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Technologies like passive brain-computer interfaces (BCI) can enhance human-machine

interaction. Anyhow, there are still shortcomings in terms of easiness of use, reliability,

and generalizability that prevent passive-BCI from entering real-life situations. The current

work aimed to technologically and methodologically design a new gel-free passive-BCI

system for out-of-the-lab employment. The choice of the water-based electrodes and

the design of a new lightweight headset met the need for easy-to-wear, comfortable,

and highly acceptable technology. The proposed system showed high reliability in both

laboratory and realistic settings, performing not significantly different from the gold

standard based on gel electrodes. In both cases, the proposed system allowed effective

discrimination (AUC> 0.9) between low and high levels of workload, vigilance, and stress

even for high temporal resolution (<10 s). Finally, the generalizability of the proposed

system has been tested through a cross-task calibration. The system calibrated with the

data recorded during the laboratory tasks was able to discriminate the targeted human

factors during the realistic task reaching AUC values higher than 0.8 at 40 s of temporal

resolution in case of vigilance and workload, and 20 s of temporal resolution for the stress

monitoring. These results pave the way for ecologic use of the system, where calibration

data of the realistic task are difficult to obtain.

Keywords: passive-BCI, EEG, water-based electrodes, workload, vigilance, stress, human factors

INTRODUCTION

The human–machine interaction involves all the processes of interaction and communication
between a human user and a machine. It aims to make the human even more “understandable
to the machine” by systems that can detect and classify human feelings, emotions, and cognitive
states (Di Nardo et al., 2020). In recent times, more and more attention arose around the use
of brain signals to detect the human state, that is the passive brain-computer interfaces (BCI).
BCI was born for clinical needs and progressively moved from translating intentional (actions)
to unintentional (mental states) brain outputs, thus, from active to passive-BCI (Zander et al.,
2009). The passive-BCI does not aim to voluntarily control the external world but to allow
the surroundings to automatically adapt their behavior to the actual subject’s mental states
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(Zander and Kothe, 2011; Aricò et al., 2018). The impact of this
new aspect of the BCI is clear for safety-critical environments,
where the mental state of users is usually correlated to the
probability of making errors or, more generally, to human factors
(Aricò et al., 2017b; Zander et al., 2017). The monitoring of the
user-state is just one of the countless applications of passive-
BCI that have been resumed in 5 categories. The additions to
user-state monitoring are safety and security, training, education,
cognitive improvement, gaming, and entertainment (Erp et al.,
2012).

Despite the growing interest in passive-BCI applications, there
is still a gap between theory and practice. On the one hand, the
advantage of using a human-centered design is clear, since it
could facilitate the operator’s work and reduce safety risks (Ke
et al., 2021). On the other hand, ethical and technical limitations
prevent the growth of passive-BCI technology within operational
contexts: ease of use, reliability, and generalizability are the key
characteristics affecting the end-users perception and choice of a
passive-BCI system (Douibi et al., 2021).

Technical Limitations of Passive-BCI
Systems
In this context, electroencephalography (EEG) is the most used
method to measure the electrical activity of the brain. It is
usually preferred, thanks to its portability, non-invasiveness, and
high temporal resolution (Roman-Gonzalez, 2012). However,
a traditional passive-BCI setup requires the use of Ag/AgCl
electrodes that are in contact with the scalp through the
electrolytic gel. This strongly limits the ease of use (Webster,
2009). In fact, in place of excellent signal quality, these recording
systems required the scrubbing of the skin to lower the electrode
impedance before using electrolytic gel. This is a time-consuming
activity that takes 20min or more depending on the number of
electrodes used. Extra time is also needed because the subject
should wash the hair to remove gel residues. This approach
and gel-based electrodes are still considered the gold standard.
However, the gap between the new water and gel electrodes is
narrowing (Volosyak et al., 2010; Chi et al., 2012; Lopez-Gordo
et al., 2014; Di Flumeri et al., 2019a). Water-based electrodes
consisted of felt or similar tissue soaked in water or saline
solution to connect the electrode to the skin (Müller-Putz and
Wriessnegger, 2021). This makes both setup and clean-up faster
and easier, as well as more comfortable without affecting the
quality of the signal (Volosyak et al., 2010). In this regard,
different portable and gel-free EEG recording systems have been
employed in several studies: the tested electrodes were able to
guarantee the same quality levels as the gel electrodes, along with
significantly faster setup and higher comfort (Volosyak et al.,
2010; Amaral et al., 2017; Vourvopoulos et al., 2017; Di Flumeri
et al., 2019a).

