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Although interest in brain-computer interfaces (BCIs) from researchers and

consumers continues to increase, many BCIs lack the complexity and

imaginative properties thought to guide users toward successful brain activity

modulation. We investigate the possibility of using a complex BCI by

developing an experimental story environment with which users interact

through cognitive thought strategies. In our system, the user’s frontal alpha

asymmetry (FAA) measured with electroencephalography (EEG) is linearly

mapped to the color saturation of the main character in the story. We

implemented a user-friendly experimental design using a comfortable EEG

device and short neurofeedback (NF) training protocol. In our system, seven

out of 19 participants successfully increased FAA during the course of the

study, for a total of ten successful blocks out of 152. We detail our results

concerning left and right prefrontal cortical activity contributions to FAA

in both successful and unsuccessful story blocks. Additionally, we examine

inter-subject correlations of EEG data, and self-reported questionnaire data

to understand the user experience of BCI interaction. Results suggest the

potential of imaginative story BCI environments for engaging users and

allowing for FAA modulation. Our data suggests new research directions for

BCIs investigating emotion and motivation through FAA.

KEYWORDS

brain-computer interfaces, electroencephalography, neurofeedback, a�ective
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1. Introduction

Despite the promise of brain-computer interfaces (BCIs) to create personalized and

exciting experiences for users (Robinson et al., 2020), BCIs are considered “not ready”

for use (Cattan, 2021), as aesthetics in BCI experiences are often not a priority, among

other reasons. Thus far, BCIs are not commercially successful (Kerous et al., 2018), and

present numerous challenges for researchers (Saha et al., 2021) such as simple interfaces

which may not be engaging for users (Cohen et al., 2016). While there exist multiple

Frontiers inHumanNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.883467
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.883467&domain=pdf&date_stamp=2022-08-12
mailto:ckrogmei@purdue.edu
https://doi.org/10.3389/fnhum.2022.883467
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.883467/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Krogmeier et al. 10.3389/fnhum.2022.883467

types of BCIs, neurofeedback-based BCIs are the most popular

(Kerous et al., 2018). Neurofeedback (NF) allows participants

to learn to control unconscious brain activity by perceiving

feedback concerning their brain activity. Feedback is often visual

and simple, such as a thermometer bar (Johnston et al., 2011;

Robinson et al., 2020).

While clinical NF often involves extensive training protocols

for the purposes of understanding long-term psychological

outcomes, BCI research harnesses NF techniques within

relatively short training sessions, with the primary goal of

examining novel, dynamic interaction methods for participants

(Sitaram et al., 2017; Charles et al., 2020). In this study, we

develop and investigate an affective BCI, which takes as input

correlates of user emotion and motivation through frontal alpha

asymmetry (FAA). FAA has been a target measurement in

EEG NF because it is relevant to Major Depressive Disorder

(MDD) (Zotev et al., 2020), and is often studied in the context

of affective and motivational disorders such as MDD and

anxiety. Therefore, FAA has been used as input for affective

BCIs investigating novel interaction systems for emotion self-

regulation. A review of the role of FAA in both emotional and

motivational processes can be found at Harmon-Jones andGable

(2018).

FAA can be modulated through NF paradigms in

which users learn to regulate brain activity through operant

conditioning, despite a lack of volitional control (Rosenfeld

et al., 1995; Aranyi et al., 2015b, 2016). Additionally, FAA

can potentially serve as a biomarker to study and modulate

approach motivation and affect (Briesemeister et al., 2013).

In this paper, we detail our developed experimental story BCI

which is designed with the goal of stimulating the imagination

of the user in order to prompt novel thought content strategies

for brain activity modulation. We report our experimental

design and analysis, which is inspired by affective BCI work

using FAA by Aranyi et al. (2016). We provide a discussion of

our findings in order to inform affective BCI protocol design

using complex stimuli with the broader goal of investigating

user-friendly, higher complexity BCIs.

Our BCI examines participant NF interaction success within

an experimental story BCI FAA NF protocol. The experimental

story was designed to allow participants to exercise their

imagination in order to explore mental strategies for increasing

FAA. We aim to understand the efficacy of the developed BCI

in allowing participants to increase their FAA score through the

examination of the following research questions:

• RQ1: Can participants successfully engage with the

developed experimental story BCI by increasing FAA?

– We hypothesize that some, but not all participants will

successfully increase FAA, and that successful blocks will

be characterized by large effect sizes.

• RQ2: Will successful blocks be characterized by an increase

in left frontal cortical activity?

– We hypothesize that increased FAA will be the result

of increased left frontal cortical activity rather than

decreased right frontal cortical activity.

• RQ3: Will participant cognitive thought strategies be

associated with NF interaction success?

– We hypothesize that successful participants will

primarily use direct strategies while unsuccessful

participants will primarily use indirect strategies to

modulate brain activity.

FAA scores, measured in real-time with

electroencephalography (EEG), serve as the input signal in

our BCI system. For the participant, visual feedback concerning

FAA is mapped to the color saturation of the main character

in the story environment. Participants engaged with eight

distinct story segments using imagination-based instructions

for thought content strategies. Greater FAA scores increased

the main character’s color saturation, while lower FAA scores

decreased color saturation of the main character in the

dream-like story environment.

1.1. BCI: Frontal alpha asymmetry (FAA)
and EEG

Frontal alpha asymmetry (FAA) refers to a difference in

brain activity between the right and the left prefrontal cortices of

the brain, and can be measured with a difference score between

corresponding right and left electrode sites on an EEG device.

Multiple studies have indicated that greater left relative to right

prefrontal cortical activity is associated with increased approach

motivation, defined as an organism’s tendency to approach

or expend energy in order to go toward stimuli rather than

away (Harmon-Jones and Gable, 2018). Additionally, greater left

relative to right prefrontal cortical activity has been associated

with better emotion self-regulation ability, increased positive

emotions, as well as reduced depressive symptoms (Cohen

et al., 2016; Quaedflieg et al., 2016; Harmon-Jones and Gable,

2018). In affective computing, determining new ways in which

humans can more directly control emotions is central to the

advancement of humanity generally (Cavazza et al., 2014b), as

emotional processing is diminished within numerous mental

health disorders. Thus, FAA has been studied within numerous

NF and BCI paradigms (Peeters et al., 2014; Aranyi et al., 2016;

Mennella et al., 2017) as well as applications aiming to alleviate

depression symptomology (Kelley et al., 2017).
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Our objective is to investigate the efficacy of our developed

BCI to facilitate FAA modulation for the user. As BCI research

often emphasizes technical aspects over both human interaction

and user guidance, we develop our BCI system with a focus on

the cybernetic paradigm “human in the loop,” as described by

Kosmyna and Lécuyer (2017). For our study, we use the Emotiv

Epoc X1 EEG headset. This headset is minimally intrusive, quick

to set up, and affordable enough to be selected by consumers;

perhaps why most BCI studies incorporate a consumer grade

device (Kerous et al., 2018).

