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Functional near infrared spectroscopy (fNIRS) has been gaining increasing interest as

a practical mobile functional brain imaging technology for understanding the neural

correlates of social cognition and emotional processing in the human prefrontal cortex

(PFC). Considering the cognitive complexity of human-robot interactions, the aim of

this study was to explore the neural correlates of emotional processing of congruent

and incongruent pairs of human and robot audio-visual stimuli in the human PFC with

fNIRS methodology. Hemodynamic responses from the PFC region of 29 subjects were

recorded with fNIRS during an experimental paradigm which consisted of auditory and

visual presentation of human and robot stimuli. Distinct neural responses to human and

robot stimuli were detected at the dorsolateral prefrontal cortex (DLPFC) and orbitofrontal

cortex (OFC) regions. Presentation of robot voice elicited significantly less hemodynamic

response than presentation of human voice in a left OFC channel. Meanwhile, processing

of human faces elicited significantly higher hemodynamic activity when compared to

processing of robot faces in two left DLPFC channels and a left OFC channel. Significant

correlation between the hemodynamic and behavioral responses for the face-voice

mismatch effect was found in the left OFC. Our results highlight the potential of fNIRS for

unraveling the neural processing of human and robot audio-visual stimuli, which might

enable optimization of social robot designs and contribute to elucidation of the neural

processing of human and robot stimuli in the PFC in naturalistic conditions.

Keywords: human-robot interaction, face-voicematching, prefrontal cortex, functional near infrared spectroscopy

(fNIRS), hemodynamic

INTRODUCTION

With the rapid advances in robotic technology, automated systems such as social robots and virtual
agents have taken an increasing number of roles to facilitate our daily lives. One critical question
to be addressed at this stage is, whether neural processing of human-human and human-robot
interactions shares the same cerebral physiological mechanisms and if so, how this information
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could be used to calibrate human reactions during human-
robot interactions. This information is valuable as it can
help us to improve robotic designs for a more efficient
and ergonomic experience during human-robot interactions
which, from a neuroscientific perspective, involve complex
cognitive mechanisms in terms of social cognition and
emotional regulation.

Understanding the neurophysiological mechanisms
underlying the human-robot interaction with social robots
requires interpretation and quantification of the neural
correlates of two important neuropsychological components
which are processing of (i) face and (ii) voice stimuli from robots
and humans. Robots can trigger emotional responses such as
distress, happiness and trust in humans (Breazeal et al., 2016).
Appraisal variables of emotion during human-robot interactions
involve complex external cues such as face and voice stimuli
of the robot as well as human behavioral responses such as
internal judgements based on prejudice and former memories.
In accordance with the appraisal theory of emotions which
state that there is a causal link between cognition and emotion,
prefrontal cortex (PFC) has been associated with emotion
appraisal and attribution of perceptual clues about face and voice
to a decent extent in neuroscience literature (Lazarus, 1991;
Forbes and Grafman, 2010).

Within this context, functional near infrared spectroscopy
(fNIRS) has gained increasing interest as a mobile imaging
technology for interpreting the neural correlates of emotional
processing in the human PFC. fNIRS is a relatively novel
functional brain imaging modality which enables continuous
and real time measurement of the local changes in oxygenated
hemoglobin (HbO) and deoxygenated hemoglobin (HbR)
concentration levels non-invasively in naturalistic settings. Task
induced alterations in neural activity in localized brain regions
leads to an increased local metabolic rate of oxygen consumption
which results in an increase in local oxygenated blood flow. By
use of ergonomic and wearable probes which are placed at the
surface of the scalp, fNIRS systems have proven their feasibility
in quantification of cerebral hemodynamic activation during
various types of cognitive stimuli in numerous studies (Erdogan
et al., 2014; Yu et al., 2017). fNIRS has become an increasingly
popular and preferred neurophysiological measurement method
for a broad band of research areas which ideally require
practical access to PFC functional activity such as cognitive
psychology, adult and children psychiatry and sports physiology.
Some advantages of fNIRS for cognitive neuroscience studies
include its robustness to motion artifacts when compared to
fMRI and EEG, limited exogenous noise, quick set-up time
and calibration, suitability to collect functional information in
naturalistic environments and ability to collect data from a broad
range of subject populations such as children and elderly adults
(Tuscan et al., 2013). Moreover, mobile fNIRS devices can allow
monitoring of brain physiology during physical interaction with
robots, where the hemodynamic correlates of neural activation
can be recorded during behavioral human-robot interaction tasks
(Henschel et al., 2020).