Despite this, the wearable EEG devices available on the market
are a step behind other wearable devices. A recent analysis
of the current market found 28 companies developing wired
and wireless EEG equipment (Jamil et al., 2021). However, it
has not yet been possible to converge comfort with pleasant

appearance, effective recording, and adaptability to different
operating contexts.

Despite the wide range of recording systems, the time-to-
market estimate made 10 years ago for passive-BCI systems
has not yet been met (Erp et al., 2012). This is also because
the reliability of a passive-BCI system depends not only on
hardware but also on software aspects. On the one hand, the
recording technology should guarantee ease of use without
adversely affecting signal quality. On the other hand, the passive-
BCI system should be accurate and not bore the user with
frequent calibrations. This aspect depends on the suitability of
the algorithm implemented in the system. First, signal processing
techniques should be adapted for out-of-the-lab use. For
example, the low number of channels expected for wearable EEG
and the need for high reactivity disfavor the most widely used
signal correction methods, such as Independent Component
Analysis (Makeig et al., 1995). Furthermore, themore the number
of pre-processing steps, the higher the computational effort
required, resulting in larger computational modules and faster
battery consumption. In addition, for online use, all methods
that need to know the entire data (e.g., normalization methods)
cannot be used. Once clean EEG signals have been obtained,
further steps have to be performed to obtain features that
can identify the user’s mental state. Spectral features can be
efficiently calculated and can provide real-time feedback. Such
features are usually used to train machine learning or deep
learning algorithms (Aricò et al., 2016). These methods must
be reliable, but must not require frequent calibration, ideally
zeroing it out with an unsupervised approach (Schultze-Kraft
et al., 2016). Although unsupervised approaches may allow
greater generalizability of the system, supervised methods are
preferred as they allow significantly higher accuracies to be
achieved (Blankertz et al., 2016). Better generalization results can
be achieved using a cross-task approach. An open issue related to
the use of passive-BCI during a realistic task is the lack of specific
calibration tasks able to elicit a specificmental state in the subject.
Well-designed laboratory tasks can be effective for calibration use
in a cross-task approach.

To summarize, EEG technology and calibration of the passive-
BCI system remain the two main gaps for out-of-the-lab use.

Targeted Human Factors
Drivers, air traffic controllers, surgeons, athletes, and pilots
represent some of the users who could benefit most from the
use of passive-BCI systems during both training and operational
conditions (Aricò et al., 2017a; Zander et al., 2017; Alimardani
and Hiraki, 2020). In general, the common denominator of
these application areas is human performance: passive-BCI could
allow obtaining information on the user’s psychophysiological
state, in terms of different human factors, to develop solutions
for improving performance and safety. Building on this, three
human factors have been targeted in the current work: mental
workload, stress, and vigilance.

The mental workload has been chosen due to its relevant
role in safety-critical applications (Young et al., 2015). In
general, the mental workload quantifies the mental resources
used during a task and is correlated with the performance
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(Wickens, 2008). Extremely high (i.e., overload), while extremely
low (i.e., underload) workloads have been associated with poorer
performances. Therefore, a passive BCI system could intervene
to detect a fatal overload/underload condition. Assessment of
mental workload by EEG provides a reliable and objective
measure that can be used for this purpose in different laboratory
and realistic contexts (Zhou et al., 2021).

Stress is another relevant human factor in many operational
domains (Aricò et al., 2017b). One of the definitions of stress
is “a state that occurs when demand outstrips coping strategies”
(Hobfoll and Shirom, 1993). High task demand, frustration,
time pressure, uncontrollability, and negative judgment are
typical stressors that adversely affect performance by altering the
cognitive processes underlying decision-making, attention, and
memory (Skoluda et al., 2015). Stress assessment by EEG takes
advantage of the higher temporal resolution and the possibility
of direct access to the activity of the central nervous system,
measuring stress levels continuously and without interfering
with human activities (Borghini et al., 2020). Moreover, there
are several examples of real-time measures of stress based on
EEG signals using machine learning methods (Saeed et al., 2015;
Attallah, 2020; Halim and Rehan, 2020; Hekmatmanesh et al.,
2021; Katmah et al., 2021).

Finally, monitoring levels of vigilance has proven to be a
key aspect in several fundamental environments (Neigel et al.,
2020). The concept of vigilance belongs to the broader domain
of attention. A physiological decrease in vigilance over time
is associated with performance degradation, such as slower
reaction times and loss of situation awareness, whereas optimal
performance is ensured by an adequate level of activation
throughout the task (Parasuraman et al., 1998). EEG measures
have been used as features for machine learning models to
monitor vigilance levels in different contexts (Sebastiani et al.,
2020; Kamrud et al., 2021; Li and Chung, 2022).

