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It is widely known that exercise improves inhibitory control; however, the mechanisms

behind the cognitive improvement remain unclear. This study analyzes the extant

literature on the neuronal effects of exercise on inhibitory control functions. We searched

four online databases (Pubmed, Scopus, PsycINFO, and Web of Science) for relevant

peer-reviewed studies to identify eligible studies published before September 1, 2021.

Among the 4,090 candidate studies identified, 14 meet the inclusion criteria, and the

results of 397 participants in these 14 studies are subsequently analyzed. We quantify the

neural effects on the entire brain by using GingerALE software and identify 10 clusters of

exercise-induced neuronal with either increases/decreases in the superior temporal gyrus

(BA 22), precuneus (BA 7), superior frontal gyrus (BA 10), cuneus (BA 19), precuneus (BA

19), caudate, posterior cingulate (BA 19), middle temporal gyrus (B 37), parahippocampal

gyrus (BA 30), precentral gyrus (BA 6). Meta-analytic coactivation map (MACM) showed

that multiple functional networks overlap with brain regions with activation likelihood

estimation (ALE) results. We propose the effect of exercise on neural activity is related

to inhibitory control in the extended frontoparietal, default mode network (DMN), visual

network, and other pathways. These results provide preliminary evidence of the neural

effects of exercise on inhibitory control.

Keywords: exercise, inhibitory control, meta-analysis, activation likelihood estimation, fMRI

INTRODUCTION

Inhibitory control or inhibition is defined as suppressing prepotent responses to goal-irrelevant
stimuli and contributes to anticipation, planning, and goal setting. Inhibitory control is one of
the three core executive functions of the brain (Aron, 2007; Liang et al., 2021b). People who
suffer from impaired inhibitory control have a lower quality of life and develop health problems
and diseases which applies to healthy and sick people (Liang et al., 2021a). Meanwhile, impaired
inhibitory control could be a hallmark feature of several neuropsychological DSM-5 disorders
including attention-deficit/hyperactivity disorder (ADHD; Crosbie et al., 2008; Bari and Robbins,
2013), bipolar disorder (Hidiroglu et al., 2015), schizophrenia (Enticott et al., 2008; Hughes et al.,
2012), and substance use disorders (Liao et al., 2014; Lee et al., 2015). Although the disorders
listed here are primarily characterized by difficulties in controlling behavior (Brady et al., 2011;
Sofuoglu et al., 2013; Baumeister et al., 2018), they are also found in normal cognitive aging
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(Coxon et al., 2012; Smittenaar et al., 2015). Thus, to understand
the risk of developing these disorders and contribute to current
prevention and treatment measures, an analysis of the neural
underpinnings of inhibitory control is essential and timely.

Physical activity has garnered significant attention as a
potentially effective method for elevating cognitive function
and improving brain health throughout life (Loprinzi et al.,
2013; Ji et al., 2021). Meta-analyses of healthy participants (Li
et al., 2020; Amatriain-Fernandez et al., 2021; Chen et al.,
2021), autism spectrum disorder (ASD; Liang et al., 2021b),
mild cognitive impairment (MCI; Biazus-Sehn et al., 2020)
as well as ADHD patients (Liang et al., 2021a) have shown
that exercise has a positive effect on inhibitory control in
individuals. Neuroimaging studies have also demonstrated the
inhibitory control mechanisms of the brain by exploring the
relationship between exercise and brain region activation during
specific tasks (e.g., flanker, go/no-go, and Stroop tasks). Previous
studies reported that the “cognitive control network” actively
coordinates multiple brain regions, such as the frontal cortex
(including the anterior cingulate cortex), parietal cortex, motor
regions, and cerebellum (Niendam et al., 2012; Akatsuka et al.,
2015; Chu et al., 2015). The effects of exercise on functional
changes in inhibitory control are not apparent. Indeed, some
studies report an increase in the activation of the prefrontal
and parietal lobes following exercise intervention (Mehren et al.,
2019c), whereas others reported less activation in the frontal and
temporal lobes during similar inhibitory-based tasks (Krafft et al.,
2014; Hsu et al., 2018).