1.2. Experimental storytelling techniques

While there is no concrete definition of “avant-garde,” there

exist certain attributes of both film and game works that are

considered characteristics which can often, but not always, be

found within the genre (Taberham, 2018). While techniques

within avant-garde films have been identified and described

after their creation, we use many experimental film making

techniques seen in avant-garde works within our developed

experimental story BCI, seeking to use these identified

techniques for the BCI experience, rather than develop a work

defined as “avant-garde.” Techniques we employed include

rejection of linear narrative, spatio-temporal discontinuity, lack

of causal logic, and prominent stylization. The primary goal

of avant-garde works is often to provide novel psychological

experiences for viewers, in which viewers must exert energy and

creative leaps of the imagination to think about and experience

the work (Koenitz, 2017; Taberham, 2018). This exercise of the

imagination is central to avant-garde works (Taberham, 2018).

Therefore, our goal was to explore experimental film-making

techniques identified within previously developed avant-garde

works, with the goal of stimulating the participant’s imagination

during NF interaction. Similar to Zioga et al. (2018), we believe

that interdisciplinary research such as this study will allow for

creative, new approaches to understanding NF interaction in

BCI experiences which may help understand these experiences

in real-world settings.

By experiencing the experimental BCI story environment,

participants may explore cognitive thought content strategies

for brain activity modulation more freely, as creativity and

imagination may be necessary to process the story environment.

We investigate our assumption that an experimental story

BCI may influence user mental strategies for BCI engagement

positively by evaluating participant BCI engagement success

through FAA measurements. We investigate commonalities in

user neural engagement through inter-subject correlations (ISC)

of EEG data as exploratory analyses as well, and obtain self-

reported questionnaire data in order to provide a more complete

picture of the user experience during BCI engagement.

1 https://www.emotiv.com/epoc-x/

2. Related work

Since the 1960s (Nijholt, 2015), artists have advanced the

field of BCIs through the creation of applications within real-

life contexts (Zioga et al., 2018). Previous research has explored

multi-brain activity amongst users through art installation work

(Mori, 2003; Albu, 2020), BCI collaborative control of music

(Le Groux et al., 2010), and mixed media performances (Zioga

et al., 2018); See Wadeson et al. (2015) for more earlier artistic

BCI work. Despite many previous, creative BCIs which provide

participants with imaginative, playful, as well as collaborative

experiences using brain activity, BCI research investigating NF

interaction success within more engaging BCI experiences is

limited.

Many NF protocols investigated through user studies

involve simple environments such as those which utilize status

bars, single auditory tones, shape changes (Cavazza et al.,

2017) or color changes (Cohen et al., 2016) for feedback

concerning the user’s brain activity. Moving cubes (Berger

and Davelaar, 2018), histograms (Mennella et al., 2017), and

box-plot meters (Quaedflieg et al., 2016) have also been

used to visualize brain activity for participants. Recent work

investigating the combined usage of EEG and functional

magnetic resonance imaging (fMRI) NF for emotion self-

regulation additionally used colored height bars to visualize

two signals from EEG and two signals from fMRI (Zotev

et al., 2020), as well as colored height bars in combination

with pictures of positive autobiographical memories (Dehghani

et al., 2020). In a study by Lackner et al. (2016), brain

activity was visualized through the movement of a ball, which

changed from blue to yellow with the participant’s alpha band

activity. Participants also saw a happy or sad smiley face after

each run. Research suggests that improving the complexity

of NF environments could lead to increased NF success

(Cohen et al., 2016).

Cohen et al. (2016) compared EEG NF success in emotion

down-regulation using a virtual animated scenario to using

a simple thermometer 2D feedback system. The authors

determined that the more complex, animated scenario was

not only more effective for NF learning, but was also more

motivating, engaging, and allowed for a greater NF learning

transferability to unfamiliar environments. Berger and Davelaar

(2018) examined attentional control in their BCI system, and

determined that participants had a higher learning rate for

increasing attention in their 3D environment than in their

2D environment. Gruzelier et al. (2010) determined greater

NF learning for participants in their Cave Automatic Virtual

Environment (CAVE) than for participants experiencing a

screen-based rendition of the same environment. Although

these studies examined varying attributes of environments

with higher complexity, greater interface complexity

appears to have contributed to increased NF success across

different platforms.
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While literature concerning affective BCIs using FAA is

limited (Aranyi et al., 2015b), there exist several BCI FAA

studies which utilize stories to enhance participant motivation

and success through an encouragement of the imagination.

Cavazza et al. (2014b) examined the use of an interactive

narrative for affective interaction. In their BCI, participants were

instructed to think positive thoughts in order to support the

main character of their story. In their story, a female doctor

experiences stressful life events such as patient death, abuse

from her boss, and overworking. The participant must mentally

support this character by using their thoughts in order for the

doctor’s outcome to improve throughout the story. Participants’

brain activity was mapped to the color of the female doctor,

whose color became more saturated as FAA increased. Although

a proof of concept study, half of the participants were able to

increase FAA with minimal training by mentally supporting the

protagonist through empathetic feelings.

Aranyi et al. (2015b) developed a story-based affective

BCI investigating FAA using a similar hospital story BCI

environment. Participants were instructed to express angry

thoughts toward an evil character, as anger has also been

associated with increased approach motivation and greater FAA

scores despite being a negative emotion. Brain activity was

mapped to the alpha channel of the evil character. In order

to prime participants to feel anger toward the evil character,

this character was depicted abusing co-workers in the story

environment. With greater FAA scores, the evil character

became translucent, as if he was disappearing from the scene.

With lower FAA scores, the evil character became more opaque,

remaining in the story. Despite minimal training, participants

were able to successfully engage with the BCI by increasing FAA

through anger expression.

In a later study also investigating FAA, Aranyi et al. (2016)

developed an affective BCI which mapped FAA scores to

facial expressions of a virtual agent (character). Participants

were instructed to express positive thoughts toward the agent.

With increased FAA, the agent would show a positive, happy

expression, and with decreased FAA, the agent would exhibit

a neutral expression or look away from the participant. The

authors determined that a majority of participants could

successfully increase FAA through their affective BCI paradigm.

For their BCI, the authors developed a short, user-friendly

NF protocol designed to control for differences in FAA both

between different NF blocks, and across different participants

(Aranyi et al., 2016). Our methodology is largely based upon

the NF protocol developed by Aranyi et al. (2016), as we seek

to investigate our BCI within a user-friendly NF protocol.

We investigate BCI complexity through the development

and evaluation of an experimental story environment BCI,

utilizing simple visual feedback in the form of color saturation,

as this visual feedback has been used in previous BCI studies.

Considering that multi-component BCIs have allowed for

greater NF success than single component BCIs (Jensen et al.,

2013), our BCI consists of eight distinct story segments with

which participants could interact through brain activity. With

this study, our primary goal was to investigate an imaginative,

complex BCI environment by providing participants with

an experimental story experience and imagination-based

instructions for engagement.

3. Materials and methods

3.1. Experimental story BCI system
overview

Our BCI system was developed in the Unity game engine

using the Emotiv plugin. To provide participants with real-

time visual feedback of their brain activity (FAA), FAA scores

were calculated by subtracting the natural log-transformed alpha

power of the left electrode (F3) from the natural log-transformed

alpha power of the right electrode (F4) (ln[Right] − ln[Left])

at a 2 Hz sampling rate, to match prior research by Aranyi

et al. (2016). For post-hoc analyses, FAA scores were calculated

after preprocessing the raw EEG data in EEGLAB (Delorme and

Makeig, 2004). Our post-hoc analyses determined participant

success rate in increasing FAA fromView to Engage components.