In this framework, the present work aims to evaluate a new
lightweight EEG technology for translational use of passive-
BCI. In particular, the system based on water-based electrodes
was tested in terms of impedances, artifacts, usability, and
human factors assessment and was compared with a gel-based
equivalent that was used as a gold standard. To analyze the
reliability and generalizability of the proposed system, it has been
tested during two studies focusing on laboratory and realistic
settings, respectively.

MATERIALS AND METHODS

Experimental Participants
Twenty healthy subjects (29.3 ± 5.12 years old) took part in
the study: 8 women and 12 men were recruited voluntarily.
Informed consent was obtained from each subject and all the
data were pseudorandomized to prevent any association with the
subject’s identity. The experiments were conducted following the
principles outlined in the 1975 Declaration of Helsinki, as revised
in 2000. Experiments were approved by the Ethical Committee
of the Sapienza University of Rome. Due to the involvement in
a realistic driving experiment, a driver’s license and the ability

to drive a car with a manual transmission were required as
inclusion criteria.

Experimental Set-Up
Gel and water-based electrodes were used for this experiment
(Figure 1A). The gel-based electrodes were traditional Ag/AgCl
electrodes produced by EasyCap GmbH (Woerthsee-Etterschlag,
Germany). The water-based electrodes consisted of open-celled,
hydrophilic, and highly absorbent cylindrical sponges produced
by Brain Products GmbH (Gilching, Germany). It hardens when
dry and becomes soft and expandable when wet. The porous
material is intended to soak aqueous electrolyte solutions (1–
2% sodium chloride solutions are used as electrolytes). The
electrolyte solution is used to accomplish an easy electrically
conducting connection to the skin of the subject. While this
mechanism of aqueous electrolyte is similar to the one of gel
electrodes, the big advantage of aqueous electrolyte is that it does
not leave significant amounts of residuals in the hair; the water in
the electrolyte evaporates over time just leaving tiny amounts of
salt on the skin that is removed with the next hair wash. To slow
down the evaporation of water, a soft pedestal hermetically sealed
the chamber. The sponges are integrated into a holder that can
be easily connected to the electrode base using a bayonet twist
lock (i.e., sponge holder). When the sponge holder is screwed
into its counterpart on the electrode, the other end of the sponge
comes into contact with an electrode pellet. The electrode pellet
is made of a conductive plastic that is coated with a thin layer
of silver/silver chloride (Ag/AgCl), which is an electrically stable
and widely used electrode material.

Both gel-based and water-based electrodes have been
positioned at a 1.5 cm of distance between each other on
a standard EEG cap (Figure 1B). This has been done to
maximize the hypothesis to ideally record from the same point
and to guarantee a minimum distance to not generate short
circuits between near electrodes The investigated scalp positions
corresponded to AFz, AF3, AF4, AF7, AF8, Pz, P3, and P4 of the
10–10 International System. These specific channels have been
chosen for both theoretical and practical reasons. On the one
hand, these positions should guarantee the assessment of the
identified human factors covering the required brain areas as
known from previous evidence (please refer to “Targeted Human
Factors” in the Section Introduction). On the other hand, a low
number of electrodes is necessary to foster ease of use. It was also
inserted a gel-based “Control” electrode, at a 1.5 cm of distance to
the AFz position to quantify the possible difference between near
couples of electrodes because of the distance among them.

For each set of electrodes, we used a LiveAmp amplifier
(Brain Products GmbH, Gilching, Germany) (Figure 1A). Each
amplifier has been connected to a homemade recording software
developed in Python and based on Lab Streaming Layer (LSL)
communication protocol. This software was run on two tablets
with Microsoft Windows 10 operating system. The two tablets
were connected to the same intranet, by using a wired LAN
connection. Thanks to the LSL protocol and the LAN wired
connection, it was possible to guarantee a perfect synchronization
among all the connected devices, unless there is a lag of two times
the inverse of the sampling rate (i.e., 8 ms).
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FIGURE 1 | Scheme of the experimental set-up. (A) A scheme of the position of the electrodes and instrumental set-up. Water-based electrodes are shown in red,

gel-based electrodes in blue, and the control electrode in green. (B) The actual experimental set-up was used for the EEG sensors comparison. (C) Mindtooth Touch

EEG headset, designed for working with water-based electrodes (right), and modified version equipped with the LiveAmp amplifier (left).

