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This study evaluated the feasibility of using occipitoparietal alpha activity to drive
target/non-target classification in a brain-computer interface (BCI) for communication.
EEG data were collected from 12 participants who completed BCI Rapid Serial Visual
Presentation (RSVP) calibrations at two different presentation rates: 1 and 4 Hz.
Attention-related changes in posterior alpha activity were compared to two event-related
potentials (ERPs): N200 and P300. Machine learning approaches evaluated target/non-
target classification accuracy using alpha activity. Results indicated significant alpha
attenuation following target letters at both 1 and 4 Hz presentation rates, though this
effect was significantly reduced in the 4 Hz condition. Target-related alpha attenuation
was not correlated with coincident N200 or P300 target effects. Classification using
posterior alpha activity was above chance and benefitted from individualized tuning
procedures. These findings suggest that target-related posterior alpha attenuation is
detectable in a BCI RSVP calibration and that this signal could be leveraged in machine
learning algorithms used for RSVP or comparable attention-based BCI paradigms.

Keywords: electroencephalography (EEG), posterior alpha, attention, brain-computer interface (BCI), event-
related potential (ERP), N200, P300, signal classification

INTRODUCTION

The development and application of brain-computer interface (BCI) technology has steadily
increased over the past quarter-century (Wolpaw and Wolpaw, 2012; Rashid et al., 2020). Broadly,
BCIs leverage neurophysiological signals to help users perform tasks related to movement or
communication. BCI technology offers benefits to clinical populations for whom extant assistive
technologies are insufficient, including individuals with locked-in syndrome (Wolpaw, 2013;
Akcakaya et al., 2014). The scope, design, and neurophysiological mechanisms of BCI systems
are quite varied, though BCI designs are popularly divided into two broad categories: (1) invasive
systems that record data from intra-cranial electrodes, and (2) non-invasive systems that use scalp
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electroencephalography (EEG). Non-invasive BCI systems are
more popular because they are more affordable, accessible, and
do not require surgery (Akcakaya et al., 2014; Rashid et al., 2020).

Recently, software tooling in Python has been made openly
available to help facilitate BCI research and development. The
open-source repository BciPy (Memmott et al., 2021) includes
a common BCI paradigm for communication referred to as
Rapid Serial Visual Presentation (RSVP; Huang et al., 2011;
Orhan et al., 2012, 2013; Acqualagna and Blankertz, 2013; Lees
et al,, 2018). The RSVP task presents users with a sequence of
images, such as letter characters, to assess target- and non-target-
related brain responses derived from scalp EEG, including the
event-related potentials (ERPs) N200 and P300, which indicate
stimulus discrimination and attentional processing, respectively
(Patel and Azzam, 2005). RSVP may be a particularly useful
paradigm in cases where users are restricted by limited eye
movement or visual attention (Fried-Oken et al., 2020), since
RSVP only requires a user to fixate a single stimulus presented
at the center of their gaze (Acqualagna and Blankertz, 2013;
Akcakaya et al.,, 2014).

A brain-related oscillatory signature referred to as the
alpha rhythm encompasses posterior-dominant activity in the
range of approximately 8-13 Hz, though the exact bounds of
alpha are often debated (Bazanova and Vernon, 2014). Alpha
activity is understood to result from some thalamo-cortical
synchronization occurring over many centimeters, rather than
any localized cortical area (Lopes da Silva et al., 1980; Lopes
da Silva, 2013). Of interest to the current work, changes in
alpha activity have been experimentally linked to various cortical
activations. Examples of these patterns include attenuation of
central alpha or mu rhythm over regions secondary to actual or
imagined contralateral limb movement (Pfurtscheller et al., 2006;
Meirovitch et al., 2015), or attenuation of posterior alpha with eye
opening or cognitive processing of visual stimuli (Klimesch, 1999;
Pfurtscheller and Lopes da Silva, 1999). Additionally, changes in
the distribution of posterior alpha are known to track shifts in
covert spatial attention (Foster et al., 2017).

Prior research has explored the relationship between
attention-related changes in alpha and ERPs. Some evidence has
suggested that alpha desynchronization and target-related P300
may index and predict similar attentional processes (Yordanova
et al,, 2001; Grent-"T-Jong et al., 2011), or that evoked potentials
have the potential to interfere when measuring attention-related
changes in alpha activity (van Gerven et al., 2009). However, it
is known that visual attention can modulate alpha amplitude in
the absence of ERP signals (Klimesch, 1999), and source analysis
has associated these signals with different cortical structures
(Peng et al., 2012).

A few studies have demonstrated the feasibility of using
posterior alpha to track spatial attention in order to make
letter selections in BCIs for communication (Kelly et al., 2005;
van Gerven et al., 2009; van Gerven and Jensen, 2009; Treder
et al., 2011). Evidence suggests that posterior alpha remains a
viable signal for classification over repeated sessions (Horschig
et al, 2015), and that patterns of alpha lateralization can
be altered through neurofeedback training (Okazaki et al,
2015). In addition to spatial attention, posterior alpha might

also be used to track a user’s mental state during BCI tasks
(Myrden and Chau, 2017). However, despite being widely studied
and relatively easy to measure, vision-modulated posterior alpha
is neither a popular nor a common component of many BCI
spellers (Rezeika et al, 2018; Rashid et al., 2020). To our
knowledge, no previous work has attempted to use attention-
related changes in posterior alpha to make letter selections
in the context of a centrally fixated BCI spelling paradigm
such as RSVP.