The last few years have seen the introduction of several tools
for performing a meta-analysis of data obtained from brain
imaging research, allowing for the quantitative integration of
findings from different studies. Activation likelihood estimation
(ALE) is a relatively way to estimate the probability that at
least one activation focus from a set of experiments lies at
the location of a specific voxel, using Gaussian assumptions of
spatial uncertainty (Turkeltaub et al., 2002) This study, using
the ALE method, aimed to explore the overall neural changes
in inhibitory control associated with exercise. We hypothesized
the critical regions of exercise-induced inhibitory control are
related to several frontal and parietal cortex brain areas. To
validate ALE results whether overlap the brain networks to
related frontoparietal or other brain networks, we applied ameta-
analytic co-activation model (MACM) approach using activation
clusters as regions of interest (ROIs) from our ALE results.

METHOD

The meta-analysis in this study is completed and reported
by the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses Statement (PRISMA). The protocol was
registered as trial registration number CRD42021285736
under the International Prospective Register of Systematic
Reviews (PROSPERO).

Search Strategy
Four electronic databases (Pubmed, Scopus, PsycINFO, andWeb
of Science) were searched from their inception to September 1,

2021, to identify all published studies on functional magnetic
resonance imaging (fMRI) that investigate the impact of exercise
on the activation of different brain areas during inhibitory
control tasks. The initial search used three key terms: physical
activity or exercise, inhibitory control, and fMRI. We also hand-
searched recent systematic reviews and meta-analyses to identify
potential studies (Liang et al., 2021a; Yu et al., 2021). The search
was limited to English-language results and human subjects.
The reference lists of included studies were manually reviewed
for relevant articles that were captured through the database
searches. The detailed keyword search strategy is presented in the
Appendix Table.

Study Selection
The screening for relevant studies was conducted in accordance
with the PICOS (participants, intervention, comparisons,
outcomes, and study design) principles. The participants
included individuals of all ages and pathologies. The studies
must have investigated the effect of exercise on inhibitory
control and examined pre/post-intervention with at least
one group assigned to physical activity/exercise intervention.
During fMRI scanning, studies must have assessed brain
activation patterns via completed inhibitory control tasks
(e.g., go/no-go, stroop, flanker, or Simon tasks). For inclusion,
retrievable data in standard Talairach or Montreal Neurologic
Institute (MNI) space was also required. Finally, the chosen
studies included randomized controlled trials (RCTs) and
non-randomized controlled trial studies (NRCTs) published in
peer-reviewed journals.

Two reviewers independently conducted themulti-step search
process based on these selection criteria and screened the studies
based on their title and abstract. Full-length texts were eventually
used to identify eligible articles. If consensus could not be
reached, a third reviewer made the final decision after discussion
with the two reviewers.

Data Extraction
A standardized data extraction form was developed to extract
relevant data from each study, including the bibliographic details
(author and year), participant characteristics (sample size, sex,
and age range), intervention components (intervention design
and duration), fMRI task, software used, and active results/foci.

Quality Assessment
The Physiotherapy Evidence Database (PEDro) scale, a reliable
and valid instrument for assessing the methodological quality
of studies that focus on the effects of physical activity on
cognitive functions, was used to determine the methodological
quality (Sherrington et al., 2000). This scale includes 11 rating
criteria including eligibility, randomization, allocation, blinding
(subjects and experimenter), intention-to-treat, between-group
comparison, and point measures. The methodological criteria
were scored as Yes (one point), No (zero points) or Do not know
(zero points). The PEDro score of each selected study served as
an indicator of the methodological quality (<4 = poor; 4–5 =

fair; 6–8= good; and 9–10= excellent).
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FIGURE 1 | PRISMA flow diagram of selected studies. Multi-step search process shows the number of studies screened and those that meet the inclusion criteria.