Taking into consideration the cognitive complexity of human-
robot interactions, the aim of this study was to explore

the differences and similarities in perceptual and emotional
processing of human and robot faces during a human-robot
interaction task. For this purpose, an experimental paradigm
which consisted of auditory and visual presentation of human
and robot stimuli was designed and hemodynamic activity of
the PFC was continuously monitored with an fNIRS system
to interpret the spatiotemporal patterns of hemodynamic
activity in response to presented stimuli. More specifically, our
experimental paradigm involved four different types of audio-
visual video stimuli involving different combinations of human
and robot face and voice. Hence, it enabled us to interpret the
differences in hemodynamic responses obtained during face and
voice mismatch conditions which have never been investigated
before in a naturalistic setting with fNIRS methodology.

The novelty of our study is employment of the fNIRS method
to explore the differences and similarities in hemodynamic
activation in response to both face and voice components during
a human-robot interaction task and evaluate the hemodynamic
correlates of face-voice mismatch situations. Evaluating the
correlations between behavioral rating scores and hemodynamic
responses to robot and human stimuli may have some profound
importance as it may lead us to develop a deeper understanding
of the neuro-cognitive mechanisms underlying human-robot
interactions. Advancing knowledge on the neurophysiological
mechanisms underlying the cognitive and behavioral responses
to presentation of robot stimuli may allow us to design more
ergonomic and comforting social robots in the future.

MATERIALS AND METHODS

Participants
Thirty-five healthy adults participated in our study. Six
participants were excluded from the analysis due to poor quality
of the recordings. Remaining 29 participants had an age range
between 20 and 38 (M = 28.5, SD = 5.5), which consisted of 11
females and 18 males. All participants had a graduate degree or
were undergraduate students. Hence, all participants had digital
literacy and were active users of computers in their daily lives.

None of the participants had any neurological or psychiatric
disorder during the time of the recordings and they had normal
or corrected to normal vision. Participants were informed about
the experimental procedure and the fNIRS technique prior to the
onset of the experiments. They had read and signed informed
consent forms before the onset of the experiment. The study was
approved by the Non-Interventional Research Ethics Board of
Medipol University, Istanbul, Turkey.

Audio-Visual Video Stimuli
Audio-visual videos of a real human and a primitive robot design
were used as stimuli. Reallusion Character Creator 3 R© digital
design software was used for creating 3D models of primitive
robot face videos. Default robot models from this software
were reshaped and the inner mechanical mesh of the robot
was modified to have a glossy texture skin. Reallusion iClone-
7 software was used for speech animation of robot face videos.
Text to speech plug-in was used as the basis of speech animation
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FIGURE 1 | Human (A) and robot faces (B). Adapted from Mutlu et al. (2020).

and mouth motion. At the final step, design errors and bugs were
checked and fixed manually.

Human face video belonged to a 34-year-old male volunteer.
His complete baldness was a common feature with robot face
designs and he is white skinned (Figure 1A). The primitive robot
design of robot face stimulus did not have facial feature details.
Oval shaped basic eyes, mouth line, and a primitive nose were
the only components of the robot face. Metallic and glossy skin of
the robot was a coherent aspect to be expected from robot designs
(Tinwell et al., 2015), (Figure 1B).

Robot voice and human voice were the two types of auditory
stimuli presented from a computer monitor in the experiment.
The natural voice of a 33-year-old male model, the same model
as in the human face stimulus, was used. The human and robot
voice stimuli consisted of the phrase “How are you, how is it
going?”. The robot voice was derived by processing real human
voice as well. This raw sound file was processed in a way where
pitch and formant parameters were altered (2 minor 5, 9.48
formant) and a novel high-toned artificial sound (named as robot
voice condition) was produced (Yorgancigil et al., 2021).

Experimental stimuli consisted of human and robot faces
repeating the above sentence where the faces were matched with
either robot voice or human voice. Hence, the 2 types of visual
stimuli and 2 types of auditory stimuli were paired together to
generate 4 types of audio-visual video stimuli (2 visual: “human
face,” “robot face” x 2 audio: “human voice,” “robot voice”)
forming either congruent (i.e., human face-human voice, robot

face-robot voice) or incongruent face-voice (i.e., human face-
robot voice, robot face-human voice) pairs. Auditory and visual
stimuli pairs were combined using Adobe Premiere R© software as
audio-visual videos. Each audiovisual video has a length of 4 s.

Experimental Design
Audio-visual robot and human face videos were presented to
participants in two sessions. In the first session, they only watched
the videos on the screen while their PFC hemodynamic activity
was continuously recorded with an fNIRS system. In the second
session, they watched the stimuli videos again for behavioral
assessment and rating the stimuli (described below) immediately
after they had finished the first session. This arrangement
minimized the effect of fatigue and adaptation during fNIRS
recordings in the first session.