In addition, the water-based electrodes have also been tested
when embedded in the Mindtooth Touch EEG headset (referred
to as “New Structure” in the Section Results) to maximize
the comfort for the user, sensor contact, and easiness to fit
(Figure 1C). In particular, the front part of the headset hosts
the five anterior-frontal EEG sensors and is designed to fit the
user’s forehead. To maximize comfort, it is elastic and made of a
combination of flexible materials. The front part has removable

padding made in polyurethane (PU) foam to further improve
comfort. The rear part hosts the ground and reference sensors,
the three parietal EEG sensors, and the EEG amplifier. Ground
and reference sensors are fitted to two separate “fingers” on
the mastoids. The “fingers” of the three parietal EEG sensors
are made as a separate part that is fitted and fixed to the rear
part of the headset. All the parietal EEG sensors’ holders have
been prolonged and fitted to a rotating end-piece “a fingertip”
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to make it easier to adapt to all head shapes, split the hair, and
touch the scalp. The hardware within the EEG amplifier has been
developed by Brain Products (GmbH, Gilching, Germany). For
the specific purposes of this experiment, the original amplifier of
the Mindtooth Touch headset has been replaced with a LiveAmp
amplifier, so as to not induce any bias due to different hardware.

EEG Acquisition and Preprocessing
Once arrived, each subject was asked to wear the EEG standard
cap with both the electrode types. Sponges of water-based
electrodes were first disinfected using a solution of water (70%)
and isopropanol (30%) and then partially soaked with 1% of NaCl
saline solution. The quantity of saline solution was limited to the
needed quantity to have a good signal quality, but not too much
to induce dripping, and so as to generate possible shortcuts with
near gel-based electrodes. At this point, the conductive gel was
applied to all the gel-based electrodes in a limited quantity, so as
to not generate any shortcuts between near electrodes. Reference
electrodes of both the systems were put on the earlobe, and the
ground on the left mastoid, by assuring even there a minimum
distance to not have any shortcuts. Before starting the recording,
the impedances have been brought below 40 kΩ (Ferree et al.,
2001) and 100 kΩ (Kappenman and Luck, 2010) threshold for
gel and water-based sensors, respectively.

The EEG signal was first band-pass filtered with a fifth-order
Butterworth filter in the interval 2–30Hz. The blink artifacts were
detected using the Reblinca method (Di Flumeri et al., 2016) and
were corrected by leveraging the ocular component estimated
through a multi-channel Wiener Filter (MWF) (Somers et al.,
2018). EEG signals were segmented into epochs of 1 s, and the
threshold criterion (±80 µV) was applied for artifact rejection
(Hubbard et al., 2019). This conservative value has been preferred
to 100µV, the default value suggested within the EEGlab toolbox,
because just one criterium has been adopted (Delorme and
Makeig, 2004).

Experimental Protocol
The experimental protocol consisted of a sequence of laboratory
(Study 1) and realistic (Study 2) tasks. They have been proceeded
by two rest conditions: the subjects were asked to stay 1min with
closed eyes and 1min with open eyes looking at a white cross on
a screen. The closed eyes condition has been used to compute
the individual alpha frequency (IAF) value (Klimesch, 1999).
Since the alpha peak is mainly prominent during rest conditions,
the subjects were asked to keep their eyes closed for a minute
before starting the experiment. Such a condition was then used
to estimate the IAF value specifically for each subject. The open
eyes condition has been used to compare the two systems in terms
of spectral features (Lopez-Gordo et al., 2014).

Therefore, the subjects were asked to familiarize themselves
with the tasks. During task familiarization, they wore the
Mindtooth Touch headset embedded with water-based
electrodes. In this time interval of about 40min, the impedances
have been evaluated and saved at the end of each sample task.
These values have been compared with the impedances of water-
based electrodes recorded while placed on the standard EEG cap
to compare the stability of the signals against the Mindtooth

Touch Headset. Moreover, at the end of each experimental
condition during both studies 1 and 2, impedance values of gel
and water-based sensors were evaluated and saved to compare
the stability of the impedance values between the two kinds
of sensors.

Study 1: Test Laboratory Tasks
The aim of Study 1 was to analyze the performance of the light
EEG system during standard controlled laboratory tasks like
Multitasking and psychomotor vigilance task (PVT) as well as
to provide the data for calibrating the passive-BCI system for a
cross-task application.