The fMRI quality was determined from a set of guidelines
for the standardized reporting of the fMRI studies and
used to assess the fMRI study design/reporting quality and
quality of the fMRI data of each included study (Poldrack
et al., 2008). The fMRI form has 8-item rating criteria for
eligibility, the experimental design, handedness and gender of
participants, explanation for rejected data, details of the imaging
parameters, software analysis method and package used, motion
correction method during pre-processing, multiple comparison
correction, and detailed description of the first and second
level analyses.

Data Analysis
The ALE is a reliable quantitative method for coordinate-
based meta-analyses to identify brain activation during cognitive
functions after exercise (Laird et al., 2005). In this study,
GingerALE v2.3.6 (http://www.brainmap.org) software is used
to analyze the data. A statistical threshold of uncorrected p
< 0.001 and a minimum cluster size of 100 mm3 were used
(Meng et al., 2020). The ALE maps were imported into Mango
Version 4.1 (http://ric.uthscsa.edu/mango/mango.html) software
and overlaid on an anatomical template in MNI space for
visualization. The effect of exercise on behavioral performance
is not examined due to missing data and changes in an
inhibitory control task that resulted in the effect magnitude
being inestimable.

Additionally, to obtain the MACM based on the ALE
results, we followed the procedure proposed by Robinson et al.
(2010) as implemented in NeuroSynth (http://neurosynth.org/;

Yarkoni et al., 2011). The activation clusters as seed ROIs were
separately entered into NeuroSynth to evaluate the MACM.
In brief, the software searches among more than 11,000
fMRI studies (totaling 413,429 activations in the MNI152
coordinate space) those reporting activation in a spherical
seed (6mm) around the searched coordinates. The identified
co-activations are then pooled together to form the MACM
output that is corrected for multiple comparisons (p <

0.01 false discovery rate; FDR as provided in NeuroSynth).
Namely, a z-score is assigned to each voxel, representing the
strength of the association between a given voxel and the
seed coordinates.

RESULTS

Study Selection
Four thousand and eighty-eight studies were identified
from the four databases, and two studies were identified
from other systemic reviews. Included studies were chosen
after thoroughly screening the titles, abstracts, and full
text. Fourteen studies were identified for the meta-analysis
(Figure 1).

Study Characteristics
Table 1 lists the characteristics of the 14 studies that involved
397 participants. Six studies (Mehren et al., 2019a,b,c; Won et al.,
2019; Cui et al., 2020; Meng et al., 2020) utilized acute exercise
paradigms and eight studies (Colcombe et al., 2004; Liu-Ambrose
et al., 2012; Krafft et al., 2014; Sachs et al., 2017; Hsu et al., 2018;
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TABLE 1 | Descriptive characteristics of included studies.

References Design Participants Sample

male/

female

Age (years old) Intervention for

exercise group

Duration fMRI task Software Active

Results/Foci

Colcombe et al.

(2004)

RCT Older adults M: 11

F: 18

65.6 ± 5.66 Walking 40–45 min/session * 3

days/week * 6 months

Flanker task SPM99 Pre>Post/ 0

Post>Pre/ 3

Liu-Ambrose et al.

(2012)

RCT Senior women F: 52 Rt1:69.7 ± 2.8

Re2:68.9 ± 3.2

Bat: 69.3 ± 3.0

Resistance exercise Rt1:1 days/week *52

months

Re2:2 days/week *52

months

Bat: 2 days/week

*52 months

Eriksen flanker task FEAT and FSL Pre>Post/ 0

Post>Pre/ 12

Krafft et al. (2014) RCT Overweight

children

M: 7

F: 17

9.7 ± 0.8 Tag and jump rope 405 min/session * 7

days/week * 8 months

Flanker task AFNI Pre>Post/ 6

Post>Pre/ 4

Metcalfe et al.