Given the evidence that visual attention modulates posterior
alpha activity, and the conspicuous absence of posterior alpha
as a driving neural signal in non-invasive BCI spelling systems,
we conducted an exploratory study to examine the feasibility of
using this signal in the context of the BciPy RSVP paradigm.
A novel contribution of the current study is that no prior BCI-
related work has examined posterior alpha changes outside of
lateralized displays. Our primary aims were to determine whether
target-related changes in posterior alpha activity are detectable
in the RSVP task and, if so, whether these changes are sensitive
to the presentation rate of letter stimuli. We hypothesized: (1)
that event-related alpha activity would decrease following the
presentation of target letter stimuli relative to non-target stimuli;
and (2) that target-related posterior alpha attenuation would be
smaller at an increased rate of presentation due to temporal
overlap of target processing with subsequent non-targets. As
secondary aims, we sought to assess whether target-related
posterior alpha effects correlated with coincident target effects
of N200 and P300 ERPs, and whether we could train machine
learning algorithms to classify target and non-target responses
using posterior alpha signals alone.

MATERIALS AND METHODS

EEG data were recorded from a convenience sample of generally
healthy adults recruited at Oregon Health and Science University
(OHSU) in Portland, OR. Research activities were registered
with and approved by the OHSU Institutional Review Board
(IRB). Data were collected over the course of a single 90-
min session, after which participants were compensated $25 for
completing the study.

Participants

Demographic information is presented in Table 1. Twelve
generally healthy adults enrolled in the study and provided
written informed consent before participating in study activities,
in accordance with the Declaration of Helsinki. All individuals
recruited for the study were fluent in English. No participants
reported use of alcohol or other mind-altering substances within
12 h of their test session. Exclusion criteria included use of EEG-
altering medications such as neuroleptics or benzodiazepines
(as reviewed by a physician), or an inability to perceive RSVP
task stimuli and achieve at least 80% accuracy on a RSVP
practice task. No one who enrolled was ineligible to participate
based on these criteria. All participants were confirmed to have
normal or corrected-to-normal vision and a minimum near-field
Snellen visual acuity of 20/30 in at least one eye. All participants
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TABLE 1 | Demographics.

Participants (n = 12)

Age: mean years + SD (range) 33.75 + 6.40 (28-46)
Sex

Female

Male 6

Race

White 12
Ethnicity

Hispanic/Latino 1

Not-Hispanic/Latino 1

A summary of participants enrolled in the study. Our sample contained a balanced
number of female and male participants, but was homogeneous with regard to race
and ethnicity.

achieved perfect scores on the practice RSVP task after only
a single attempt.

Procedure

After providing written informed consent at the start of the
study visit, participants self-reported demographic information
followed by a brief health questionnaire and near-field visual
acuity test. Upon completion of the screening questions,
participants were introduced to a practice version of the
RSVP calibration (see section “Rapid Serial Visual Presentation
Practice”) before donning the EEG cap. Participants then
completed two instances of RSVP calibration (see section “Rapid
Serial Visual Presentation Calibration”). Individuals were asked
to indicate how sleepy they felt immediately before, between, and
after the two calibrations using the Stanford Sleepiness Scale (SSS;
Herscovitch and Broughton, 1981; MacLean et al., 1992), since
research has demonstrated that alpha activity fluctuates during
periods of drowsiness (Cantero et al., 2002).

Screening

Self-Report Questionnaires

For screening purposes, individuals were asked to self-report
current health conditions, medications, and provide details about
their sleep habits. Specifically, participants were asked to indicate
whether they had problems sleeping too much or too little, or if
they had seen a physician for a sleep-related disorder.

Rapid Serial Visual Presentation Practice

To confirm participants’ ability to perceive the RSVP stimuli (see
section “Rapid Serial Visual Presentation Calibration”), lab staft
administered a practice version of the RSVP calibration created
in PsychoPy3 Experiment Builder, version 3.0.0b11 (Peirce, 2007,
2009). Unlike the test version of RSVP calibration, the practice
task presented only 10 trials of pseudo-random letter sequences,
each of which had a 50% chance to contain the target letter.
Stimuli in the letter sequences appeared at a rate of 4 Hz in order
to emulate the more difficult experimental condition. Participants
were asked after each 10-letter sequence to state whether the
target had been present.

Rapid Serial Visual Presentation
Calibration

Overview

Participants completed two instances of the BciPy RSVP
calibration (Orhan et al, 2011, 2012, 2013; Oken et al,
2014; Memmott et al, 2021). Each calibration consisted of
100 trials of 10-letter sequences and lasted approximately 10-
25 min, depending on the presentation rate of letter stimuli. As
demonstrated in Figure 1, each trial began with a target letter
prompt presented for 1 s, followed immediately by the onset of a
red fixation cross for 500 ms, and then a steady-stream sequence
of 10 letter stimuli presented either at a rate of 1 or 4 Hz (1.0
s or 250 ms per stimulus, respectively). There were no blank-
screen intervals within each sequence; a blank black screen was
presented for 750 ms between sequences.

Participants were instructed to sit still, try to blink only
between sequences, and watch for the target letter in each
sequence, as indicated by the most recent target prompt. When
the target appeared, participants were told to react mentally
without movement or blinking. In cases where an individual
was unable to resist blinking during the sequence (e.g., due to
fatigue or irritation), there was a standing instruction to prioritize
blinking during a non-target presentation in order to avoid
missing the target. Along these lines, participants were allowed
to pause the task by pushing the spacebar if they needed to rest.