First, the subjects were asked to accomplish the multitasking.
The multitasking application comprises a set of four concurrent
cognitive tasks of varying difficulty presented via split-screen
(Figure 2A). The four chosen tasks are:

1. Mental arithmetic (left-up): The addition results must be
entered into the numeric keypad. As the difficulty increases,
the number of digits (from 1 to 3) and carryover digits (from
0 to 2) increases.

2. Auditory monitoring (right-up): A target tone must be
identified between two tones of different frequencies emitted
at regular intervals. As the difficulty increases, the target tone
and distractor tone increase in similarity.

3. Visual monitoring (left-down): A horizontal fill bar should be
reset as soon as it becomes full. As the difficulty increases, the
fill rate increases.

4. Phone number entry task (right-down): A number must be
entered on a keypad. As the difficulty increases, the number of
digits to be entered increases (from 4 to 10).

According to the literature, performing several concurrent tasks
compared to the single-task approach induces an increase in
mental workload (Comstock, 1992; Wetherell and Sidgreaves,
2005). In addition, increased difficulty induces a greater
perception of time pressure and frustration, resulting in increased
stress. Therefore, the subjects were asked to perform the
four tasks individually. In this case, a 30-s condition was
performed for the auditorymonitoring, visual monitoring, phone
number entry task, easy mental arithmetic task, and hard
mental arithmetic task. After that, subjects performed the four
concurrent tasks (multitasking phase) at the same time. In this
regard, 7 levels of 1min multitasking at increasing difficulty have
been performed. To confirm workload and stress manipulation,
performance measures have been recorded. We hypothesized
that the subject experienced the following: (i) low mental
workload during the single task execution; (ii) high mental
workload during the multitasking execution; and (iii) increasing
stress during the 7 levels of multitasking at increasing difficulty.

At the end of multitasking, the subjects were asked to perform
the PVT to elicit different levels of vigilance. The PVT is a
computerized version of the Wilkinson and Houghton task
(Wilkinson and Houghton, 1982) aiming to analyze the decrease
of vigilance in 10min (Figure 2B). During this task, subjects
are asked to press the space bar on the keyboard as quickly
as possible in response to a red circle appearing on the screen
for 1 s after a fixation cross. The inter-stimulus intervals range
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FIGURE 2 | Experimental settings. (A) Multitasking application screen. In clockwise order, they are the auditory monitoring, the phone number entry task, the visual

monitoring, and the mental arithmetic task. (B) Psychomotor vigilance task (PVT). During a 10-min stimulation, the subjects are required to press the space bar on the

keyboard only when the red circle appears. (C) Car simulator. Car Driving simulator where the experimental participant is sitting.

randomly from 2 to 5 s. According to the literature (Molina et al.,
2019), this monotonous task can induce a decrement of vigilance
in participants, therefore we hypothesized that the experimental
sample experienced: (i) a high level of vigilance during the first 2
mins (levels PVT1 and PVT2); (ii) low level of vigilance during
the last 2 mins (levels PVT9 and PVT10).

Study 2: Test Realistic Driving Task
The aim of Study 2 was to analyze the performance of
the light EEG system during realistic driving and to test
the passive-BCI system calibrated with data recorded
during the laboratory tasks. The car simulator is a typical
real car setup (seat and dashboard with the steering
wheel, gearshift, and all the common commands), while
the virtual environment is reproduced through three 27

′′

screens (Figure 2C). This configuration was enough to make
the driving environment immersive for the participants,
thanks to the high realism of the driving environment. The
implemented exercise allowed the elicitation of variations in
workload, stress, and vigilance. The task for the participants
was to follow the navigator instructions shown on the
central screen.

In particular, for the mental workload assessment, two
repetitions of easy and hard exercises have been generated. In
the first repetition, the exercise was set in a circuit, and in the
second repetition, it was set in an urban context with traffic. The
level of difficulty was changed by acting on the number of curves,

intersections, bottlenecks, pedestrians crossing the street, and the
number of cars. Easy and hard conditions have been randomized
among subjects.

For the stress scenarios, participants were instructed to
perform the same two-run repetitions just completed, but with
three more stressors:

1. Time pressure: Participants have a limited time to make
the same route. A chronometer was used to show the
remaining time.

2. White coat effect: An operator was just behind the driver,
taking notes of errors committed.

3. External noise: Heavy urban traffic noise has been presented
during the exercise.

Finally, the subjects were asked to complete the scenario used
to induce decrement in vigilance. It was a 10-mins drive on the
highway, without any traffic, in which the participant had to drive
all the time in first gear in complete silence (i.e., the sound of the
car has been muted).