Our protocol is based on that of Aranyi et al. (2016), who

developed a similarly short NF protocol investigating FAA. In

our protocol, participants completed eight different story blocks.

Each story block consisted of a 30 s View component, and a 30 s

Engage component. Each of the eight View and Engage segment

pairs were separated by a 10 s Rest component for a total of eight

Rest components. During Rest, participants were instructed to

relax and try to minimize mental wandering. The timing of

our Rest and Prompt components matches that of Aranyi et al.

(2016). While Aranyi et al. (2016) presented Engage and View

components for 40 s, our protocol differs in that we presented

these components for 30 s each. This decision was made in order

to bothmatch the eight NF block protocol of Aranyi et al. (2016),

while keeping the BCI experience under 15 min for participants

as mentioned in Section 3.3.

During View, participants were instructed to count

backwards. Participants counted backwards by 2 s silently

starting at 500 (500, 498, 496, etc.) during each of the eight

View components. The number by which to count backwards

was determined through our pre-testing. It was determined

that counting backwards by two was adequate to maintain

attention while not being so difficult as to distract and frustrate

participants. Counting backwards was used to control for

unwanted thoughts, emotions, and mental processes (Aranyi

et al., 2016).

During Engage components, participants were instructed to

use their thoughts to interact with the main character in the

story, as described in more detail in the feedback mapping

subsection of this paper (see Section 3.3). A 3 s prompt screen
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was presented to participants before both View and Engage

components to indicate which component would be presented

next. Participants were made aware that they would receive

no visual feedback concerning their brain activity during View

components, and would only see visual feedback during Engage

components. Participants described mental strategies they used

during the experiment on the questionnaire. One of the eight

story segments of our NF protocol is shown in Figure 1.

3.1.1. Story blocks

We developed the story using the following design

techniques: spatio-temporal discontinuity, rejection of linear

narrative, abstraction of main character and narrative, and

prominent stylization. Live action video footage was filmed and

used for background textures within the story environment in

order to create a dream-like mood. A young female 3D model

was downloaded from Adobe Mixamo2 and used as the main

character, while the background character, an adult male 3D

model, was downloaded from the Microsoft Rocketbox Avatar

library, MoveBox (Gonzalez-Franco et al., 2020). A shader

program downloaded from the Unity asset store was applied

to both characters in order to distort spatial logic concerning

their forms. During View components, the main character and

the background character were unlit (no colors), with the shader

effect applied consistently throughout the View component. At

the beginning of each Engage component, the main character

faded out of the shader effect, returning to the original shape

of the 3D model, to clearly indicate the start of an Engage

component. During Engage components, participants were able

to use their thoughts to increase the main character’s color

saturation. Characters were animated with very slow animations

during both View and Engage components. Because increasing

color saturation has been used previously in an FAA NF BCI

(Cavazza et al., 2014b), as well as the manipulation of character

transparency (Aranyi et al., 2015b), we selected an interaction

mapping modality known to produce NF interaction success. In

this way, we could examine the influence of an experimental

story context on NF interaction success while employing a

known visual feedback modality. Jensen et al. (2013) suggests

examining how a combination of components might affect the

user’s imagination for usage in neurofeedback. All eight story

blocks, consisting of both View and Engage components are

shown in Figure 2.

Concerning the spatiality of the story environment, 3D

models in certain story blocks were positioned in ways that could

not be possible in reality. For example, a set of chairs and a

table were positioned diagonally, with a 45◦ tilt downwards, as

the characters hovered above the environment in Story Block

#3. In Story Block #5, the background character hovers well

above the ground. These story blocks can be seen in Figure 3.

2 https://www.mixamo.com/

Lacking a clear chronology of events, the story blocks were

presented in the same order for all participants. Previously

developed affective story BCIs have incorporated environments

with negative connotations, with the goal of guiding participants

more easily toward mindsets which may approach the target

brain activity (Gilroy et al., 2013; Cavazza et al., 2014a,b;

Aranyi et al., 2015b). Our story environment depicted the main

character being symbolically watched, controlled, chased, etc., as

our goal was to motivate participants to help the main character

escape from the bad dream-like environment by using their

thoughts. In pre-testing, participants acknowledged that the

story was dream-like, open-ended, and interesting, and offered

varying ideas concerning its meaning. Therefore, we concluded

that the developed story environment was appropriately abstract

to allow for a multiplicity of interpretations from participants.

3.2. BCI input

We used the Emotiv Epoc X EEG headset (Emotiv Systems

Inc., San Francisco, CA, USA) to collect EEG data from

participants. The Emotiv Epoc X is a consumer grade, 14 channel

EEG headset which includes electrode sites AF4, AF3, F3, F4,

F7, F8, FC5, FC6, O1, O2, P7, P8, T7, and T8. This electrode

scheme is based on the international 10-20 system, as shown

in Figure 4. Two additional electrodes served as reference and

ground; the electrode located at the M1 site (Driven Right Leg

[DRL]) functioned as an absolute voltage reference while the

electrode located at the M2 site (Common Mode Sense [CMS])

was used for feedback noise cancellation. The electrodes are

Ag/AgCl sensors which contain felt pads. Felt pads were fully

soaked in saline solution prior to inserting into each electrode

compartment in order to ensure the best conductance between

the participant’s scalp and the sensor. EEG data was recorded

with a 256 Hz sampling rate and was filtered online using a built-

in digital 5th order Sinc filter with a bandwidth of 16–43Hz, with

notch filters at 50 and 60 Hz.

Consumer-grade EEG data may provide researchers with

more ecologically valid results, as the headset is both minimally

obtrusive for participants, and has demonstrated EEG data

consistent with conventional EEG recordings (Le et al., 2020).

According to Gapen et al. (2016), EEG NF has made very

little impact in clinical care despite being used as a clinical

intervention for more than 30 years. Considering that wireless,

portable and small EEG systems which can be used outside

traditional laboratory environments may increase clinical

relevance (Enriquez-Geppert et al., 2017), we use such an EEG

device with the goal of investigating NF in a more real-world

setting.

F3 and F4, along with F7 and F8, are the most commonly

investigated electrode pairs in FAA research (Smith et al.,

2017; Kuper et al., 2019; David et al., 2021). To maintain

consistency between this study and our previous research, we
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FIGURE 1

One block of our NF protocol. Components include (A) Rest [10 s], (B,D) Prompt [3 s], (C) View [30 s], and (E) Engage [30 s].

FIGURE 2

All eight story blocks, with View and Engage components. 2b and 2g demonstrate FAA which has not crossed the threshold for visual feedback,

therefore, the 3d model remains dark. (a) Story block #1, (b) Story block #2, (c) Story block #3, (d) Story block #4, (e) Story block #5, (f) Story

block #6, (g) Story block #7, (h) Story block #8.

selected electrode sites F3 and F4 for FAA calculation to provide

participants with real-time visual feedback concerning their

brain activity.