Each participant completed RSVP calibrations with stimuli
presented at rates of 1 Hz and 4 Hz; these rates were consistent
within each 100-trial instance of the task. Condition order was
balanced randomly across the 12 participant sessions in order to
minimize systematic fatigue effects associated with repetition of
the RSVP task (Oken et al.,, 2018). The logic behind our use of 1
and 4 Hz presentation rates was twofold: (1) to present stimuli at
speeds where early visual and attentional processing of sequential
stimuli would both overlap (i.e., 4 Hz; 250 ms per letter stimulus)
and not overlap (i.e., 1 Hz; 1 s per letter stimulus); and (2) to
minimize contamination of alpha-band activity by harmonics
related to steady-state visual-evoked potential (SSVEP) artifact.
Onset of the N200/P300 complex is expected 200-300 ms
post-stimulus onset (Patel and Azzam, 2005), while target-
induced posterior alpha desynchronization effects have been
demonstrated approximately 300-800 ms following stimulus
onset in a visual oddball paradigm (Peng et al., 2012). Past work
with this RSVP paradigm has typically used a presentation rate
of 5 Hz (e.g., Oken et al.,, 2018). However, as shown in Figure 2,
the 2nd and 3rd harmonics of the SSVEP are sometimes apparent
following spectral decomposition. To avoid contamination from
a 10 Hz harmonic in the middle of the alpha band, the “typical”
RSVP presentation rate of 5 Hz was lowered to 4 Hz.

Stimuli

RSVP stimuli were rendered on a 17.3-inch ASUS Vivobook Pro
N705F laptop (1,920 x 1,080 resolution) with a refresh rate of
60 Hz. Participants viewed the display from a seated position in
a dimly lit room with consistent lighting. Viewing distance was
approximately 70 cm, though head position was not constrained.
Fixation crosses were drawn in solid red. Letter stimuli were
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Target
Prompt Fixation Letter Sequence:
(1s) (500 ms) 1 Hz (1 s per letter) or

4 Hz (250 ms per letter)

FIGURE 1 | RSVP calibration. Each instance of the RSVP calibration consisted of 100 ten-letter sequences, as illustrated. A target letter was presented on-screen
for 1 s, followed by a red fixation cross for 500 ms, and then a random letter sequence containing the target. The 10-letter sequences were presented at a rate of
either 1 or 4 Hz for the entirety of the task. A blank inter-stimulus interval of 750 ms separated the final letter of each sequence and the target prompt of the

subsequent trial.

Emergent

drawn in sans-serif Arial font and rendered solid white against
an unchanging solid black background. Letter stimuli included
28 possible characters: capitalized forms of all 26 letters of the
English alphabet, plus the characters “_” and “<,” which represent
“space” and “backspace” in this RSVP paradigm, respectively.

At a viewing distance of 70 cm, the red fixation cross
subtended 2.5° visual angle with a stroke width of 0.4°. All
letter stimuli had a stroke width of approximately 0.5°. Due
to morphological differences in the 28 letter stimuli, character
height ranged between 0.5° (ie, “_”) and 3.8° (e.g., “T”).
Similarly, letter width ranged between 0.5° (i.e., “I”) and
4.8° (i.e., “W”).

Electrophysiological Recordings

EEG data were recorded from a DSI VR-300 headset (Wearable
Sensing; San Diego, CA, United States). This adjustable dry-
electrode system utilized a linked-ear reference with a ground
at Al. The sampling frequency was 300 Hz, with an A/D
resolution of 16 bits. Electrodes were placed according to a
custom montage of standard 10/20 sites: FCz, F7, Pz, P4, PO?7,
PO8, and Oz. These sites are optimized to capture P300 evoked
potentials (Krusienski et al., 2008), with the alteration that site
P3 was replaced by F7 as an additional anterior site in order
to capture eye-related activity (e.g., blinking). Signal quality was
assessed in Wearable Sensing’s DSI-Streamer software (v.1.08.44)
prior to completion of the experimental tasks. Electrodes were
adjusted to satisfy manufacturer-determined default operating
thresholds pertaining to clipping, noise (very low < 0.07 wVrms;
very high > 100 wVrms), impedance (<2.0 MQ), impedance
signal-to-noise (<3.0 MQ), and DC offset (50% of maximum).
All experimental EEG data were recorded using the BciPy
acquisition client.

Electrophysiological Processing

With the exception of the secondary BCI classification
comparisons  (see  section “Brain-Computer Interface
Classifiers”), all time-frequency and ERP analyses were
performed offline in BrainVision Analyzer: Professional
Edition, version 2.1.0.327 (BrainVision LLC; Morrisville, NC,
United States). Due to a priori uncertainty regarding the exact
distribution of the attention effect across the scalp during RSVP
calibration, EEG measures were analyzed twice in parallel:
both as a “pooled” (i.e., averaged) signal across occipitoparietal
sites Pz, Oz, PO7, and PO8, and also at site Pz in isolation

(i.e, “Pz-only”). Pz is typically where experimenters can expect
to observe the highest-amplitude target-related P300 (Polich,
2007), and was therefore selected as a representative sub-site.
Data were filtered 1-45 Hz (48 dB/octave) along with a 60 Hz
notch filter using a Butterworth zero-phase infinite impulse
response (IIR) filter. These filtered data were then downsampled
from 300 to 150 Hz.