The car simulator was able to generate a log file with all
the specific events that could happen within each scenario
execution. Among the possible available events, collisions of the
car with anything in the simulated world have been considered
performance indicators. In particular, the more the number of
collisions, the more difficult or stressful the specific level was.
We analyzed the number of collisions for the easy, hard, and
stressful conditions.
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Performed Analysis
Taking into account the spatial and temporal variability of
the EEG signal, standard procedures to compare two or more
recording systems make use of a comparison to a gold standard
(i.e., gel electrodes) through two possible approaches, either
simultaneously or serially (Ruffini et al., 2008). Most encountered
parameters for evaluating EEG signal quality are comparisons
of the power spectral densities, analysis of signal-to-noise ratio
(SNR), and test of electrodes during applications (Tǎutan et al.,
2014).

Signal Quality Analysis
In this work, the two systems were used for a simultaneous
recording of EEG signals from contiguous scalp positions. Since
our final aim is to use the proposed system for passive-BCI
applications, for which spectral features will be used, the two
systems have been compared in terms of variation of the
impedance values over time and power spectra correlation.

Gel and water-based electrode impedance were considered
good enough, for values respectively below 40 kΩ (Ferree
et al., 2001) and 100 k� (Kappenman and Luck, 2010). Since
the acceptability thresholds for the starting impedance values
were set at two different values according to the literature, the
impedances were not compared between the two systems for
the same time point. However, to analyze the stability of each
system during the recording, the impedances of the analyzed
systems were evaluated at the beginning and the end of each
experimental condition, and then, were linearly interpolated
to have an impedance value every 10-min during a 40-min
interval. Similarly, the effects related to the use of an unoptimized
structure as sensor holders have been analyzed. Leveraging the
time spent by the subject for task familiarization, they were asked
to wear the Mindtooth Touch headset and, also in this case,
the impedances were evaluated at the beginning and the end
of each sample condition, and then, were linearly interpolated
to have an impedance value every 10min during a 40-min
interval. It is noteworthy to highlight that in this case there is a
temporal delay in impedance assessment because they have been
measured in two different moments. The Wilcoxon signed-rank
test (Bonferroni corrected) was performed to test the difference
of each electrode concerning the starting point.

As impedance values affect SNR, we compared the number
and the distribution of artifacts of the two systems. TheWilcoxon
signed-rank test was performed to test the difference between the
two systems in terms of the number of artifacts.

Finally, the power spectral densities (PSD) obtained through
the two systems during open eyes conditions for each channel
have been compared in terms of correlation. The higher the
correlations between the frequency spectra of the gel and water
electrode, the higher the possibility that both systems are equally
capable of measuring spontaneous EEG (Zander et al., 2011). The
open-eyes condition has been chosen because the EEG signal can
be considered stationary during this condition. For each subject,
Pearson’s correlation has been computed between each couple
of contiguous channels (e.g., AF3-water and AF3-gel) and for
each band, that are Theta (3÷7Hz), Alpha (7÷13), Beta (13÷26),
and High Beta (21÷26). Each correlation value was Bonferroni

corrected for multiple comparisons, therefore the threshold for
significance has been set to α = 0.0025 (corresponding to a
correlation value of R = 0.423). The obtained values have been
statistically compared with the values of correlation obtained
correlating the “Control” electrode and the AFz-gel electrode
through a Wilcoxon signed-rank test (Bonferroni corrected). As
they are both gel electrodes 1.5 cm apart, the obtained correlation
can be considered the maximum achievable and the difference in
correlation was only due to the distance between them.

Usability
To evaluate the usability and the comfort of the new system,
participants were asked to answer specific questions regarding
these aspects. In particular, the usability questions investigated
the easiness of putting on and taking off the Mindtooth
Touch headset. Participants could choose among four answers:
Easy, Acceptable, Hard, Impossible. To assess the comfort,
the participant had to choose among four possible answers:
Comfortable, Acceptable, Tolerable, and Uncomfortable.