The experiment was programmed with the open source
PsychoPy3 software. PsychoPy3 is a Python library which
has a special builder interface to run visual and auditory
cognitive science experiments (Peirce, 2009). Participants sat
on a comfortable chair in front of a computer monitor which
had a 60Hz refresh rate, 3,200 x 1,800 resolution and 13
inches size. After instructions were given by the researcher,
participants were alone in a silent dark room (Hwang and
Lee, 2021). They were asked to keep their eyes open and
avoid head movements during the fNIRS recording episode.
Potential feelings of discomfort due to the placement of
the fNIRS optodes were checked before the onset of the
experiment and it was assured that all participants had a
comfortable experience.

In the first fNIRS recording session, 4 types of robot and
human stimuli were presented, each of which lasted for 4 s,
followed by a rest period of 13 s. A gray blank screen was
presented during the rest periods. The order of stimuli was
randomized and each type of stimuli was presented 10 times.
Hence, the fNIRS recordings took approximately 12min for each
participant (Figures 2A,C).

The second session of the experiment consisted of a behavioral
paradigm. Participants responded to behavioral assessment
to evaluate emotional context of audio-visual stimuli. Self-
assessment of uncanniness (uncanny feelings) from robot and
human stimuli were rated by the participants with a 1–9-point
scale where 1 point was for normal/neutral/trustful feelings and
9 points were given for the uncanny/eerie/negative feelings.
Before the experiment, the meaning of the “Uncanny” and
aim of the measurement was explained clearly to participants
with examples involving unpleasant, strange and eerie concepts.
Experiment was conducted with Turkish participants and
Turkish translations of the words were also placed in the rating
screen. All four robot and human stimuli were presented twice
and rated by the participants. This behavioral episode took about
2min (Figure 2B).

fNIRS Data Acquisition
A NIRSport functional near infrared spectroscopy system
(NIRSport, NIRx Medical Technologies LLC, Berlin, Germany,
https://nirx.net/) was used to measure prefrontal cortical
activation during presentation of stimuli. The system involves 22
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FIGURE 2 | Experimental design. (A) Experimental design of the fNIRS recording session, (B) Experimental design of the Behavioral session, (C) Time traces depicting

the onsets and durations of each audio-visual stimulus during the fNIRS recording session. Four types of stimuli are repeated 10 times in a randomized order.

channels which consist of 8 light sources (emitting near-infrared
light at 760 and 850 nm) and 7 detectors. The combinations of
light source-detector pairs with a 3 cm distance were accepted
as channels. All channels collected hemodynamic data from
the frontal cortex region (Figure 3). Concentration changes of
HbO and HbR were calculated with the modified Beer-Lambert
law (Jöbsis, 1977). The fNIRS signals had a 7.8125Hz sampling
frequency. Profile of probe sensitivity was calculated by the
Atlas Viewer toolbox et al., of Homer2 Software to ensure
that all channels collect data from the first few millimeters
of the frontal cortex (Huppert et al., 2009; Aasted et al.,
2015; Mutlu et al., 2020). AtlasViewer toolbox enables mapping
of each channel’s photon propagation density onto cerebral
and non-cerebral layers beneath the corresponding source-
detector pair. The optical sensitivity profile of each channel
was first coregistered on a standard brain template with a
10/5 global EEG electrode system. The channel locations were
also coregistered onto a standard brain in MNI space using
the NIRS_SPM toolbox (Jang et al., 2009; Ye et al., 2009;
Vos et al., 2012). The percentage of Brodmann areas covered
by the propagating photons of each channel was computed
with the spatial registration toolbox of NIRS_SPM by use
of the Rorden’s brain atlas (Rorden and Brett, 2000). The
Brodmann areas covered by each channel of the utilized forehead
probe are listed in a previous work of our research group
(Mutlu et al., 2020).