3.3. Participants, procedure, and
feedback mapping

Data was collected from 23 participants, all students at

Purdue University. Due to excessive eye closure, movements,

or EEG signal capture malfunctions, four participants were

removed from the analysis, resulting in 19 participants (five

female and 14 male; age: M = 19.05, SD = 1.02; age

range: 18–22). With the exception of one participant who

was left-handed, all participants were right-handed. Only one

participant was currently undergoing psychiatric treatment.

These participants were not identified as outliers, and were

therefore included in the analysis. All participants had normal or

corrected-to-normal vision. The study was approved by Purdue

University’s institutional review board (IRB), and participants

provided written consent before participation. Similar to the BCI

cinematic experience created by Pike et al. (2016), participants

viewed the BCI on a large screen, in a quiet room. Participants

were seated in a comfortable chair in order to minimize motion

artifacts, and viewed the monitor from a comfortable viewing

distance. The study was completed during the week over a
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FIGURE 3

Spatio-temporal discontinuity in our story environment. (A) Story block #3, (B) Story block #5.

FIGURE 4

Electrodes in the Emotiv Epoc X System (image courtesy of

Emotiv).

three week period in late fall. Participants took 35–45 min

to complete the entire study, depending on how long it took

them to finish the questionnaire after the experiment. This time

included EEG preparation, participant instructions, a practice

round, the experiment, and questionnaire completion. The total

time spent engaging with the BCI during the experiment was

13.5 min, as it has been suggested that BCI tasks longer than

15–20 min can greatly contribute to participant fatigue and,

therefore, diminishing EEG data quality (Aranyi et al., 2015a).

Figure 5 shows a participant in the experiment, and the devices

used in the study.

The researcher first wiped the participant’s lateral forehead

and mastoid regions with alcohol to ensure similarly clean

recordings for each participant. After the EEG headset was

positioned on the head, the researcher adjusted participant hair

until the Emotiv system indicated 100% EEG signal quality

(all electrode indicators were green, which indicated sufficient

conductance levels). To increase participant compliance with

refraining from movements during the study, the researcher

asked participants to try clenching their jaw, frowning,

talking, and moving their limbs and face, and showed

participants the noise introduced into their EEG signal during

movements such as these. Additionally, the researcher showed

participants what the main character would look like with

full color saturation. Before the experiment, participants

completed one practice block in which they practiced counting

backwards during View components, and practiced using their

thoughts to change color saturation of the main character

during Engage components. The researcher ensured that

participants clearly understood these tasks prior to starting the

experiment.

Instructions concerning NF strategies are often vague so

as not to constrain participants to strategies which may not

be effective for them (Aranyi et al., 2016). During pre-testing,

participants expressed confusion with our initial instructions.

Therefore, a new set of instructions was developed. These

instructions were more detailed, while maintaining an open-

endedness. Defined as the ability to mentally reconstruct new

information, sensations, and objects, imagination (Szczelkun,

2018) was central to our participant instructions, provided

below.

In the experiment, you will observe the girl in her dream. Your

goal is to help her escape from her dream. During Engage

components, you may think about new objects, sensations,

ideas and possibilities, or new interpretations of the story,

which may help the girl escape from this dream environment.

You may imagine interacting with the girl. You may try

using positive thoughts. You may explore other strategies for

changing the main character’s color as well.

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.883467
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Krogmeier et al. 10.3389/fnhum.2022.883467

FIGURE 5

The user and devices in our BCI system. (A) Emotiv Epoc X EEG headset. (B) User wearing the headset. (C) The BCI room set-up.

FIGURE 6

BCI system overview.

Following work by Aranyi et al. (2016), we defined the

brain activity (FAA) threshold for visual feedback based on

guidance for EEG-based FAA in NF paradigms (Rosenfeld et al.,

1995). FAA values from each View component were used to

determine the minimum and maximum FAA values necessary

for visual feedback for each corresponding Engage component.

Before calculating the minimum and maximum visual feedback

threshold points, outliers that were three standard deviations

higher or lower than the mean of the list of FAA values stored

during View were removed from the list of values, in order

to remove extreme values indicative of participant movements.

Next, the minimum value for visual feedback during the

corresponding Engage component was defined as the mean

of the FAA values (excluding outliers) during the preceding

View component plus 1.28 times their standard deviation. This

threshold requirement for minimum values determined that

visual feedback during NF would result in no feedback for

90% of the values from the View component, and instead show

visual feedback for only the top 10% of values from the View

component (Rosenfeld et al., 1995; Aranyi et al., 2016). The

maximum value for visual feedback (the highest FAA value

included in visual feedback during the Engage component) was

set as the maximum value recorded during View.

FAA values within the minimum and maximum range

were linearly mapped to the main character’s color saturation

values, with the maximum value resulting in the main character

being fully colored. Figure 6 shows an overview of our

BCI system.

View and Engage components were 30 s in length, as

determined by our pre-testing. During Engage components

only, FAA was mapped to the color saturation of the main

character, thus allowing the participant to change the color

saturation of the main character using their thoughts. Varying

color saturation of themain character based on FAA input can be

seen in Figure 7. The counting task during eachView component

provided an emotional control for each corresponding Engage

component (Aranyi et al., 2016). A video showing the developed

BCI can be found in our Supplementary material.

3.3.1. EEG preprocessing and analysis

To examine participant success in increasing FAA from

View to Engage post-hoc, we first preprocessed EEG data

using EEGLAB (Delorme and Makeig, 2004) within MATLAB

(MathWorks Inc.). Data was filtered between 1 Hz (high pass)

and 30 Hz (low pass) using EEGLAB’s eegfiltnew function,

following FAA EEG VR research by Kisker et al. (2021). Bad

channels were rejected and interpolated. After applying an

average reference, Independent Component Analysis (ICA) was

run on the data, and eye components with 50% probability

were removed. EEGLAB’s spectopo function was used on the

cleaned data to calculate the power spectra in the 8–13 Hz alpha

range. We subtracted the natural log-transformed alpha power

of the left electrode (F3) from the natural log-transformed alpha

power of the right electrode (F4) to calculate FAA: (ln[Right] −

ln[Left]) (Smith et al., 2017). FAA was calculated for each View
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FIGURE 7

Examples of varying FAA mapped to main character color. (a)

View component, (b) NF: No FAA increase, (c) NF: Moderate FAA

increase, (d) NF: Large FAA increase.

and Engage component for each participant. Within each 30 s

component, FAA was calculated from 2 s segments to create a

distribution of FAA scores.

3.3.2. FAA and alpha power measurements

We examine both FAAmeasurements as well as alpha power

measurements from the left and right electrode sites individually

in our study. FAA is calculated by subtracting the natural log

of the alpha power from the left electrode site from the natural

log of the alpha power of the right electrode site. However,

this FAA score does not provide information concerning how

much the alpha power from either the left or right electrode

site contributed to the FAA score (Smith et al., 2017). Like

Aranyi et al. (2016), we wanted to understand the contribution

of right and left prefrontal cortical activity to successful FAA

scores, as a higher FAA score could be indicative of either

increased left cortical activity or decreased right cortical activity

(Smith et al., 2017). Therefore, we conducted additional analyses

to understand how alpha power on the right and left sides

changed from View to Engage blocks. In this way, we wanted

to understand if FAA which increased from View to Engage

did so because of increased left prefrontal cortical activity, or

decreased right prefrontal cortical activity. Because alpha power

is inversely related to cortical activity (Allen et al., 2004), a higher

alpha power from the right electrode would indicate lower

cortical activity from the right electrode. Results concerning

alpha power from the right and left hemispheres are described

in Sections 4.1 and 4.2.