Neurometrics
For each human factor (workload, stress, and vigilance) a subset
of channels and bands of interest have been chosen according
to the literature and previous results (see Section Introduction
for details). We defined “Neurometric” as the measure of each
Human Factor, by using a specific combination of Global Field
Power values (Di Flumeri et al., 2018). The Global Field Power
(GFP) was calculated using the clean EEG for each frequency
band of interest. The bands were defined accordingly with IAF
values. Consequently, the following EEG bands were defined
(Klimesch, 1999):

• Theta= (IAF – 6): (IAF – 2) Hz
• Alpha= (IAF – 2): (IAF+ 2) Hz
• Beta= (IAF+ 2): (IAF+ 16) Hz
• Beta High= (IAF+ 11): (IAF+ 16) Hz

The workload neurometric is defined as the ratio between frontal
activity in theta and parietal activity in the alpha band (Borghini
et al., 2013). The theta rhythm increases, especially over the pre-
frontal cortex, when the mental workload increases, while the
alpha rhythm presents an inverse correlation with the mental
workload, especially over the parietal cortex (Gevins et al., 1997).
Therefore, the workload neurometric in this work was defined
according to the literature as:

Workload =
Theta(AF8,AF7,AFz,AF3,AF4)

Alpha(P3,P4,Pz)

Regarding stress measurement, the literature proved that there is
a correlation between cortisol and brain activity in beta (Seo and
Lee, 2010). A stress neurometric based on parietal brain activity
in the high beta band was effectively tested during laboratory
multitasking and was validated during realistic driving, proving
that it is possible to have reliable stress measurements using the
following (Sciaraffa et al., 2022):

Stress = BetaHigh (P3,P4)
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From the neurophysiological point of view, vigilance-related
processes involve mainly the right inferior frontal brain regions
(Di Flumeri et al., 2019b; Sebastiani et al., 2020; Sciaraffa
et al., 2021). Increased frontal activity in the beta band,
more in right than in the left hemisphere, is correlated with
vigilance decrement (Molina et al., 2013). Therefore, the vigilance
neurometric was defined as:

Vigilance = −Beta (AF4,AF8)

The effectiveness of each neurometric (obtained by means of
the water-based and the gel-based electrodes) was tested by
statistically comparing through the Wilcoxon signed-rank test,
their efficiency in discriminating experimental conditions. In
particular, the following are compared for both laboratory and
realistic tasks:

• workload neurometric was compared between easy and
hard conditions;

• stress neurometric was compared between low and high-
stress conditions;

• vigilance neurometric was compared between high and low
vigilance conditions.

Machine Learning Model Calibration
Once obtained the neurophysiological information
characterizing each mental state of interest, a machine learning-
based approach has been employed to classify the two levels
of each mental state (easy vs. hard for workload, and low vs.
high for stress and vigilance, respectively) even at different time
resolutions. The GFP values were used in this case as features:

• workload: AF7, AF8, AF3, AF4, and AFz in the Theta band and
P3, P4, and Pz in the Alpha band (8 Features);

• stress: P3 and P4 in Beta High band (2 Features);
• vigilance: AF4 and AF8 computed in the Beta

band (2 Features).

Each observation belonging to a specific run was labeled
according to the level of mental state expected for that run.
In the case where the classes (e.g., easy and hard) were too
unbalanced because of the number of rejected artifacts, the
Adaptive Synthetic (ADASYN) method was used to provide
synthetic resampling (He et al., 2008). Once the observations for
each class were balanced, and intra-subject approach was used to
train the machine learning model (i.e., both training and testing
were performed using the observations coming from the same
subject). At this point two different procedures were performed,
depending on the number of repetitions available for each task:

1. For each task having two repetitions per condition (i.e., the
workload in a realistic setting, vigilance, and stress in both
laboratory and realistic setting) one repetition has been used
to train the algorithm and optimize the parameters, and one to
test the algorithm.

2. For each task that does not have two repetitions per condition
(i.e. workload in a laboratory setting), the k-fold cross
validation has been performed (Schaffer, 1993). This allows to
divide the dataset in k (k = 3) fold and to use two of them as

a training dataset and one as a test dataset. Even in this case,
all the possible combinations of training and testing sets have
been analyzed.

Following preliminary analysis, the Random Forest was chosen
as the model and the number of estimators and the max depth
have been optimized in the range from 50 to 500, and from 1 to
50, respectively (Breiman, 2001).

The effectiveness of each model was assessed by computing
the area under curve (AUC) (Bamber, 1975) between 0 and
1 at different temporal resolutions from 1 to 60 s. The whole
described classification procedure has been repeated for water-
based and gel-based systems and the two AUC curves obtained
at different time resolutions have been statistically compared
through Wilcoxon signed-rank test.