Data Analysis
Analysis of Behavioral Data
Twenty-nine participants rated the audio-visual human and
robot videos between normal and uncanny feelings. Average
uncanniness scores for each of the 4 audio-visual stimuli
were calculated. A 2 x 2 [Face (Human, Robot) x Voice
(Human, Robot)] repeatedmeasures ANOVAwere performed on
uncanniness scores.

fNIRS Data Preprocessing and Feature Selection
Data preprocessing of fNIRS signals involved several steps.
Initial visual inspection of data was performed with nirsLAB
(NIRX Medical Technologies, Berlin, Germany, https://nirx.
net/nirslab-1) toolbox. Detailed analysis and preprocessing
steps were carried out with HOMER2 scripts and customized
MATLAB scripts (Mathworks, Natick, MA, USA, Stearns and
Hush, 2016) scripts. First, channels with poor signal quality
were eliminated using enPruneChannels.m function of the
HOMER2 toolbox (Cooper et al., 2012). Raw light intensity
data were transformed to optical density (OD) data by using
hmrIntensity2OD.m function. Motion artifacts in channel-wise
time series were detected using HOMER2-hmrMotionArtifact.m
function with the following parameters: Motion = 0.5, tMask =

1, STDEVthresh= 10, and AMPthresh= 1. Principal component
analysis was employed to remove motion artifacts via the
HOMER2-hmrMotionCorrectPCA.m function (nSV parameter
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FIGURE 3 | Time traces of block averaged 1[HbO] signals of each audiovisual stimuli in representative channels, averaged across all subjects. 1[HbO] resembles the

relative concentration change of HbO in micromoles at probed brain tissue. Each time trace indicates block average of HbO responses detected during each specific

audio-visual stimulus from the same channel of all participants. Pink shaded area represents the audio-visual stimulus interval. Error bars indicate the standard error of

the mean signal across participants.

= 0.8). After motion correction, OD data were filtered with a
Butterworth bandpass filter which had a high frequency cut-
off at 0.005Hz and a low frequency cut-off at 0.08Hz. As the
final data preprocessing step; HbO and HbR concentrations
were calculated from filtered OD data based on the Modified
Beer-Lambert law with HOMER2-hmrOD2Conc.m function
(Baker et al., 2014).

Only HbO data were included in the analysis since HbO
is considered as a more reliable and well-grounded marker
of cortical hemodynamic activation (Watanabe et al., 2002;
Scholkmann et al., 2014; Dravida et al., 2017). Hemodynamic
signals from fNIRS recordings contain our signals of interest
which are the neuronally induced hemodynamic changes but

these neuronally induced effects are intermixed with cerebral and
extracerebral physiological effects such as heart beat, respiration
and Mayer waves. These systemic physiological effects may cause
false negative and false positive activation patterns if they are
not properly eliminated (Yücel et al., 2016). Assuming that the
systemic physiological activity is common across all channels,
a principal component analysis was applied to whole channel
data. Top principal components which explained 75 % of the
covariance of all channel data were accepted as regressors
modeling the common noise effect and they were linearly
regressed out from time series of each channel separately to
isolate and extract the neurally induced hemodynamic effects
(Mutlu et al., 2020).
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fNIRS Data Analysis
For each channel’s preprocessed HbO signal, 18-s-long block
segments were extracted, which included each 4-s-long single
trial with a 3 s pre-stimulus baseline interval and an 11 s post
stimulus interval. Each trial segment was detrended to remove
the linear trend from the data and was classified into one of the
four categories of the audio-visual stimuli trial types. The mean
HbO signal for each condition and subject was computed by
averaging across time series of all trial blocks (n = 10) belonging
to each stimulus type. Block averaging procedure was performed
for each subject and channel’s HbO signal data separately.
Hence, a single-block averaged time-series HbO signal data was
calculated for each condition and channel for each subject.

For each stimulus trial, a hemodynamic effect size metric
named Cohen’s D was computed by subtracting the mean of the
signal in the [0–3] s pre-stimulus time range before the stimulus
onset from the mean of the signal in the [1–4] s duration after
the stimulus onset (Balconi andMolteni, 2016). Stimulus induced
amplitude change with respect to the baseline was normalized by
dividing the difference between the mean baseline amplitude and
task mean amplitude with the standard deviation of the [1–3] s
pre-stimulus baseline (Balconi et al., 2015; Balconi and Vanutelli,
2016, 2017; Mutlu et al., 2020), (Figure 3).

Statistical Analysis of HbO Signal Data
A 2 x 2 repeated measures ANOVA [factors: face (human,
robot), voice (human, robot)] was employed on Cohen’s Dmetric
of each channel separately to localize statistically significant
differences in HbO signal activation at the group level across
different stimuli types. Post-hoc analyses were performed with a
Bonferroni correction procedure. Pearson’s correlation between
Cohen’s D metrics and all participant’s behavioral rating scores
were calculated and illustrated in scatter plots (Figure 6). All
statistical analyses were executed with JASP software (University
of Amsterdam, Netherlands), (Love et al., 2019).