(2016)

nRCT Adolescents with

bipolar disorder

M: 13

F: 17

16.8 ± 1.4 Recumbent

bicycle-ergometer

27min Go-no-go task FSL Pre>Post/ 5

Post>Pre/ 3

Sachs et al. (2017) nRCT Children M: 5

F: 8

8.85 Soccer and

swimming

60 min/session * 2 or 3

days/week * 5 years

Color-word stoop task FSL Pre>Post/ 1

Post>Pre/ 0

Martinsen et al.

(2018)

nRCT Fibromyalgia F: 19 49.6 Resistance exercise 60 min/session * 2

days/week * 15 weeks

Color-word stoop task SPM8 Pre>Post/ 0

Post>Pre/ 3

Hsu et al. (2018) RCT SIVCI M: 4

F: 6

M:71.1 ± 8.8

F: 73.5 ± 7.9

Walking 60 min/session * 3

days/week * 6 months

Flanker task FSL Pre>Post/ 16

Post>Pre/ 0

Pensel et al. (2018) nRCT Order adults M:23 M:49.00 ± 5.32 Running 60 min/session * 3

days/week * 6 months

Flanker task SPM8 Pre>Post/ 0

Post>Pre/ 22

Wu et al. (2018) RCT Order adults 16 64.9 ± 2.8 Taichi 60 min/session * 3

days/week * 12 weeks

Stoop task SPM12 Pre>Post/ 0

Post>Pre/ 5

Mehren et al.

(2019a)

nRCT Adults MI:M:16

F:16

HI:M:15

F:16

MPA:29.3 ± 8.5

MVPA:28.6

± 7.7

Cycling and Hiit 30min Go-no-go task SPM12 Pre>Post/ 0

Post>Pre /5

Mehren et al.

(2019c)

nRCT Adult patients

with ADHD

M: 20

F: 3

31.4 ± 9.6 Cycling 30min Go-no-go task SPM12 Pre>Post/ 0

Post>Pre/ 3

Mehren et al.

(2019b)

nRCT Adult patients

with ADHD

M: 16

F: 4

29.9 ± 9.5 Cycling 30min Flanker task SPM12 Pre>Post/ 0

Post>Pre/ 5

Won et al. (2019) nRCT Older adults M: 8 F:

24

66.2 ± 7.3 Cycling 30min Eriksen flanker task AFNI Pre>Post/ 2

Post>Pre/ 9

Cui et al. (2020) nRCT Female college

students

F: 43 HF:20.32 ± 0.75

LH:20.35 ± 0.61

Cycling 30min Stoop task SPM23 Pre>Post/ 0

Post>Pre/ 10

RCT, randomized control trial; nRCT, non-randomized control trial; SIVCI, subcortical ischemic vascular cognitive impairment; ADHD, attention deficit hyperactivity disorder; BAT, twice-weekly balance and tone training; RT1, once-weekly

resistance training; RT2, twice-weekly resistance training; HT, high-fit group; LF, low-fit group; MI, moderate intensity; HI, high intensity; HITT, high-intensity interval training.
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TABLE 2 | Methodological quality assessment of included studies.

References Eligibility

criteria

Random

allocation

Concealed

allocation

Similar at

baseline

Subject

blinded

Therapist

blinded

Assessor

blinded

Dropout Intention-

to-treat

analysis

Between-

group

comparison

Points

measures

Total

score

Overall

study

quality

Colcombe et al. (2004) 0 0 0 1 0 0 0 1 1 1 1 5 Good

Liu-Ambrose et al. (2012) 1 1 1 1 0 0 1 1 1 1 1 9 Excellent

Krafft et al. (2014) 1 1 1 1 0 0 0 1 1 1 1 8 Good

Metcalfe et al. (2016) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Sachs et al. (2017) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Martinsen et al. (2018) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Hsu et al. (2018) 1 1 1 1 0 0 0 1 1 1 1 8 Good

Pensel et al. (2018) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Wu et al. (2018) 1 1 0 1 0 0 1 1 1 1 1 8 Good

Mehren et al. (2019a) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Mehren et al. (2019c) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Mehren et al. (2019b) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Won et al. (2019) 1 0 0 1 0 0 0 1 1 1 1 6 Good

Cui et al. (2020) 1 1 1 1 0 0 0 1 1 1 1 8 Good

Yes = 1; No or Do not know = 0.