Time-Frequency Analyses
EEG data in the time-frequency analysis were segmented into 2.5
s epochs centered relative to stimulus onset, such that each of
the 100 target and 900 non-target epochs in a given calibration
ranged from —1,250 ms to +1,250 ms relative to stimulus
onset. This window was chosen in order to capture activity
+1 s relative to stimulus onset, with ample buffer length of
250 ms at either end of the window to avoid edge-related artifact
due to the wavelet analysis. Within each calibration recording,
epochs were separated by condition and converted to time-
frequency scaleograms using a continuous wavelet transform
(CWT) with a complex-valued Morlet mother wavelet (Morlet
parameter ¢ = 5). Scaleograms were generated from wavelets with
scaled frequencies ranging from 4 to 16 Hz in 48 logarithmic
steps, normalized according to uniform scale power (unit energy
normalization; all scaled frequency layers of the wavelet function
possessed an energy value of 1). Complex voltage output was
converted to real-valued voltage (jLV). The mean and standard
deviation of a 500 ms baseline window ranging from —600
to —100 ms before stimulus onset were used to Z-transform
all output samples within the test epochs. Unless otherwise
specified, “alpha activity” in this analysis refers to the average of
the Z-scored real voltage values within the designated response
window of 300-800 ms post-stimulus onset, which was selected
to capture the onset and duration of the target effect as seen
in previous research with visual oddball paradigms (Peng et al.,
2012; Vazquez-Marrufo et al., 2019). In other words, “negative”
activity values indicate event-related decreases in alpha activity
relative to the baseline window (—600 to —100 ms). See
BrainVision Analyzer User Manual (Software Version 2.1.0) for
further information regarding operations (Brain Products, 2014).
Our analyses examined alpha activity following target and
non-target letter stimuli, as well as the alpha attenuation effect,
which we defined as the difference between target and non-
target alpha responses within each RSVP calibration. Statistical
tests were performed on alpha activity estimates taken from
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FIGURE 2 | RSVP FFT output. (A) Mean FFT magnitude (normalized amplitude; pooled occipitoparietal sites), averaged across all 1,000 stimulus epochs in the 1 Hz
condition and across all participants. A peak is visible at 10 Hz, within the range of alpha activity. (B) Similar FFT data, generated from the 4 Hz condition. Again, a
peak is visible at 10 Hz, bookended by sharper peaks reflective of the 2nd (8 Hz) and 3rd (12 Hz) harmonics of the SSVEP, which results from high-contrast flickering

(4 Hz) in the letter stream.

the single wavelet layer with scaled central frequency closest
to each participants individual alpha frequency (IAF) within
a calibration, rounded to the nearest 0.5 Hz. Identifying
spectral prominences prior to time-frequency investigations
is a recommended technique to avoid misleading analyses
of arbitrary noise (Pfurtscheller and Lopes da Silva, 1999;
Corcoran et al., 2018). IAF estimates were determined from
mean fast Fourier transformation (FFT) output from the pooled
occipitoparietal signals; this FFT output was averaged across all
available 2.5 s epochs within each individual instance of RSVP
calibration (Figure 2). Real-valued voltage output was generated
using a 20% Hanning window, periodic variance correction, and
amplitude normalization relative to a frequency bandwidth of 4-
20 Hz. Semi-automatic peak detection identified the frequency in
the range of 7.5-12.5 Hz with the highest magnitude. Estimates
were then reviewed visually and adjusted in the event of peak
capture by either noise or SSVEP artifact in the 4 Hz presentation
condition. Clear alpha peaks were absent in two of the 1 Hz
calibrations and three of the 4 Hz calibrations. In these cases
where no discernable peaks were present, the peak estimate was
set manually to 10 Hz. The underlying rationale of this approach
was that a wavelet layer with scaled central frequency of 10 Hz
and spectral bandwidth of approximately 4 Hz is well-positioned
to capture most of the signal within the alpha band (8-12 Hz).
Peak values determined in this manner ranged from 9 to 11.5 Hz
across participants; all participants demonstrated similar IAF
estimates between the 1 and 4 Hz presentation conditions, with
the exception of three individuals who showed marginal increases

in peak alpha of 0.5 Hz (two instances) and 1.0 Hz (one instance)
in the 4 Hz condition.

Event-Related Potential Analyses

To accommodate ERP analyses, the original data were segmented
into 1 s epochs ranging from —200 to 4800 ms, relative to
stimulus onset. These epochs were baseline corrected (—200
to 0 ms), separated by stimulus-type, and averaged within-
condition before the use of semi-automatic peak detection to
label N200 (200-350 ms) and P300 (300-450 ms) potentials in
the target condition. N200 and P300 responses within both the
target and non-target classes were estimated as mean voltage
(LV) £ 4 sampled points (~53 ms) around the labeled peak
latencies derived from the target samples. Our analyses measured
N200 and P300 signed voltages following target and non-target
letter stimuli, as well as the target effect, which we defined as
the difference between target and non-target voltage responses
within each condition.

Artifact Rejection

To approximate the processing tools included by default in BciPy,
which currently does not include tooling for artifact handling
outside of filtering, our primary offline analyses of EEG and ERP
data did not implement rigorous artifact rejection procedures.
However, to ensure that our results were not influenced by poor
data quality and that electrooculographic (EOG) activity had
no effect on our alpha measurements, we re-ran key analyses
using data that included artifact rejection to remove eye blinks,
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extraneous electromyography (EMG), and other non-descript
noise such as electrode popping due to movement and poor
electrode contact. All time-frequency and ERP epochs were
flagged for review and semi-automatic rejection according to
the following rules: voltage gradients > 50 wV/ms; voltage
differences > 125 WV within a window of 50 ms; absolute voltage
values > 75 WV; and activity < 0.5 LV sustained for > 100 ms in
duration. Data marked in this manner were reviewed visually and
contaminated epochs were discarded prior to separating epochs
by stimulus class (i.e., target vs. non-target).

Artifact rejection results are discussed under “Results” section
“Artifact Rejection.” Individual participants kept at least 70% of
target time-frequency epochs in the 1 Hz condition and 65% of
targets at 4 Hz, with the exceptions that one participant only
maintained 59 target segments in the 1 Hz condition, and another
kept only 46 target segments in the 4 Hz condition. Across ERP
epochs, individual participants kept >85% of target segments at
1 Hz and >78% of targets at 4 Hz.

Brain-Computer Interface Classifiers
The Python code underlying our BCI classifier analyses is
accessible online (Zenodo, 2022).