RESULTS

Behavioral Experiments
Mean uncanniness scores for all stimuli types are listed in Table 1
and illustrated in Figure 4. Analysis of 2 (Face: Human, Robot)
x 2 (Voice: Human, Robot) mixed ANOVA on stimuli ratings
showed a strong main effect of voice [F (1, 29) = 15.5, p <

0.001, η2p= 0.35], but the main effect of face was not significant
[F (1, 29) = 0.1, p = 0.76, η2p = 0.003]. There was also an
interaction between face and voice stimuli [F (1, 29) = 8.47, p
= 0.007, η2p = 0.23]. Human face - robot voice stimuli elicited
significantly higher uncanniness scores than the human face -

TABLE 1 | Average uncanniness scores of audio-visual stimuli.

Stimuli type Average score

Human face-human voice 3.61 ± 0.45

Human face-robot voice 6.12 ± 0.41

Robot face-human voice 4.84 ± 0.44

Robot face-robot voice 5.18 ± 0.44

human voice stimuli (t = −4.84, p < 0.001). Robot face - robot
voice stimuli also elicited significantly higher uncanniness scores
than the human face-human voice stimuli (t=−3.13, p< 0.017).
Bonferroni corrections were applied for the analysis.

fNIRS Experimental Results
Differences in Cohen’s D metric of all subjects across different
trial types were statistically analyzed with a 2∗2 ANOVA design
for each channel separately. A main effect of face was observed
in Channels 6, 14, 22 while a main effect of voice was observed
in Channel 15 and a face-voice interaction effect was observed
in Channel 2 which are schematically demonstrated in Figure 5.
Main effect of the face was observed in 2 channels located in
the left dorsolateral prefrontal cortex (DLPFC) and one channel
located in the left orbitofrontal cortex (OFC) (red circles). Main
effect of voice was observed only in the left OFC (green circle)
and the face-voice interaction effect was observed in one channel
located in the right DLPFC (blue circle), (Figure 5).

Post-hoc analyses indicated that presentation of human face
stimuli elicited significantly higher hemodynamic responses at
Channel 6, Channel 14 and Channel 22, when compared to the
hemodynamic responses obtained during presentation of robot
face stimuli [for Channel 6: F (1, 29) =7 .3, t = 2.7, p =

0.012, for Channel 14: F (1, 29) = 4.2, t = 2.05, p = 0.05, for
Channel 22: F (1, 29) = 7.24, t = 2.69, p = 0.012], (Figure 6A).
Significantly lower hemodynamic response to the presentation
of robot voice was detected at Channel 15 when compared to
presentation of human voice [F (1, 29) = 5.62, t = −2.37, p =

0.025), (Figure 6B). Significantly higher hemodynamic responses
to human face-robot voice stimuli were detected at Channel 2 [F
(1, 29) = 8.33, t = 2.87, p = 0.045] when compared to robot face

FIGURE 4 | Changes in average Uncanniness score with respect to voice type

and face type.
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robot-voice stimuli (Figure 6C; Table 2). Bonferroni corrections
were applied for the analysis.

Pearson’s correlation coefficients were computed between
behavioral ratings of the stimuli and Cohen’s D metric
of significantly active channels. At Channel 22, significant

FIGURE 5 | Channel locations of fNIRS probe mapped onto a standard brain

template in MNI space. Channels with significant hemodynamic activation are

illustrated with colored circles. (Red circle: Human Face > Robot Face, Green

circle: Robot Voice < Human Voice, Blue circle: Human Face Robot Voice >

Robot Face Robot Voice). Adapted from Mutlu et al. (2020).

moderate correlation between behavioral ratings and Cohen’s D
hemodynamic activity metric was detected for the Human Face
- Robot Voice > Robot Face - Robot Voice contrast (R = 0.431,
n= 24 and p < 0.05), (Figure 7).

DISCUSSION

In this study, we aimed to investigate the spatiotemporal
features of cortical hemodynamic responses of healthy adults
during perception of various types of audio-visual human and
robot video stimuli. We aimed to observe correlations between
behavioral responses (i.e., uncanniness score) and magnitude of
hemodynamic activity in significantly activated PFC regions. The
ultimate goal was to interpret the differences and similarities
between neural correlates of emotional processing of human and
robot faces and to explore whether the uncanny feelings elicited
a proportional hemodynamic effect that could be quantified with
fNIRS recordings.

Distinct neural responses to human and robot stimuli were
detected at the DLPFC and OFC regions in the present study.
Two channels which are located in the left DLPFC, one channel
at right DLPFC and two channels in left OFC regions showed
significant hemodynamic activity during processing of different
human and robot stimuli. Significantly active channels relevantly
localized around the lateral parts of the PFC. The fact that
our robot and human stimuli elicit significant hemodynamic
responses at the DLPFC regions may be considered as a
verification that our experimental design induced the desired
hemodynamic contrast in alignment with current literature and
could be used to test our hypotheses.