TABLE 3 | fMRI quality assessment of included studies.

References fMRI

design

Sample

handedness

reported

Sample

gender

reported

Scan

rejection

mentioned

Scan

rejection

reason

Volume

acquired

per

session

Software

package

specified

Method for

motion

correction

described

Method for multiple

comparison

correction described

Type of

correction

applied

First level

contrasts

described

Second

level

contrasts

described

Colcombe et al. (2004) 1 0 0 0 0 0 0 0 0 Voxel wise 0 1

Liu-Ambrose et al. (2012) 1 1 1 0 0 0 1 1 0 Cluster 1 1

Krafft et al. (2014) 1 1 1 1 0 0 1 0 1 Cluster 0 0

Metcalfe et al. (2016) 1 0 1 0 0 0 1 1 0 Unclear 1 0

Sachs et al. (2017) 1 1 1 0 0 0 1 1 0 Cluster 0 0

Martinsen et al. (2018) 1 0 1 0 0 0 1 0 1 Unclear 1 1

Hsu et al. (2018) 1 0 1 0 0 0 1 1 0 Cluster 0 1

Pensel et al. (2018) 1 1 1 0 0 0 1 0 1 Voxel wise 1 1

Wu et al. (2018) 1 1 1 0 0 0 1 1 1 Voxel wise 1 1

Mehren et al. (2019a) 1 1 1 0 0 0 1 0 1 Voxel wise 0 0

Mehren et al. (2019c) 1 1 0 0 0 0 1 0 1 Voxel wise 0 0

Mehren et al. (2019b) 1 1 1 0 0 0 1 0 1 Voxel wise 0 0

Won et al. (2019) 1 1 1 0 0 0 1 1 0 Voxel wise 0 0

Cui et al. (2020) 1 1 1 0 0 0 1 1 1 Voxel wise 1 1

Yes = 1; No or do not know = 0.
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TABLE 4 | ALE clusters derived from inhibitory control task in overall analysis.

Cluster Region Brodmann

area

x y z ALE extrema p

Activation increases

1 L Superior temporal gyrus BA 22 −56−32 4 0.015 <0.001

2 R Precuneus BA 7 32 −66 44 0.012 <0.001

3 R Superior frontal gyrus BA 10 27 60 20 0.012 <0.001

4 R Cuneus BA 19 34 82 34 0.010 <0.001

5 R Precuneus BA 19 32 −76 36 0.009 <0.001

Activation decreases

1 R Caudate – 40 −40 4 0.009 <0.001

2 R Posterior cingulate B31 16 −64 18 0.009 <0.001

3 R Middle temporal gyrus BA 37 48 −60−2 0.008 <0.001

4 L Parahippocampal gyrus BA 30 −10−44−2 0.008 <0.001

5 R Precentral gyrus BA 6 60 6 28 0.008 <0.001

R, right; L, left.

Martinsen et al., 2018; Pensel et al., 2018; Wu et al., 2018) utilized
chronic exercise routines. Three neurocognitive tasks (including
flanker, stroop, and go/no-go tasks) were used to assess inhibitory
control in participants across the studies.

Quality Assessment
Table 2 shows the methodological quality of the studies using the
PEDro scale. The total scores range from 6 to 9 (M = 6.71).
Notably, none of the studies reported blinded data due to the
difficulties of using blinded subjects, therapists, and assessors in
an exercise intervention. The studies that failed to obtain points
in other criteria due to their study design include lack of eligibility
(n = 1), random allocation (n = 9), and concealed allocation
(n= 10).