3.3.3. Inter-subject correlations (ISC) analysis

To determine between subject reliability of evoked

responses, inter-subject correlations (ISC) were calculated

(adapted from Dmochowski et al., 2012; Cohen et al., 2016).

Briefly, sample electrode covariances were calculated as:

Rij =
1

N

∑

t

xi(t)xj(t), (1)

where xn represents the time series electrical activity recorded

on all electrodes of subject n. Within and between subject

correlations were then calculated as:

Rw =
1

N

∑

n

Rnn (2)

Rb =
1

N(N − 1)

∑

i

∑

j,j 6=i

∑

k

(xi(t)− x̄i)(xk(t)− x̄k)
T , (3)

where xn(t) is the measured scalp voltage on channel n and

x̄n is the time average of channel n. The value Rb represents

the summation over all cross-covariances of all electrodes of all

subjects. Maximal covariances are then calculated as component

projections:

Componenti =
vTi Rbvi

vTi Rwvi
, (4)

where vi is the i
th eigenvector of the matrix R−1

w Rb. Intersubject

correlation is then calculated as:

ISC =
∑

i

Ci. (5)

In keeping with previous ISC studies (Dmochowski et al., 2012;

Cohen et al., 2016), the three largest correlated components

are utilized in calculating ISC. Time resolved correlations were

formed by calculating ISCs across all electrodes for all subjects

for each scene within 1 s windows with an 800 ms overlap

between windows.

Spatial distributions ofmaximal correlation coefficients were

calculated using “forward model” analyses (Parra et al., 2005),

specifically:

A = RwW(WTRwW)∗, (6)

whereW is the set of linear spatial filters:

wij = argmaxw
wTRijw

√

wTRiiw
√

wTRjjw
, (7)

and ∗ designates the Moore-Penrose pseudo-inverse (Ben-Israel

and Greville, 2003), a generalization of the matrix inverse

which calculates a least-squares best fit via singular value
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decomposition to calculate amatrix inverse. TheMoore-Pensore

is used to ensure numerical stability between electrodes with

varying levels of activation.

Statistical significance of ISCs was assessed via permutation

testing (Fischer, 1971). Electrode time series were randomly

shuffled in time and empirical p-values reflective of one-tailed

type-1 error in rejecting the null hypothesis were calculated

from the distribution of time-shuffled correlations after 1,000

iterations. A window of ISC was considered significant if p <

0.05 after multiple comparisons correction using the Benjamini-

Hochberg procedure to control for the false discovery rate

(Benjamini and Hochberg, 1995).

4. Results and discussion

One hundred and fifty-two blocks were identified for

analysis (eight blocks for each of the 19 participants). Block

success was defined as a statistically significant increase in

average FAA during Engage components compared to average

FAA during View components within the same block. For

example, we compared the Engage and View components for

Story Block #1, then for Story Block #2, and so on, for each

participant individually. Block success was determined using

paired samples t-tests. Data was inspected using Q-Q plots of the

residuals and was normally distributed. Like Le et al. (2020), who

also investigated FAA using an Emotiv EEG recording device, we

winsorized outliers in the data in order to reduce the influence

of extreme scores. We winsorized the data by replacing outlier

values with the next minimum or maximum value for that

component (as the data included both positive and negative FAA

values). Seven out of 19 participants (37%) achieved statistically

significant NF success in increasing their FAA score in at least

one of the eight blocks, for a total of 10 successful blocks in the

experiment. Figure 8 shows the distributions of successful blocks

across participants.

We investigated effect sizes for successful blocks, in which

average FAA during Engage was statistically significantly greater

than average FAA during View. Effect sizes for successful

participant blocks were calculated using Hedge’s g using a

standard deviation of the difference. The smallest and largest

effect sizes detected were 0.477 and 1.27, respectively, with an

average effect size of 0.749. Similar to work by Aranyi et al.

(2016), our effect size values were negatively skewed, indicative

of larger effect sizes for successful blocks. Additionally, we

determined that successful blocks were characterized by a large

FAA increase (M = 0.46, SD = 0.04) fromView to Engage, while

unsuccessful blocks were characterized by a very small decrease

in FAA (M = −0.07, SD = 0.01), as shown in Figure 9. Despite

few successful blocks, ourRQ1 is supported as some participants

successfully increased FAA scores from View to Engage, and

successful blocks were characterized by large effect sizes as well

as large FAA increases.

FIGURE 8

Distribution of successful blocks across participants.

FIGURE 9

Mean FAA change from View to Engage for both successful and

unsuccessful blocks.

4.1. Successful blocks characterized by
increased left prefrontal cortical activity
from View to Engage

We used a two-way repeated measures analysis of variance

(ANOVA) with average alpha power as the dependent variable,

and Component Type (View or Engage) and Side (Left [F3]

or Right [F4]) as factors in the analysis. Alpha power

which was not normally distributed was transformed following

recommendations by Templeton (2011) prior to conducting

our parametric analyses. Our simple main effects analysis used

Bonferroni confidence interval adjustment.

We found a statistically significant interaction effect between

Side and Component Type [3 = 0.561, F(1,9) = 7.035, p =

0.026, η2p = 0.439]. Therefore, we conducted simple main effects

analyses for both Side and Component Type. We determined

a simple main effect for Side, finding that Left alpha power

(M = 8.74, SD = 9.41) during View was significantly greater
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FIGURE 10

Unsuccessful Blocks. Both Right and Left alpha power decrease

from View to Engage, although Left to a greater (significant)

extent.

FIGURE 11

Successful Blocks. Both Right and Left alpha power decrease

from View to Engage, but Right remains significantly greater

than Left during Engage.

than Right alpha power (M = 3.90, SD = 3.45) during View

[3 = 0.619, F(1,9) = 5.548, p = 0.043, η2p = 0.381]. However,

Left alpha power (M = 2.34, SD = 1.49) did not significantly

differ from Right alpha power (M = 2.51, SD = 1.29) during

Engage [3 = 0.960, F(1,9) = 0.373, p = 0.556, η2p = 0.040].

We also found a simple main effect for Component Type,

determining that Left alpha power (M = 8.74, SD = 9.41)

during View was significantly greater than Left alpha power

(M = 2.34, SD = 1.49) during Engage [3 = 0.591, F(1,9) =

6.231, p = 0.034, η2p = 0.409]. However, we found that Right

alpha power (M = 3.90, SD = 3.45) during View did not

significantly differ from Right alpha power (M = 2.51, SD =

1.29) during Engage [3 = 0.745, F(1,9) = 3.085, p = 0.113,

η2p = 0.255].

Our results indicate greater Right cortical activity than Left

cortical activity during View. Because greater relative Right than

Left cortical activity would indicate a lower FAA than if Left

> Right, it is possible that successful blocks were characterized

by a lower starting FAA during View compared to Engage.