Our results demonstrate that the hemodynamic response to
human face stimuli is statistically significantly higher than the
responses to robot face stimuli in Channels 6 and 14 which are
located in the left DLPFC region (Figure 6A). Human face is one

FIGURE 6 | Hemodynamic activation maps obtained during different contrasts between audiovisual stimuli. (A) Human Face > Robot Face contrast, (B) Robot Voice

< Human Voice contrast, (C) Face-voice interaction: Human Face-Robot Voice > Robot Face-Robot Voice contrast. T scores of channels showing statistically

significant activation (p < 0.05) are mapped on to the standard head model map. Color bar represents threshold t statistic scores.
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TABLE 2 | Post-hoc comparisons of Cohen’s D metric obtained during different types of stimuli at the significant channels.

Channel Stimuli Mean diffference (CI:%95) F (1, 29) t P-value

2 Human face-robot voice> Robot face-robot voice 7.49 8.33 2.78 0.045

6 Human face>robot face 3.42 7.3 2.7 0.012

14 Human face>robot face 2.1 4.2 2.05 0.05

15 Robot voice<human voice −2.72 5.62 −2.37 0.025

22 Human face> robot face 3.27 7.24 2.69 0.012

FIGURE 7 | Scatter plots of behavioral data (i.e., Uncanniness Rating) and

Cohen’s D metrics computed for Human Face - Robot Voice > Robot Face -

Robot Voice contrast. Each dot represents a comparison of changes in

behavioral score and hemodynamic parameter of channel 22 for each subject.

The two variables were found to be linearly correlated (p < 0.05).

of the main sources of social cognition as a strong representation
of identity and induces emotional states with facial mimicry
(Leopold and Rhodes, 2010). Higher hemodynamic response to
stimuli involving human faces may be linked to the primary
emotion regulation function of the DLPFC (Kaller et al., 2011).
DLPFC regions have been shown to elicit significant cortical
activation in response to human face stimuli in previous studies
conducted with fMRI. Lower degrees of DLPFC activation to
happy faces was observed in depression patients when compared
to healthy controls (Manelis et al., 2019). A recent study by
Kelley et al. explored differences in hemodynamic activity during
a paradigm involving a human to human eye contact and human
to robot eye contact and found that human to human eye contact
elicited greater DLPFC activity (Kelley et al., 2021).

Previous fMRI studies demonstrated that human and robot
stimuli elicited neural responses in specific brain regions such
as fusiform gyrus and temporo-parietal junction (Özdem et al.,
2016; Hogenhuis, 2021; Kelley et al., 2021). PFC, the most
complex and executive part of the human brain, also has a
role in perception and emotional processing steps in human-
robot interactions (HRI). Ventromedial parts of the prefrontal
cortex (vmPFC) are addressed with social cognition capabilities

such as theory of mind and facial emotion cognition (Hiser and
Koenigs, 2018). Hence, the role of vmPFC in social cognition
can be expanded to HRI as well. An experimental human-
robot and human-human interaction paradigm elicited increased
activity in vmPFC regions in a study performed by Wang
and Quadflieg (2014). DLPFC and other PFC regions have
indirect roles in emotion regulation and are involved primarily
in regulation, integration and processing of executive functions
such as cognitive control and secondarily abstract reasoning
processes (Kaller et al., 2011). DLPFC lesions caused impaired
auditory attention (Bidet-Caulet et al., 2015). Lateral OFC
(IOFC) was also found sensitive to facial mimicry and has been
shown to play a role in generating emotional response to human
faces (Howard et al., 2015; Dixon et al., 2017). However, a recent
fNIRS study presented that artificially designed faces and facial
expressions elicited less hemodynamic response than real human
faces (Zhao et al., 2020).

We used neutral human and robot faces with short greeting
sentences as stimuli in our study. Human face is the primary
instrument during social interactions and consists of a very
intense and multidimensional emotional context which includes
facial expressions, identical clues and personal traits (Jack and
Schyns, 2015). Neutral faces are accepted as standard types of
facial expressions and matched with objective emotions in a well-
known study on emotions by Ekman (Ekman, 2017). However;
neutral faces may be perceived with negative or positive emotions
depending on the experimental context (Lee et al., 2008; Said
et al., 2009). PFC and subregions, our research zone, have high
ordered capabilities in emotion regulation and are sensitive to
human faces (Wolf et al., 2014). In addition to neuroimaging
of PFC regions, we also asked participants if human and robot
stimuli create uncanny or normal feelings during the experiment.
Emotional response to faces were evaluated with rating scores
and increased PFC activity to human face stimuli was detected
in an fMRi neuroimaging study (Morita et al., 2008). Even short-
term greetings have been reported to induce positive emotional
response in observers during human-robot interaction in a recent
study by Fischer et al. (2019). Design and the level of human
likeness of the robot faces also changes emotional response in
observers (Appel et al., 2020).