Brain-Computer Interface Classifiers: Alpha Data

For the purpose of training classifiers using alpha-band features,
we performed analogous time-frequency preprocessing of the
raw EEG data using the PyWavelets Python package (Lee et al,,
2019). Due to differences in software, the wavelet parameters
used here differed slightly from those outlined above in section
“Time-Frequency Analyses”: we used a Morlet mother wavelet
with bandwidth of 1.5 Hz and a central frequency of 1.0 Hz; scaled
wavelets were not normalized. Data were Z-scored according
to the same 500 ms baseline (—600 to —100 ms) and response
(4300 to 4800 ms) windows, and we selected one frequency
to investigate for each participant (see IAF in “Materials
and Methods” section “Time-Frequency Analyses”). Unlike the
primary analysis, however, alpha activity was preserved as time-
series data and was not averaged within the response window.
We also experimented with optimizing the locations of these
500 ms baseline and response windows to improve classification.
We varied the baseline window start between —1,050 and
—600 ms, and varied the response window start between +150
and +550 ms, selecting the best starting positions according
to the balanced test accuracy of a Logistic Regression classifier.
Classifier analyses were conducted using data from all four of the
occipitoparietal channels.

We evaluated several classifiers on this time-series
representation of the alpha data, including Logistic Regression
with L2 regularization and a support vector classifier. We also
tried classifying these data in a channelwise covariance matrix
representation, using a logistic regression classifier on a tangent
space projection (Barachant et al., 2012, 2013). The experimental
setup results in a fixed class ratio of 9 non-targets for every target;
thus, all models were trained using class-balanced objectives
and evaluated using balanced accuracy, which is the average
of positive (target) and negative (non-target) class accuracy:
accya) = (acCuarget + ACCnon—target)/2. Note that a model that

makes uniform random guesses will achieve a balanced accuracy
of approximately 0.5 (i.e., at chance levels), while a perfect model
will achieve an accuracy of 1.0.

Brain-Computer Interface Classifiers: Event-Related
Potential Data

To compare alpha classification performance to the default
classification mechanism used in BciPy, we used principal
component analysis, followed by regularized discriminant
analysis and kernel density estimation (RDA/KDE) to classify
filtered EEG time-series data inclusive of the N200 and P300
ERPs. This approach has been detailed in previous work
(Oken et al.,, 2018; Memmott et al., 2021) and was used to
generate balanced accuracy estimates similar to those of the
alpha classifiers outlined in section “Brain-Computer Interface
Classifiers: Alpha Data.” Unlike the ERP analyses in “Materials
and Methods” section “Event-Related Potential Analyses,” ERP
time-series data were filtered 2-45 Hz and segmented into 500 ms
epochs ranging 0 to 4500 ms relative to stimulus onset in order
to match the default settings of BciPy.

Statistical Analyses

Statistical tests were conducted in IBM SPSS Statistics, Version
27 (IBM Corporation; Armonk, NY, United States). Shapiro-
Wilk tests were used to assess the normality of our measures;
box plots were reviewed to identify relevant outliers. Roughly
one-third of the primary across-participant alpha and ERP
measures were not normally distributed, trending (p < 0.10)
toward non-normality, or contained at least one outlier. Because
these measures were inconsistently normally distributed, we
opted to forego parametric means comparisons and instead
conducted across-participant median comparisons using non-
parametric two-tailed related-samples Wilcoxon signed rank
tests. Shapiro-Wilk tests also revealed that most of the within-
participant alpha measures were not normally distributed,
so independent-samples Mann-Whitney U-tests were used to
evaluate target vs. non-target alpha activity differences within
individual RSVP calibrations. These data were inspected visually
to confirm general similarity of shape. Spearman’s rank-order
correlations were used to examine the relationships between
alpha attenuation effects and ERP target effects. Similarly, artifact
rejection and tuned parameter analyses used non-parametric tests
to accommodate non-normal data and outliers.

RESULTS

Self-reported sleepiness levels demonstrated a significant median
increase between the start (Mdn = 3.0) and mid-point (Mdn = 3.5)
of the experiment, Z = —2.111, p = 0.035. However, there
were no significant median differences in sleepiness levels before
RSVP, after RSVP, or sleepiness changes after-minus-before RSVP
according to condition, either 1 or 4 Hz presentations (all p
values > 0.165). None of the self-reported SSS sleepiness metrics
correlated with any of the alpha attenuation effects [all absolute
75(10) values < 0.511; all p values > 0.09].
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Time-Frequency Analyses

Time-frequency scaleograms displayed in Figure 3 show
representative wavelet output 4-16 Hz during the RSVP
calibrations. As clarified previously in section “Artifact
Rejection,” these primary analyses included all 1,000 available
epochs (both target and non-target) from all 100 trials in
each RSVP calibration. Artifact rejection comparisons and the
corresponding redundant analyses are discussed separately below
in “Results” section “Artifact Rejection.”

Alpha Effects: Across-Participants
Figure 4 offers a summary of Z-scored alpha activity waveforms
across participants (£ standard error of the mean; SEM)
according to electrode source, presentation rate, and stimulus
class. Measuring the pooled occipitoparietal signal in the 1 Hz
condition, target-related median alpha activity (Mdn = —0.164)
was significantly lower than for non-target letters (Mdn = 0.285),
Z = —2.667, p = 0.008. Similarly, in the 4 Hz condition, median
alpha activity was lower following targets (Mdn = —0.022)
compared to non-targets (Mdn = 0.172), but this difference did
not reach statistical significance, Z = —1.883, p = 0.060. The size
of the target-vs.-non-target attenuation effect was significantly
larger at 1 Hz presentation rates (Mdn = —0.632) compared to
4 Hz presentation rates (Mdn = —0.227), Z = —2.353, p = 0.019.
Using data from Pz-only, we observed effects similar to those
in the pooled signal. In the 1 Hz condition, median alpha
activity for targets (Mdn = —0.103) was significantly lower than
median alpha related to non-targets (Mdn = 0.373), Z = —3.059,
p = 0.002. At 4 Hz presentations, median target-related alpha
activity (Mdn = 0.098) was again lower than that of the non-target
stimuli (Mdn = 0.196), though unlike data from the pooled signal,
this difference was significant at Pz-only, Z = —1.961, p = 0.050.
The median alpha attenuation effect at Pz-only was larger in
the 1 Hz condition (Mdn = —0.527) compared to the 4 Hz
condition (Mdn = —0.103), Z = —2.510, p = 0.012. There were no
meaningful differences between median alpha attenuation in the
pooled signal and at Pz-only, either at 1 or at 4 Hz presentations
(both comparisons: Z = —0.784, p = 0.433).