Although Right cortical activity was greater than Left cortical

activity during View, Right and Left cortical activity do not differ

significantly during Engage, as seen in Figure 10. Considering

the decrease in alpha power (increase in cortical activity) on the

Left from View to Engage, an increase in Left cortical activity

appears to have contributed to increased FAA, rather than a

decrease in Right cortical activity from View to Engage. We

consider our RQ2 partially supported, as an increase in Left

cortical activity from View to Engage contributed to increased

FAA during Engage, despite determining no difference between

Left and Right cortical activity during Engage. Unlike Aranyi

et al. (2016), our results indicate a lateralization (Left > Right

alpha power) during View, but no lateralization during Engage.

Considering the increase in cortical activity on both Left and

Right sides from View to Engage (although, not a statistically

significant increase on the Right side), our results suggest an

increase in mental effort from View to Engage. This is in line

with our self-reported data examining the mental demand of

both components. Participants used a Likert scale taken from

the NASA Task Load Index (NASA TLX) (Hart, 2006), an

assessment of mental workload, to rate mental effort necessary

to perform both View and Engage tasks. We conducted a one-

tailed paired samples t-test [t(18) = −3.366, p = 0.002] and

determined that Engage mental demand (M = 4.74, SD =

1.59) was significantly greater than View mental demand (M =

2.63, SD = 1.83).

4.2. Unsuccessful blocks characterized by
comparable increases in Right and Left

prefrontal cortical activity

Of the 142 unsuccessful blocks, 6% were characterized by

a decrease in FAA. Therefore, unsuccessful blocks were largely

characterized by no change in FAA from View to Engage. We

investigated the contribution of Left and Right alpha power

in unsuccessful blocks as well, and determined a statistically

significant interaction between Side and Component Type [3 =

0.896, F(1,141) = 16.428, p < 0.001, η2p = 0.104]. Simple main

effects analysis of Sidewas also significant [3 = 0.795, F(1,141) =

36.467, p < 0.001, η2p = 0.205], indicating that Left alpha

power (M = 2.00, SD = 1.72) was significantly lower than

Right alpha power (M = 2.68, SD = 2.03) during View. This

is the opposite of our results for successful blocks, in which

Left alpha power was significantly greater than Right alpha

power duringView. It appears that unsuccessful blocks may have

instead been characterized by a higher starting FAA duringView,
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and therefore, it may have been significantly more difficult to

increase FAA further during Engage.

Unlike with successful blocks, we additionally determined a

statistically significant difference [3 = 0.873, F(1,141) = 20.460,

p < 0.001, η2p = 0.127] between Left (M = 1.72, SD = 1.37)

and Right alpha power (M = 2.11, SD = 1.57) during Engage,

indicative of greater Left than Right cortical activity during

Engage for unsuccessful blocks. Our results indicate that the lack

of a significant increase in FAA from View to Engage found in

unsuccessful blocks may have been influenced by the greater

increase in Right than Left cortical activity from View to Engage,

as seen in Figure 11.

A simple main effect analysis of Component Type was also

statistically significant [3 = 0.769, F(1,141) = 42.252, p < 0.001,

η2p = 0.231].We determined that Right alpha power duringView

(M = 2.68, SD = 2.03) was significantly greater than Right

alpha power during Engage (M = 2.11, SD = 1.57), indicative

of greater increased Right cortical activity during Engage than

during View. Left alpha power during View (M = 2.00, SD =

1.72) was significantly greater than Left alpha power during

Engage (M = 1.72, SD = 1.37), indicative of greater Left cortical

activity during Engage than during View [3 = 0.900, F(1,141) =

15.736, p < 0.001, η2p = 0.100]. Therefore, self-reported data

concerning mental demand of View and Engage blocks is in line

with unsuccessful blocks as well, in that more cortical processing

took place during Engage on both Right and Left sides.

Results suggest that while successful blocks were

characterized by a relatively greater increase in Left compared

to Right cortical activity, unsuccessful blocks were characterized

by a comparable increase in both Right and Left cortical activity.

While successful blocks may have also been characterized

by a relatively lower starting FAA during View, making an

increase in FAA more feasible during Engage, unsuccessful

blocks may have been characterized by a higher starting FAA

during View, perhaps making an increase in FAA during Engage

more difficult. Considering that there was also greater cortical

activity on both sides during Engage for unsuccessful blocks, it is

possible that participants exerted greater mental effort during

unsuccessful blocks as alpha power is thought to be inversely

related to cortical network activity (Allen et al., 2004; Smith

et al., 2017). Mean View and Engage FAA values for each block

for each participant are shown in Table 1.

4.3. Inter-subject correlations (ISC)
suggest varying strategies for achieving
NF success

ISCs and EEG forward modeling were calculated to explore

spatial distributions of sources of neural activity and to assess the

between subject reliability of evoked responses during View and

Engage blocks for each story block. As subject response to visual

feedback is not a stationary process, ISCs were calculated in 1 s

windows across all subjects for each story block and decomposed

into the three largest correlation components. Percentages of

windows which were significant above chance were calculated

and reported in Table 2. Components during View showed a

larger percentage of significant windowed correlation with the

exception of story blocks #2, #6, and #7, which showed an

equal or larger percentage of significant windows during Engage.

Results suggest that subject neural activity was significantly

less correlated during Engage, as neural activity showed longer

durations of significant correlated activity during View, with the

exception of story blocks #2, #6, and #7. Longer de-correlated

activity during Engage could be due to different thought content

strategies for changing the main character’s color saturation

employed by different subjects. Higher correlations during View

are not unexpected as subject counting strategies are likely more

consistent than strategies taken during the NF task.

Blocks were split into successful and unsuccessful groups

containing all successful or unsuccessful blocks respectively.

Forward EEG models of ISC of alpha power quantifying largest

correlation components across all subjects were calculated for

each group. As expected, forward models verify that successful

blocks show increased left-frontal activity relative to right-

frontal activity compared to unsuccessful blocks (Figure 12).

These data suggest that subject success on a given block was

marked by robust and reliable asymmetric activity.

4.4. Self-reported data

We collected self-reported data from our questionnaire to

inform us of the human experience of brain activity modulation

with the experimental BCI story environment. In this section,

we present our results concerning thought content strategies for

brain activity modulation, perceived success in BCI engagement,

and levels of enjoyment and frustration.

4.4.1. Participant strategies

All participants were asked to describe their strategies

during Engage blocks. We first investigated Direct and Indirect

strategies during Engage (Aranyi et al., 2016). We defined Direct

strategies as those which directly involved interacting with the

main character or the story environment. Examples of Direct

strategies include “protecting [the main character] and making

her feel safe,” “speak[ing] with her using my thoughts,” and

“creating exit strategies as well as trying to comfort or help

the girl escape.” Indirect strategies instead involved thoughts

that were unrelated to the story environment, such as recalling

past experiences and memories. Examples of Indirect strategies

include thinking of “something that makes me happy, like the

color purple... or my friends,” and “[having] a conversation with

myself.” We determined that seven participants used Indirect
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TABLE 1 The mean FAA values of the distribution of 15 FAA values, for each View and Engage Component of each story block, for each participant.