Table 3 shows the fMRI quality assessment for all of
the studies from a set of guidelines for the standardized
reporting of fMRI studies. Other criteria were lacking
in at least one reporting guideline, particularly in the
scan rejection mentioned (n = 13), scan rejection
reason (n = 14), the method for motion correction (n
= 7), volume acquired per session (n = 14), and clear
descriptions of the first (n = 8) and second level contrasts
(n= 7).

The Overall Analysis of Activity Results
Among the 14 studies that assessed brain activation during
inhibitory control tasks after exercise, the exercise groups
(EGs) show increased brain activation compared to the
control groups (CGs) in six clusters: (1) superior temporal
gyrus (BA 22), (2) precuneus (BA 7 and BA 19), (3)
superior frontal gyrus (BA 10), and (4) cuneus (BA 19).
Five regions showed reduced brain activation: (1) caudate
gray matter, (2) posterior cingulate cortex (BA 31), (3)
middle temporal gyrus (BA 37), (4) parahippocampal gyrus,
and (5) precentral gyrus (BA 6), as shown in Table 4 and
Figure 2.

Coactivation Maps
Coactivation maps were plotted after the MACM analysis,
as shown the Table 5. To understand the correspondence
between the obtained coactivation maps and the brain functional
connectivity networks, we compared it with the cortical
parcellation atlas built by Yeo et al. (2011) on 1,000 healthy
young subjects. We found that multiple functional networks,
including the frontoparietal network, visual network, default
mode network, and attention network, overlap with brain regions
with ALE results, although this is a subjective judgment.

DISCUSSION

The primary aim of the ALE meta-analysis in this study is to
offer the first quantitative summary of the effect of exercise
on increased and decreased neural activity of different brain
areas during inhibitory control tasks. We identified five clusters
of increased neural activity [left superior temporal gyrus, right
precuneus (BA 7 and BA 19), right superior frontal gyrus, and
right cuneus] and five clusters of diminished neural activity
(left parahippocampal, right posterior cingulate, right middle
temporal and right precentral gyrus, and right caudate) following
exercise. MACM analysis suggested that inhibitory control
involved multiple functional networks. These findings may help
identify the underlying mechanisms of increased inhibitory
control that are exercise-induced.

Previous work found that the neurophysiological mechanism
that controls movement is located in the prefrontal cortex
(Niendam et al., 2012; Ardila et al., 2018). Our finding shows
that there are changes in brain activity in the superior frontal
and precentral gyrus of the frontal lobe. It should be noted that
both of these regions are responsible for motor control (Niendam
et al., 2012; Ardila et al., 2018).

The superior frontal gyrus is also part of the prefrontal cortex,
which is responsible for cognitive control functions. This is
closely connected with high-level cognitive functions such as
interference inhibition, conflict solving, and selective attention
(Cabeza and Nyberg, 2000; Baym et al., 2008). The precentral
gyrus is part of the supplementary motor area (SMA), which is
essential for cognitive control as found in previous studies of
concern, especially when motor movements need to be inhibited
(Nachev et al., 2008; Aron, 2010).

Our findings showed one change in brain activity in the
parietal lobe is the precuneus. The precuneus region is an
essential area for attention selection and response to conflict
(Indovina and Macaluso, 2004). Previous research found that
it plays a pivotal role in the prefrontal-parietal circuit when
performing inhibitory tasks (Garavan et al., 2002; Mehren et al.,
2019c). Thus, this study concludes that exercise is closely related
to connectivity in the frontoparietal network. However, more
studies are needed to verify this conclusion.