Alpha Effects: Within-Participants

While between-participant effects are of interest, the use of
alpha signals within BCI systems ultimately requires significant
within-participant effects. Independent-samples Mann-Whitney
U comparisons revealed significant median differences between
target and non-target alpha Z-scores within individual RSVP
calibrations. Significant attenuation of alpha activity following
target letter stimuli was discernable in at least one of the
signal sources (i.e., either the pooled signal or Pz-only) in 9/12
participants in the 1 Hz condition, and 6/12 participants in the
4 Hz condition (see Figure 5 for a summary of within-participant
alpha attenuation effects). The attenuation effect was equally
detectable between the pooled occipitoparietal signal and Pz-
only during 1 Hz presentations, such that 7 participants showed
significant median differences between target and non-target
alpha activity in both signal sources, while 1 participant evinced
the attenuation effect only in the pooled signal and another just
at Pz-only. This pattern was comparable in the 4 Hz condition,

where 3 participants demonstrated the effect in both signals, 2
showed changes only in the pooled signal, and 1 just at Pz-only.

Event-Related Potential Analyses

Many of the expected ERP target effects were observed across
pooled occipitoparietal sites (Figure 6). N200 and P300 measures
were all increased following target stimuli compared to non-
target stimuli, both at 1 and 4 Hz presentation rates (all p
values < 0.012). The size of the N200 target effect was smaller
in the 1 Hz condition (Mdn = —1.629) compared to the 4 Hz
condition (Mdn = —3.842), Z = —2.746, p = 0.006, while the
corresponding P300 target effect was inversely greater in the
1 Hz condition (Mdn = 3.262) than in the 4 Hz condition
(Mdn = 1.508), Z = —2.435, p = 0.015. These ERP target effects
remained unchanged when measured at Pz-only, with increased
N200 and P300 measures for targets compared to non-targets
(all p values < 0.003). The median N200 target effect was larger
during 4 Hz presentations (Mdn = —3.512) compared to 1 Hz
presentations (Mdn = —2.648), Z = —2.746, p = 0.006, and the
median P300 target effect was again larger at 1 Hz (Mdn = 5.513)
compared to the 4 Hz condition (Mdn = 3.501), Z = —2.118,
p = 0.034. N200 target effects were not discernably different
between the pooled signals and Pz-only in either presentation
condition (both p-values > 0.433). P300 target effects were larger
at Pz-only than in the pooled signal in both the 1 and 4 Hz
conditions (both p values = 0.002).

Correlation of Across-Participant Alpha
Attenuation and Event-Related Potential
Target Effects

Alpha attenuation and ERP target effects are depicted side-
by-side as difference waveforms in Figure 7. Across pooled
occipitoparietal sites in the 1 Hz condition, alpha attenuation
effects did not correlate with N200 [r,(10) = —0.133, p = 0.681]
or P300 target effects [r;(10) = —0.105, p = 0.746]. Pooled
signal alpha attenuation effects in the 4 Hz condition did
not meaningfully predict N200 [rs(10) = —0.329, p = 0.297]
or P300 target effects [rs(10) = —0.007, p = 0.983]. This
disconnect between alpha and ERP target effects in the pooled
occipitoparietal signal was also evident in the Pz-only signal.
As before, in the 1 Hz condition there were no significant
correlations between alpha attenuation and ERP target effects
for N200 [r,(10) = 0.084, p = 0.795] or P300 [rs(10) = 0.035,
p=0.914]. At4 Hz, the Pz-only signal did not yield any significant
correlations between alpha attenuation and target effects for
either N200 [rs(10) = —0.042, p = 0.897] or P300 [r,(10) = 0.000,
p =1.000].

Artifact Rejection

Related-sample Wilcoxon signed ranks tests indicated that none
of the between-participant alpha measures were statistically
different before and after artifact rejection, as outlined in
“Materials and Methods” section “Artifact Rejection” (all p
values > 0.05). The results of our alpha comparisons remained
unchanged, with a single exception that the difference between
median target and non-target alpha activity at Pz-only was no
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longer statistically different at 4 Hz presentations (p = 0.308).
Spearman’s rank-order correlations indicated no significant
correlations between alpha attenuation and ERP target effects
in either the pooled [all absolute r,(10) values < 0.476; all
p values > 0.118] or Pz-only signals [all absolute rs(10)
values < 0.238; all p values > 0.457].

Within-participants, artifact rejection did not result in visible
changes to the shape of alpha activity distributions; the majority
of measures remained non-normal, including at least one
class (i.e., target or non-target) within each electrode source
per individual RSVP calibration. Artifact rejection resulted in
changes to the alpha attenuation effect primarily in the 4 Hz
condition, where 3 previously significant effects dissipated and 1
moved from significant (p < 0.05) to trending (p < 0.10). In the
1 Hz condition as well, 1 previously significant effect shifted to
trending while another dissipated entirely.