Story Block #1 Story Block #2 Story Block #3 Story Block #4 Story Block #5 Story Block #6 Story Block #7 Story Block #8

ID View Engage View Engage View Engage View Engage View Engage View Engage View Engage View Engage

#1 0.115 −0.267 −0.041 −0.182 -0.125 0.003 −0.098 0.172 0.188 0.058 −0.031 0.018 0.120 0.198 0.029 −0.077

#2 −0.193 0.057 0.150 0.068 −0.012 0.114 0.092 0.290 0.035 0.202 0.186 0.232 0.058 0.089 0.070 0.017

#3 −0.511 −0.114 −0.626 −0.535 −0.576 −0.595 −0.825 −0.374 −0.560 −0.484 −0.434 −0.563 −0.473 0.067 −0.173 −0.548

#4 0.416 0.484 0.415 0.587 0.812 0.202 0.119 0.464 0.400 0.615 0.508 0.239 0.091 0.291 0.588 0.684

#5 −0.610 −1.040 −0.872 −1.070 −0.944 −1.099 −1.058 −0.847 −0.996 −0.608 −0.815 −0.993 −0.981 −0.561 −-0.894 −1.101

#6 0.908 1.408 0.977 1.055 0.853 1.221 1.090 0.697 1.084 0.927 0.911 0.787 0.872 0.924 1.059 1.000

#7 0.237 0.339 0.496 0.326 0.063 0.557 0.353 0.212 0.271 0.251 0.205 0.032 0.349 0.471 0.352 0.095

#8 −0.497 −0.406 −0.020 −0.447 −0.065 −0.478 −0.340 −0.468 −0.134 −0.272 −0.269 −0.273 −0.231 −0.448 −0.216 −0.235

#9 0.493 0.632 0.339 0.408 0.371 0.458 0.644 0.560 0.454 0.473 0.513 0.570 0.592 0.478 0.423 0.629

#10 0.667 0.271 0.690 0.207 0.576 0.408 0.611 0.465 0.485 0.288 0.663 0.504 0.570 0.522 0.687 0.287

#11 −0.105 −0.104 −0.048 0.176 0.206 0.198 0.423 0.089 0.185 0.177 0.623 0.044 −0.096 0.086 0.503 −0.077

#12 0.645 0.396 0.696 0.576 0.593 1.057 0.762 0.482 0.911 0.814 0.387 0.481 0.673 0.742 0.618 0.423

#13 0.038 −0.268 −0.582 −0.087 −0.122 0.257 0.223 0.114 −.684 0.051 0.064 −0.203 0.053 −0.107 −0.446 −0.163

#14 0.635 0.826 0.475 0.649 0.677 0.840 0.839 0.777 0.561 0.509 0.602 0.810 0.695 0.528 0.573 0.759

#15 1.070 0.701 1.216 0.474 0.950 0.891 1.161 0.852 1.065 0.882 0.858 0.982 0.878 1.179 1.138 0.656

#16 −0.048 0.218 0.248 0.190 0.141 0.105 0.545 0.494 0.116 0.142 −0.132 0.462 0.232 0.427 0.154 0.291

#17 1.076 0.776 0.988 0.632 0.851 0.797 0.595 0.679 0.818 0.515 0.602 0.597 0.704 0.726 0.747 0.630

#18 −0.039 −0.218 0.294 0.176 −0.033 0.442 0.291 0.281 0.428 0.269 0.636 0.236 −0.200 0.059 0.330 −0.006

#19 0.606 0.228 0.700 0.402 0.788 0.332 0.438 0.321 0.105 0.412 0.499 0.251 0.417 0.426 0.599 0.326
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strategies while 12 participants used Direct strategies. We used

a Chi-Squared test and determined that there was no significant

association between block success (Success/Failure) and strategy

(Direct/Indirect), X2(1,N = 19) = 0.833, p = 0.361,

Cramer’s V = 0.209. In future work, it would be necessary to

control for strategy type in order to make conclusions about any

relationship between strategy and NF interaction success.

Our data shows five out of seven successful participants used

Direct strategies, while six out of 12 unsuccessful participants

used Direct strategies. Similarly, Aranyi et al. (2016) determined

that Indirect strategies were more prominent for unsuccessful

participants. Although block success was not significantly

associated with strategy type, ourRQ3 is partially supported, as a

majority of successful participants used Direct strategies during

Engage, while half of unsuccessful participants used Indirect

strategies.

4.4.2. Perceived success, enjoyment, frustration

Participants also provided subjective ratings of their success

during Engage blocks using an 8-point Likert scale. We used

a Pearson Bivariate one-tailed correlation and determined no

statistically significant correlation between perceived success

and number of successful blocks r(19) = −0.089, p = 0.358,

suggesting that participants were unclear about NF success.

However, enjoyment (M = 5.89, SD = 1.66) was significantly

greater than frustration (M = 2.79, SD = 2.28), as determined

by a one-tailed paired t-test [t(18) = 4.083, p < 0.001].

5. Conclusion

Our results indicate that seven out of 19 participants

were able to use thought strategies to modulate brain activity

(FAA) when engaging with the complex story-based BCI

environment. Results suggest that successful Engage blocks

are characterized by both a large increase in FAA from

View to Engage, and a large effect size, while unsuccessful

blocks are characterized by relatively no change in FAA from

View to Engage. Considering both successful and unsuccessful

blocks, prefrontal cortical activity on left and right sides was

significantly greater during Engage than View, in line with self-

reported data which demonstrates participants found Engage

blocks significantly more mentally demanding thanView blocks.

With our ISC analysis, we determined that components during

View showed a larger percentage of significant correlation time

than components during Engage. Therefore, it is likely that

patterns of participants’ neural activity were more similar during

View, in which participants counted, than during Engage, in

which thought content strategies were relatively unconfined.

During narrative film viewing, attention has been shown to

modulate similar EEG evoked responses (Cohen et al., 2017).
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FIGURE 12

Spatial distribution of between subject correlations shows no consistent pattern of neural activity across story blocks in engage and view states.

Therefore, it is possible that participants differed significantly in

their ability to pay attention during Engage blocks.

Our investigation of left and right prefrontal cortical

activities during successful blocks suggests that an increase in

left cortical activity, rather than a decrease in right cortical

activity from View to Engage was influential in increased FAA

scores from View to Engage, which suggests successful blocks

may have been the result of increased approachmotivation. Data

suggests increasing right and left prefrontal cortical activity from

View to Engage contributed to the unchanging FAA score for

unsuccessful blocks. Forward models of decomposed electrical

activity of strongest correlated responses also confirmed

that successful blocks were marked with robust left-right

asymmetries. It is possible that blocks in the unsuccessful

category have some level of asymmetry, but at lower levels than

successful blocks. As such, future work in FAA based BCIs

should titrate the level of left-right asymmetric activity with

reliable FAA detection and controlability.