At first glance, consistent localizations of channels with
significant changes in hemodynamic response in the DLPFC
region may be linked with emotional regulation and processing
of human faces. Based on previous experimental studies, human
and/or robot faces with a greeting message as presented in the
current study may be considered as emotional stimuli (Morita
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et al., 2008; Fischer et al., 2019). We propose that higher
hemodynamic responses in DLPFC and OFC regions during
observation of human face stimuli might be modulated by the
emotions induced by the faces.

Another PFC region where stimuli involving human faces
induce significantly higher hemodynamic response than that of
robot faces corresponds to Channel 22 which is located in the
OFC region. OFC regions are also sensitive to processing of
human faces and face specific activation changes were observed
in OFC during face selection tasks (Barat et al., 2018). OFC has
also been shown to elicit activation in the infant brain during
parenteral interaction which involves face and voice stimuli
(Parsons et al., 2013).

Significantly lower hemodynamic responses to robot voice
were observed in a left OFC channel (Channel 15) when
compared to human voice stimuli (Figure 6B). Several fNIRS
neuroimaging studies indicated that conversation with robots
creates complex PFC activity (Kawaguchi et al., 2011; Strait et al.,
2014). However, unlike stimuli involving conversation, the robot
voice stimuli used in the present study contains a few words
and it is unidirectional. Our results provide complementary
information to previous literature as we demonstrate that short
lasting robot voices also elicit decreased hemodynamic activity in
the OFC when compared to human voice stimuli. This finding
supports OFC’s differential sensitivity to processing human
and robot voices even during a short-term trial. Robot voices
may create avoidance feelings in humans which may manifest
decreased hemodynamic response in OFC regions. Indeed, OFC
was found to be sensitive to human voices and impairment of
OFC regions resulted in disruption of the voice identification
process in the human brain (Hornak et al., 2003; Parsons et al.,
2013). Lateral OFC was also found to be sensitive to facial
mimicry and plays a significant role in generating emotional
response to human faces (Wang and Quadflieg, 2014; Bidet-
Caulet et al., 2015). Similar to our findings, a recent fNIRS study
presented that artificially designed faces and facial expressions
elicited less hemodynamic response than real human faces (Zhao
et al., 2020).

In our study, participants rated human and robot stimuli
immediately after the fNIRS recording and behavioral results
in the form of uncanniness score were also evaluated. Human
face-robot voice paired stimuli were rated as inducing the most
uncanny feeling (Figure 5), followed by robot face-robot voice
and robot face-human voice stimuli (Table 1). Human face-
human voice stimuli were rated as most normal. There is a
clear contrast between the results where incongruent human
face-robot voice stimuli are perceived as the most uncanny,
and congruent human face-human voice stimuli are perceived
as the most normal. Mismatch between face and voice creates
discomfort and disharmony feelings in humans. According to
anthropological and evolutionary theories; cognitive dissonance
may be a plausible reason for disturbance feelings from
mismatched situations (Laue, 2017).

In our experimental paradigm; we primarily used human and
robot faces and voices as emotional stimuli. Face perception is
a special step of social perception and emotions are constructed
from perceptions and evaluations during social interactions

(Scherer and Moors, 2019). In addition to congruent pairs, our
experimental paradigm also included incongruent face and voice
pairs of humans and robots to explore responses to conflicting
stimuli in the PFC. Face-voice mismatch effect violates
categorical boundaries about robot and human definitions in our
perception, as previous studies openly presented (Mitchell, 2011;
Meah and Moore, 2014; Yorgancigil et al., 2021). Conflicting
stimuli tasks can activate left DLPFC regions which was revealed
in an fMRI study (Wittfoth et al., 2009). Findings from another
fMRI study showed that medial and lateral PFC regions have also
been activated during a Stroop task paradigm which involved
visual stimuli conflict (Egner and Hirsch, 2005). With a broader
view, perceptual and cognitive effects of robots can be addressed
in PFC regions in the human brain. In alignment with the
increasing uncanniness score with face - voice mismatch effect
(Figure 4), incongruent human face - robot voice stimuli elicited
significantly higher hemodynamic response than congruent
robot face - robot voice stimuli in a DLPFC channel (Channel
2, Figure 6C). In a previous fMRI study, face - voice mismatch
also resulted in significant alterations in the neural activity of the
inferior frontal gyrus, which is a neighboring region of the PFC
(Uno et al., 2015).