Besides, the finding showed that three regions’ activity
changed, including the superior temporal gyrus, middle temporal
gyrus, and caudate in the temporal lobe during inhibitory
control tasks. It is worthy to note that the superior temporal
sulcus typically provides the amygdala with visual information
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FIGURE 2 | Results of the ALE meta-analysis show increased and reduced activation for inhibitory control in the EGs compared with CGs. Uncorrected p < 0.001

and cluster size >100 mm3 (from A–D: activation is increased, and from E–J: activation is decreased).

that contributes to identifying the affective or motivational
significance of visually perceived objects (Arzimanoglou et al.,
2005). An aerobic intervention experiment by Hsu et al. (2018)
showed that aerobic intervention alters the activation of the
superior temporal gyrus in patients with cognitive impairment
and pointed out that there is an apparent correlation between
the activation of the superior temporal gyrus and the reaction
speed in the go/no-go task. Liu-Ambrose et al. found that after
52 elderly subjects received resistance training twice a week
for 12 months, the pathway extending from the left anterior
middle temporal gyrus and the left anterior insula to the lateral
orbitofrontal cortex was activated during the flanker task (Liu-
Ambrose et al., 2012).

It has been proven that the caudate is one of the

primary input nuclei receiving inputs from the prefrontal

cortex and transferring information to the basal ganglia

(Kunishio and Haber, 1994; Haber et al., 2000; Nakahara et al.,
2002). The dorsolateral prefrontal cortex-caudate circuit was
also shown to be involved in proactive inhibition via the
indirect pathway (Jahfari et al., 2011). We speculate that
exercise effectively activates these pathways in response to
inhibitory tasks. However, additional experiments are required
for verification.

Finally, we found posterior cingulate gyrus and

parahippocampal gyrus have activation changes, and these

two regions both belong to the limbic structures. The posterior

cingulate gyrus is close to the limbic system and belongs to the

cortical region functioning as a gateway between the limbic

system and the midbrain and diencephalon (Li et al., 2017).

Since the posterior cingulate gyrus and precuneus are identified

TABLE 5 | The results of co-activation maps.

Cluster x y z L R

L Superior temporal gyrus −56 −32 4

R Precuneus 32 −66 44

R Superior frontal gyrus 27 60 20

R Precuneus 32 −76 36

R Caudate 40 −40 4

R Posterior cingulate 16 −64 18

R Middle temporal gyrus 48 −60 −2

L Parahippocampal gyrus −10 −44 −2

R Precentral gyrus 60 6 28

R, right; L, left.

here, we hypothesize that exhibited hyper-connectivity (i.e.,
stronger positive connectivity) is shown in the default mode
network (DMN) regions during inhibitory control tasks which
is consistent with findings in previous studies (Yu et al., 2021).
Furthermore, the degree of coupling between the DMN and
the frontal-parietal network positively correlates with overall
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cognitive function. Therefore, the DMN, which is the main
component for the stop signal in inhibitory tasks is particularly
significant for the impact of physical exercise on inhibitory
control ability.

The parahippocampal gyrus is an active region in the limbic
system, and exercise intervention appears to strengthen their
neuronal excitability, increase the volume of white matter/gray
matter, and positively change the production of brain-derived
neural factors (Li et al., 2017; Loprinzi, 2017; Muller et al.,
2017; Ji et al., 2021). Previous research has validated the
effect of exercise on the plasticity of the parahippocampal
gyrus, which plays a crucial role in maintaining memory
function and aids in spatial information processing and object
recognition (Brown and Aggleton, 2001; Raslau et al., 2015).
We guess that the parahippocampal gyrus of spatial information
processing and object recognition functions are also likely
the underlying reason(s) that exercise improves cognitive
control function.

There are some limitations to this study. First, only 14 studies
are included, which is a smaller sample size. As a result, a
subgroup analysis of the exercise intensity and type of exercise
is challenging. Second, this study contains different inhibitory
control tasks; although the flanker, go-no-go, and stroop tasks
are all standard tasks for measuring inhibitory control, the
components are slightly different.

CONCLUSIONS

Neural mechanisms increase exercise-induced inhibitory control
by changing the activation of single and multiple brain regions.
We guess that critical areas mediate inhibitory control and are
associated with the frontoparietal, visual network, DMN, and
other pathways. However, due to the lenient threshold used in

the ALE analysis, further research with more rigorous methods is
required to link exercise to neuroplasticity changes with respect
to inhibitory control.
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