While our results indicate multiple successful blocks

across ∼37% of participants, the percentage of unsuccessful

participants (63%) in this study is higher than typical BCI

illiteracy rates at 15–30% (Saha et al., 2021). However, BCI

illiteracy, when participants cannot modulate brain activity

within the time frame of the study, is not well-understood. We

offer several ideas concerning the difference in successful blocks

between our study and that of Aranyi et al. (2016). First, our

consumer-grade EEG device was likely not sensitive enough

to detect small changes in FAA, as indicated by successful

blocks characterized by moderate to large effect sizes only.

Second, our self-reported results concerning perceived success

indicate that participants did not understand when they were

successful in modulating brain activity, which may arise as a

diminished neural response ISC seen in Engage compared to

View data. Because success was unclear, participants may not

have felt rewarded by visual feedback of their brain activity.

Reward is essential for learning through operant conditioning,

and may explain some of the lack of BCI engagement

success.

Considering work by Hasson et al. (2008), it is possible that

certain film works may elicit more similar, homogeneous brain

responses across viewers, as seen through higher ISCs during

certain films over others. In their study, the authors determined

that higher ISCs were found when participants viewed a

film directed by an accomplished film director, compared to

unstructured video recorded in a park environment. Hasson

et al. (2008) conclude that films which can better guide attention

may lead to greater ISCs. Additionally, it is known that films

played backwards do not have as high ISCs as those played in

their original temporal order (forward, typically; Hasson et al.,

2008), or when scenes are scrambled in time (Dmochowski et al.,

2012). Because the experimental story presented was designed

to be abstract, unguided, and open-ended to interpretation, our

limited ISCs results are expected. Additionally, it is likely that the

open-ended nature of the experimental narrative contributed to

the comparable ISCs during View and Engage blocks as well, as

the unguided nature of the story blocks led to higher variances

in brain activity than might have been found with story blocks

with a more concrete, guided story. While a more guided story

BCI may have elicited greater ISC, future research is needed

to determine how ISC relates to NF interaction success with

different kinds of BCI experiences.

Previous research has explored participants’ prior BCI

experience, as it “could possibly influence [the participant’s]

participation in the study” (Zioga et al., 2018; p. 4). Considering

that none of the participants had previously interacted with

a BCI, it is possible that participants expected a different,

perhaps mentally passive experience, in which brain activity was

recorded “as is,” without the effort necessary to engage with NF,

such as the BCI experience of Zioga et al. (2018). Although our

goal was to provide participants with open-ended ideas for NF

interaction, story blocks may not have been salient enough for

participants to achieve high levels of NF success. While some
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participants expanded on the experimental story narrative in

creative ways through self-reported data, others were unable

to find any meaning or narrative structure within what one

participant referred to as “moving images.” Questionnaire data

suggests that participants did not apply one strategy consistently

throughout Engage blocks, as they did in the case of Aranyi et al.

(2016). Additional research concerning strategy consistency

in BCI engagement would elucidate our findings. Similar to

Aranyi et al. (2016), we did not control for valence (positive

of negative affect) of NF strategies. Questionnaire data showed

that participants used sad as well as happy thought content

strategies during Engage, which likely influenced NF success

rates. According to Friedrich et al. (2014) however, participants

can be divided into three groups: one third of participants who

gain control of brain signals immediately, one third who cannot

gain control of brain signals, and one third who can only gain

control of brain signals after training. With this in mind, it is

possible that our system did not allow for adequate training

for individuals who needed training to be successful, as only

one third of the participants achieved NF interaction success in

our study. Research has shown that NF success can be driven

by differences in learner (participant) strategies. For example,

Davelaar et al. (2018) found that learners (participants who

could gain control of their brain activity) described feeling,

or being aware of something, while non-learners (participants

who did not gain control of their brain activity during the

course of the training session) exerted significant mental effort

or tried to maintain strict attentional focus. Davelaar et al.

(2018) describe these strategies on a feeling-sensing continuum,

where NF success increases whenmoving from trying to sensing.

Therefore, our provided instructions, however open-ended,

may have prompted participants to try numerous different

mental activities, whereas simply “feeling” could have beenmore

effective.

However, results indicate that it is possible for participants

to engage with an affective BCI by increasing FAA while

experiencing a complex, experimental story environment with

imagination-based instructions. It is possible that only those

who need less training can be successful with NF interaction

with the current system. Despite lower NF success rates than that

of Aranyi et al. (2016), participants indicated higher enjoyment

than frustration in self-reported data. The role of strategy type

(direct or indirect) in FAA NF success is not clear in the

present study, and should be investigated in future work. Our

study contributes to the goal of making BCI experiences more

user-friendly, enjoyable and motivating, while investigating

experimental storytelling techniques with which to engage

participants during affective BCI interaction.

5.1. Limitations and future directions

Our study is limited in a number of different ways.

First, we did not collect self-reported data concerning

participants’ current mood, anxiety, or depression symptoms.

Our sample was also very homogeneous: undergraduate

students from our department. Ethnic data was not collected.

One participant reported currently undergoing psychiatric

treatment. Additionally, participants were not asked to refrain

from caffeine, cigarettes, alcohol or drugs within 12 h of the

experiment. Similar to work by Gapen et al. (2016), this study

was intended to be ecologically valid, therefore, its exclusion

criteria were limited. However, a positive, effortlessly relaxed

mental state may be best for NF interaction in BCIs (Friedrich

et al., 2014), therefore, negative moods may have contributed to

lack of success seen with our system. Collecting self-reported

mood ratings before and after the NF protocol (Zotev et al.,

2020) would additionally allow us to learn more about the

participant experience. Considering that the participant’s

motivation, locus of control as well as empathy levels can play a

role in BCI performance (Friedrich et al., 2014), a greater focus

on participant characteristics would inform both NF success

rates with experimental BCIs, and design techniques for future

BCI experiences.

In future work, we would like to explore BCI usage

in an environment outside the university or departmental

setting, with the goal of investigating a more diverse group of

participants. A replication of this study using a medical-grade

EEG device may also allow us to learn more about participants’

success rate during NF interaction, although likely within a less

comfortable, quick, and convenient experience and time frame

for participants.

Although designed to stimulate the imagination, many

factors of the experimental story BCI may have counteracted

NF success for certain participants. Although not mentioned

as confusing or disorienting to participants, it is possible

that the manipulation of spatial logic throughout story blocks

contributed to a lower NF success rate through a general

sense of displacement. Complex stimuli, such as the developed

multi-component experimental story interface, may have effects

on the learner (participants) which are not yet understood

(Enriquez-Geppert et al., 2017). A follow up study could

examine experimental storytelling components individually, in

order to understand the influence of each component. A few

examples of storytelling components to investigate include story

block order, depth of spatio-temporal discontinuity, distance

between two characters, vividness of environmental objects, and

realism of 3d models among a plethora of other possibilities.

Individuals clearly differ in their preference for story

genre and style. In future work, we believe an investigation

of learner (participant) preferences for story ambiguity will

be central in understanding the influence of experimental

storytelling in BCI experiences. Future work could also explore

guiding participant attention more directly within stories of

varying ambiguity. Lastly, examining NF success with blocks

of longer duration could allow participants who need more

training to be successful. Instead of 30 s, a longer NF

block duration, such as 60 s (Dehghani et al., 2020) may
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be necessary for some participants to increase FAA within

the block.
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