Implementation and Classification
Regularized Discriminant Analysis and Kernel Density
Estimation

Mean balanced test accuracies from the ERP RDA/KDE model
ranged 0.595-0.836 across participants in the 1 Hz condition and

0.614-0.874 in the 4 Hz condition. A paired-samples Wilcoxon
test indicated a significant median increase in test accuracies
between the 1 Hz condition (Mdn = 0.676) and the 4 Hz condition
(Mdn =0.707), Z = —2.433, p = 0.015. Within the 1 Hz condition,
there was a significant Spearman’s correlation between mean
balanced test accuracies of the RDA/KDE model and N200
target effects [r5(10) = —0.776, p = 0.003]. The same RDA/KDE
estimates related to P300 target effects [r;(10) = 0.531, p = 0.075],
but only weakly. 1 Hz condition RDA/KDE accuracies were not
correlated with alpha attenuation [r(10) = 0.287, p = 0.366].
At 4 Hz presentations, mean balanced test accuracies from the
RDA/KDE model were associated with N200 [r;(10) = —0.790,
p = 0.002] and P300 target effects [rs(10) = 0.608, p = 0.036],
though RDA/KDE accuracies were again unrelated to alpha
attenuation effects [r5(10) = 0.077, p = 0.812].

Alpha Classifiers

A comparative bar chart of the various alpha and ERP classifier
methods is shown in Figure 8. Default parameters yielded
mean balanced test accuracies for individual participants that
ranged 0.470-0.764 across models in the 1 Hz condition and
0.463-0.729 in the 4 Hz condition. Tuned parameters resulted
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in mean balanced test accuracies ranging 0.508-0.772 across
models in the 1 Hz condition and 0.472-0.732 in the 4 Hz
condition. Across participants at both 1 and 4 Hz presentations,
both with default and tuned parameters, all alpha modeling
underperformed relative to accuracy estimates from the ERP
RDA/KDE model (Wilcoxon: all p values < 0.008). Alpha
attenuation effects were significantly correlated with all default
classifier mean test accuracy estimates at 1 Hz (p values < 0.039),
with the expected exception that there was no meaningful
correlation between alpha attenuation and the Uniform Random
model. In contrast, alpha attenuation in the 4 Hz condition was
largely unrelated to accuracy estimates from the default classifiers
(p values > 0.249), except for a weak correlation between
alpha and Logistic Regression model estimates [rs(10) = —0.515,
p=0.087].

All alpha models using default window parameters in the 1 Hz
condition yielded mean test accuracies with a statistically higher
median than chance (Uniform Random model, Mdn = 0.509;
all p values < 0.005). However, these relationships were much
weaker during 4 Hz presentations, such that none of the
three alpha classifiers were statistically distinguishable from the
Uniform Random model (Mdn = 0.481; p values > 0.06).
Using individually tuned baseline and effect window latencies,
all alpha models performed above chance (Mdn = 0.514) in
the 1 Hz condition (all p values < 0.005). In the 4 Hz
condition however, Tangent Space (Mdn = 0.523) accuracies
fell to the level of the Uniform Random model (Mdn = 0.501;
p = 0.126), though the Logistic Regression (Mdn = 0.542)
and Support Vector (Mdn = 0.533) models performed above

chance (p values < 0.050). Expectedly, tuned classifier mean
test accuracies demonstrated higher median values for Logistic
Regression models in both the 1 Hz (p = 0.045) and 4 Hz
conditions (p = 0.005), relative to their default-parameter
counterparts. Parameter tuning had no significant effect on the
accuracy estimates of the Uniform Random, Support Vector, or
Tangent Space models.

Supplementary Analyses
Using tuned time-frequency analysis parameters, we reprocessed
and reanalyzed the alpha data in BrainVision Analyzer in order
to describe changes due to altered baseline and effect windows.
Because tuning was performed using all four occipitoparietal
channels, the supplementary across-participant analysis only
utilized the pooled signal. Alpha activity distributions were
normally distributed across participants. However, to remain
consistent with our other analyses, median comparisons were
again run using related-samples Wilcoxon signed-ranks tests.
Median target (Mdn = —0.179) alpha activity was lower than
median non-target activity (Mdn = 0.284) at 1 Hz presentations,
and the same was true for targets (Mdn = 0.001) and non-
targets (Mdn = 0.187) in the 4 Hz condition (both comparisons:
Z = —2.589, p = 0.010). Alpha attenuation effects measured after
parameter tuning did not correlate with any of the ERP target
effects [all absolute r;(10) values < 0.336; all p values > 0.286].
Much like the within-participant alpha distributions discussed
in sections “Alpha Effects: Within-Participants” and “Artifact
Rejection,” distributions generated from individually tuned
parameters remained non-normal in shape. Three previously
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significant alpha attenuation effects weakened to a trending
state (p < 0.10), while another 3 were no longer significant
following tuning procedures. However, two previously not-
significant effects shifted to a trending state (note: one of these
was in the opposite direction), while another became significant.
Interestingly, the one effect that moved from not-significant to
significant following tuning was observed in an individual with
one of the weaker alpha attention effects, as measured in the
primary analysis. Overall, following tuning procedures in the
1 Hz condition, 7/12 individuals demonstrated alpha attenuation
in at least one signal source (6 at both pooled and Pz-only signals;
1 only in the pooled signal), with an additional 3 trending (2 in
the pooled signal; 1 at Pz-only). One-half (6/12) of participants
demonstrated alpha attenuation in at least one tuned signal
source during the 4 Hz condition (1 in both sources; 3 only in
the pooled signal; 2 at Pz-only).

DISCUSSION

The primary objectives of this exploratory study were (1) to
detect target-related posterior alpha attenuation in a BCI RSVP
paradigm, and (2) to discern whether that attenuation effect
varied according to the presentation rate of the stimuli in

that task. Secondarily, this study attempted to describe the
relationship between changes in alpha and coincident ERP
signals, and explore a subset of classification approaches to
distinguish target and non-target alpha responses.