Another main finding of our study is the significant
correlation between hemodynamic activity of a left OFC channel
and the extent of uncanny feelings (Figure 7). At Channel
22, human face - robot voice > robot face - robot voice
hemodynamic contrast was accompanied with a significant
correlation between behavioral (i.e., uncanniness score) and
hemodynamic differences depicting the same contrast. The
difference in uncanniness score between human face-robot voice
stimuli and robot face-robot voice is positive in all subjects and
as this mismatch increases, the difference in the hemodynamic
response obtained during processing these two types of stimuli
also increases. Channel 22 also shows statistically significantly
higher hemodynamic response to human face stimuli when
compared to robot face stimuli (Figure 6A). Human face
perception process has specific neural regions in the human brain
and top-down modalities are employed during face perception
(Ban et al., 2004). Top-down modalities govern face perception
by integrating information from various parts of the brain (Oruc
et al., 2019). Consequently, we propose that behavioral and
hemodynamic correlation of increased response to the human
face may be a sign of integrated perception of the human face
at the OFC regions.

Limitations of the Study and
Recommendations for Future Work
Our study has several limitations in terms of experimental design
and the capability of the utilized neuroimaging technology. The
experimental design consists of videos involving a mix of human
and robot face and audio stimuli for the purpose of evaluating
the hemodynamic processing of human - robot interactions.
Our robot and human audio-visual stimuli were presented from
a computer screen which might induce additional neuronal
processing in the PFC and introduce some confounding effects
to the spatiotemporal patterns of hemodynamic activity. While
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the majority of cognitive experiments conducted with fNIRS
and fMRI involve presentation of audio-visual stimuli from
digital interfaces, we should still highlight the fact that future
work should involve repeating the same experiments with real
humans and robot models in a real-world setting to exclude
the potential hemodynamic confounding effects introduced by
visual processing of the digital interface. In addition to robot face
representation in a video format, robot models allow interaction
with all parts of the robot body and tactile sensation. Our
results are limited with interpretation of the hemodynamic
activity of the PFC due to the limited channel number of
our fNIRS device. Human and robot face stimuli elicit PFC
activity due to induction of the emotion regulation and social
cognition capabilities, however, cerebral cortical regions such as
temporoparietal junction and fusiform gyrus are also very well-
known to be addressed during human-robot interactions. We
will aim at concurrent investigation of these cerebral regions
by integrating fMRI measurements to our protocols for future
work. Whole brain imaging promises better spatial resolution
for analysis of hemodynamic responses induced by human-robot
interaction in the cerebral cortex. We also propose that more
advanced experimental paradigms which execute real human
and robot model conditions may provide richer emotional
and behavioral clues which can be detected with fNIRS in
future work.

Novelty of the Findings
Current study presents the following novelties with respect to
the current literature. To date, there have been no studies
that aimed to explore the neurophysiological underpinning of
the face and voice congruence. We examined the processing
of a face-voice mismatch condition during presentation of
robot and human stimuli with fNIRS modality, which is
a relatively novel functional imaging modality that enables
real time quantification of brain hemodynamic responses to
presented stimuli. Here, we conducted an exploratory study
of how human and robot faces are perceived and emotionally
processed in the PFC by computing the hemodynamic correlates
of neural activation during both types of stimuli using the
fNIRS method. PFC is one of the prominent brain areas where
the high-level cognitive processes such as emotion regulation,
social cognition and identity of self are located (Hiser and
Koenigs, 2018). Our study demonstrates the potential and
feasibility of fNIRS as a convenient and practical neuroimaging
method for quantification of human-robot interactions in
natural environments of participants. fNIRS also provides robust
presentation of task-related hemodynamic activity in the human
brain with minimized external noise, low operating costs, quick
set-up time and calibration (Balconi and Molteni, 2016).

CONCLUSION

In support of previous literature, DLPFC and OFC regions
were found to be sensitive to processing of stimuli consisting
of robot and human faces in the present study. Our study
provides an insight to the neural mapping of human and
robot conditions in the PFC and contributes to elucidation
of the neural processing of human and robot stimuli in the
PFC in naturalistic conditions. We believe inclusion of a wider
population of participants and more sophisticated experimental
conditions will pave the way to finding hemodynamic markers
of perceptual classification of human and robot faces in the
human brain.
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