEG with fewer channels and enriched the information
in the time domain and frequency domain. In addition, the
sigmoid function was used for probability mapping of SVM
outputs to obtain three different SVM probability outputs; D–
S evidence theory was used for decision-level fusion, which
effectively improved the performance of few-channel MI-BCI.
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FIGURE 5 | Characteristic box diagram of traditional CSP and of three different time–frequency decomposition and reconstruction methods. M1 represents the
characteristic box diagram of CSP; M2 represents the characteristic box diagram of PSR + CSP; M3 represents the characteristic box diagram of WPT + CSP; M4
represents the characteristic box diagram of WPT + PSR + CSP; M5 represents the characteristic box diagram of LMD + CSP; M6 represents the characteristic box
diagram of LMD + PSR + CSP; M7 represents the characteristic box diagram of FEEMD + CSP; M8 represents the characteristic of box diagram FEEMD + PSR +
CSP.

TABLE 3 | Comparison of feature distribution between CSP method and three different time–frequency decomposition reconstruction methods.

Method Comparison mode

Upper quartile difference Median difference Fisher score

CSP 0.00216 2.67e-05 0.0086

PSR + CSP 0.00510 3.66e-04 0.0089

WPT + CSP 0.00293 −1.82e-04 0.0118

WPT + PSR + CSP 0.00559 −1.41e-03 0.0141

LMD + CSP 0.00260 −4.12e-04 0.0121

LMD + PSR + CSP 0.00557 −2.24e-03 0.0131

FEEMD + CSP 0.00257 −1.31e-03 0.0107

FEEMD + PSR + CSP 0.00443 −2.81e-03 0.0132

TABLE 4 | BPA values of test samples under the framework 2 . Si and Si* represent the BPA of test samples 1 and 2, respectively. sf and sf * represent the BPA of test
samples 1 and 2, respectively, according to D–S decision fusion rules.

BPA {L} {R} 2 Classification results

s1 0.4999 0.0501 0.4500 \

s2 0.5985 0.2827 0.1188 \

s3 0.4578 0.2109 0.3313 \

sf 0.8269 0.1450 0.0282 {L}

s1* 0.4617 0.0883 0.045 \

s2* 0.3918 0.4894 0.1188 \

s3* 0.2927 0.3761 0.3313 \

sf * 0.5408 0.4241 0.0351 {L}

However, the methods proposed in this study also have
some limitations. One of the limitations is that compared with
traditional CSP, the computational complexity of the proposed
method is higher. Therefore, in our future work, we will

work toward reducing the computational complexity of the
proposed method. Another limitation is that the BCI competition
data set was used in this study, which can only be used for
offline evaluation of the proposed method. Hence, an online
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TABLE 5 | Comparison of classification accuracy between the methods proposed in this study and the existing methods in data set 1.

References Method Classification accuracy (percentage)

Feature extraction Classification

Song et al., 2016 DWT + MS-SE-FF ELM 89.29

Kee et al., 2017 Renyi BLDA 81.23

Zhou et al., 2018 HT + DWT LSTM 91.43

Rodríguez-Bermúdez et al., 2013 PSR + Hjorth + AR + CWT LOO + FLD 82.14

Ge and Hu, 2018) TDS + AR + DWT D-S + SVM 92.83

Wang et al., 2019 DWT + CSP ELM 90

Guan and Duan, 2019 MEMD LDA 88.35

Xu et al., 2019 WT CNN 89.56

Wang et al., 2018 SC + WPT BPNN 91

This study TFD-PSR-CSP D-S evidence theory + SVM 95.71

TABLE 6 | Comparison of kappa values on data set 2 between the methods proposed in this study and the methods adopted by the top four in the BCI competition.

Subject Method

This study Chin Gan Coyle Lodder

1 0.73 0.40 0.42 0.19 0.23

2 0.37 0.21 0.21 0.12 0.31

3 0.38 0.22 0.14 0.12 0.07

4 1.00 0.95 0.94 0.77 0.91

5 0.93 0.86 0.71 0.57 0.24

6 0.83 0.61 0.62 0.49 0.42

7 0.65 0.56 0.61 0.38 0.41

8 0.85 0.85 0.84 0.85 0.74

9 0.88 0.74 0.78 0.61 0.53

Mean 0.74 0.60 0.58 0.46 0.43

TABLE 7 | Comparison of classification accuracy between the method proposed in this study and existing methods on data set 2.

Subject Method

This study Zhao
et al., 2021

Dose
et al., 2018

Wang
et al., 2020

Ang et al.,
2008

Zhang et al.,
2019

Wang et al.,
2017

Bustios
and Rosa,

2017

Park and
Chung, 2019

1 88.75 81.37 75.31 71.93 77.5 84 78.13 73.13 82.5

2 68.51 62.86 57.5 64.08 55.94 62.6 69.03 67.14 60

3 68.75 63.63 56.56 61.3 53.75 56.3 58.19 63.13 62.78

4 100 95.94 96.88 98.05 97.07 99.4 99.38 97.81 99.37

5 96.25 93.56 92.19 91.94 90.44 94.8 86.88 92.81 87.5

6 91.25 88.19 83.44 79.28 78.06 83.8 79.37 82.81 81.88

7 83.75 85 84.06 85.78 83.44 94.1 90.63 81.56 90.63

8 92.5 95.25 92.18 93.48 88.75 93.3 88.12 93.13 91.25

9 93.75 90 86.25 85.31 83.88 90.1 81.87 87.81 87.81

Average acc 86.6 83.98 80.56 81.24 78.75 84.3 81.29 82.15 83.15

evaluation of the proposed method will also be a part of
our future work.

CONCLUSION

In view of the lack of spatial information in EEG data with
fewer channels, CSP cannot extract features effectively. In

this study, a time–frequency-space multidomain fusion
method combining TFD-PSR-CSP feature extraction
with D–S evidence theory was proposed. Compared with
existing methods, it had certain advantages in classification
accuracy, kappa value, and feature distribution, which is
expected to provide ideas for the research and development
of MI-BCI online systems based on EEG with fewer
channels.
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