Summary of Findings

As hypothesized, we observed significant event-related
attenuation of posterior alpha activity across participants
for target letter stimuli relative to non-targets. This alpha
attenuation effect was observed in both 1 and 4 Hz presentation
conditions, though as expected, target-related attenuation was
significantly greater in the 1 Hz condition. Within-participant
findings were similar, such that more individuals demonstrated
target-related posterior alpha attenuation in the 1 Hz condition
than in the 4 Hz condition. Significant target effects were
observed for both N200 and P300 ERPs, but were unrelated to
alpha attenuation. Classifier models trained to target/non-target
classification of alpha activity performed above chance, but
underperformed markedly relative to RDA/KDE estimates
generated from ERP time-series data. Alpha attenuation effects
were observed using Z-transforms based on pre-defined baseline
and response windows. Individualized parameter tuning of these
temporal windows resulted in improved performance of one of
the alpha classifiers.
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The Disconnect Between Alpha Activity

and Event-Related Potentials

In review, there is evidence that (1) posterior alpha and ERPs such
as the P300 can capture similar attentional processes (Yordanova
et al., 2001; Grent-"T-Jong et al., 2011), but also, that (2) alpha
activity and attentional ERPs are not necessarily identical neural
indices of attention (Klimesch, 1999; Peng et al, 2012). In
agreement with these previous findings, the non-overlapping
nature of alpha, N200, and P300 activity was apparent in the
current study. Specifically, target-related fluctuations in alpha
activity did not correspond to similar target-related changes in
N200 or P300 signals across individuals.

Individual Differences

Although posterior alpha attenuation was visible across-
participants, within-participant analyses revealed clear individual
differences in both the presence and size of the alpha
attenuation effect. Individual differences in alpha activity are
well-documented, including differences in IAF (Corcoran et al.,
2018), as well as the amount and distribution of alpha activity
(Bazanova and Vernon, 2014). With these differences in mind,
it seems fair to question the absolute utility of posterior alpha
for BCI target classification across all individuals. As shown in
Figure 5, some participants demonstrated almost no attention-
related differences in alpha activity, while a handful displayed
consistent and pronounced effects. To be sure, this inter-
individual variability is not a new difficulty in the field of
BCI. User-centered design has long been an important topic
(Akcakaya et al, 2014; Moghadamfalahi et al, 2015), and
even some of the few lateralized posterior alpha designs have

documented individual differences among users (Horschig et al.,
2015). A viable approach to an alpha-compatible BCI likely
includes identification of alpha “responders,” or individuals who
demonstrate target-related changes in alpha activity, prior to
including alpha activity as a classifiable signal in any machine
learning model. To this point, a study from van Gerven and
Jensen (2009) characterized different patterns of classification
performance in participants sorted according to their “good” or
“bad” alpha responses. Prior work has also demonstrated the
benefits of personalizing channel selection to measure posterior
alpha for BCI control (van Gerven et al., 2009).

Electroencephalography Ensemble
Methods

With high-dimensional data such as EEG, one alternative to
classification using a single model is to instead use ensemble
learning to combine multiple EEG classification approaches
(Sun et al., 2007). Unlike multi-modal approaches that integrate
different input modalities (e.g., EEG, EOG, EMG) to improve
BCI function (Li et al., 2016), ensemble learning can deploy
multiple analytic models for a single input. To this end, the
current RSVP speller might be altered to consider an ensemble
that simultaneously includes both ERP information and posterior
alpha activity. Indeed, recent research has combined event-
related frequency band information with ERP information for
ensemble classification in a motor imagery task (Luo et al,
2020). A past investigation has also proposed that posterior
alpha may be simultaneously useful as a marker of both
attentional engagement and abrupt changes in mental state,
including frustration (Myrden and Chau, 2017). Given the
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effects remain relatively similar in magnitude between presentation rates.

comparatively low performance of the alpha classifiers in this
study, it seems prudent to explore integration of alpha and
ERPs to improve classification of user intent in RSVP and other
comparable paradigms.

LIMITATIONS AND FUTURE DIRECTIONS

Generalizability of this study is hindered by a small sample
size (n = 12). Participants were generally healthy adults, so it
remains to be seen whether our results extend to individuals
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FIGURE 8 | Classifier comparisons. Bars illustrate the mean balanced test
accuracies (=SEM) of multiple classifiers in the 1 and 4 Hz presentation
conditions. With the exception of RDA/KDE, which quantifies performance of
the ERP time-series classification, all other classifiers examine time-series
alpha activity. The Uniform Random model was used as a control classifier
with an expected classification accuracy of 0.50.

with locked-in syndrome or other clinical populations. The
use of pooled occipital sites for alpha and ERP analyses
was relatively coarse, and future research would benefit from
use of a recording apparatus of higher spatial resolution in
order to evaluate topographic features of alpha attenuation in
the context of RSVP. Artifact rejection methods resulted in
only marginal changes to the data, possibly due to changes
in statistical power after removing trials, since the across-
participant measures did not change significantly following
these rejections. Regardless, we recommend using these artifact
rejection procedures consistently in future investigations. While
overlapping processing of sequential visual stimuli is an inherent
consequence of the RSVP design, the overlap was clearly
detrimental to our measures of alpha activity in the 4 Hz
condition. Additional work may benefit from attempts at noise
reduction. A possible solution for this phenomenon would be
to jitter stimulus duration to attenuate the SSVEP signal and
associated harmonics. Lastly, though care was taken to match the
preprocessing steps in both BrainVision and Python, there are
minor differences inherent in the use of two different software
packages. Future research would benefit from the use of a single,
integrated toolbox.

CONCLUSION

Event-related changes in posterior alpha activity are sensitive
to visual attention during a common BCI speller paradigm,
RSVP. Machine learning classifiers were able to discern target
and non-target alpha responses at levels above chance, though
these approaches were well below the current standards of
more accepted ERP classifiers. However, the patterns of alpha
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attenuation observed in this study were not redundant when
compared to ERPs, even though these signals capture similar
aspects of visual attention. These findings also offer data
on posterior alpha in a paradigm that differs from previous
investigations which rely on covert spatial attention. For these
reasons, posterior alpha activity is a viable candidate signal for
inclusion in future BCI designs, most expectedly in ensemble
with other EEG control measures.
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