To test the generalizability of the proposed water-based
passive BCI system, the same Random Forest model has been
calibrated through a cross-task approach. For each human factor,
the data recorded during the laboratory tasks (Study 1) has been
used to calibrate the model. It has been then tested on the data
recorded during the realistic driving (Study 2), and the AUC has
been reported for time resolution from 1 to 60 s. This approach
has been statistically compared with the intra-subject approach
already described through Wilcoxon signed-rank test. Finally,
each identified model was used to predict the probability of a
specific observation belonging to a realistic session to have a
high value of mental state (i.e., to belong to the high class).
These curves were compared in terms of Pearson’s correlation
and distances between the curves using the root mean squared
error (RMSE).

RESULTS

Usability
For the usability assessment, the first aspect considered was
referred to the easiness to wear the Mindtooth Touch headset.
Putting on the headset was “Easy” for the 85% and “Acceptable”
for the 15%. Moreover, we found that the time needed to
put on the headset was 10 s on average (Figure 3). Therefore,
participants were asked to take off the headset, and rate how
it was. Eighty-five percent replied that it was “Easy,” 10%
“Acceptable,” and 1 participant “Hard.” Regarding comfort, after
10min of subjects’ wearing the headset, 70% of them felt it was
“Comfortable” and 30% felt it was “Acceptable”.

Signal Quality
Figure 4A shows that the water electrodes exhibited significant
higher impedance values compared to starting point depending
on the position and the duration of the recording. In particular,
AF7 (Z= 26, p= 0.041), AF8 (Z= 26, p= 0.008), and Pz (Z= 18,
p = 0.002) showed significantly higher impedances after 10min
of recording; AF4 (Z = 32, p= 0.019) and P4 (Z = 37, p= 0.038)
after 30min. The same electrodes embedded on the Mindtooth
Touch Headset exhibited lower impedances even if all the frontal
electrodes significantly increase over time starting from 30 min:
AFz (Z= 30, p= 0.015), AF3 (Z= 34, p= 0.026), AF4 (Z= 17, p
= 0.002), AF7 (Z = 19, p= 0.01), and AF8 (Z = 13, p= 0.0006).
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FIGURE 3 | System usability. Easiness perception of headset put-on and take-off. The pie chart shows the percentage distribution of the perceived difficulty rated on

the scale Easy, Acceptable, Hard, and Impossible.

The gel electrodes did not show significant differences apart from
the electrode AF7 after 40min (Z = 142, p= 0.008).

The following analysis shows the number of artifacts for
each recording technology (Figure 4B). The analysis shows a
significantly higher number of artifacts by using the water
compared to the gel sensors for frontal sites (Z = 198, p =

0.0001). Moreover, both the systems exhibited a higher number
of artifacts on frontal sites compared to parietal sites (Water: Z =

210, p < 10−5; Gel: Z = 207, p < 10−5). Anyhow, the number of
artifacts with water-based technology was about 5% on average.

At this point, we investigated if the higher impedance values
of the water technology negatively affect the spectral features
used to compute EEG neurometrics related to the selected human
factors. Figure 5A shows the averaged spectra obtained with
both sensors after the artifacts’ rejection. These spectra were
analyzed in terms of Pearson’s correlation (R). Figure 5B shows
the distributions of the R values for each frequency band. Nine of
the 720 obtained R values were lower than 0.423, therefore, not
significant according to Bonferroni correction. The correlation
is on average higher than 0.95 for each channel and band.
These distributions were statistically compared with the R values
obtained correlating the spectra of AFz-gel and control electrode.
TheWilcoxon signed-rank test (Bonferroni corrected) shows that
the correlation between gel and water spectra is significantly
lower compared to the Control-AFz spectra especially for alpha
and beta bands, whereas this is less evident in the theta band.

Study 1: Test on Laboratory Tasks
During multitasking tasks, single and multitasking levels were
considered as low and high workload conditions, respectively.
Figure 6A shows that the Neurometrics of workload computed
by using both the technologies showed a significant difference
between the easy and the hard condition (Gel: F= 19, p= 0.0006;
Water: F = 14, p= 0.0002). The machine learning-based analysis

(Figure 6B) did not highlight any difference between the AUC
values of the two systems, at any time resolution, showing for
both the technologies AUC on average higher than 0.8.

Neurometrics of stress computed by using both technologies
showed a significant difference between the low stress and the
high-stress conditions (Gel: Z = 45, p = 0.024; Water: Z =

3, p < 10−5) (Figure 7A). The machine learning-based analysis
(Figure 7B) highlighted a statistically significant difference
between the AUC values of the two systems, starting from
4 s resolution. In particular, the water-based system provided
significantly higher AUC than gel-based ones.

Neurometrics of vigilance (Figure 8A) computed by using
both the two technologies showed a significant difference
between the High vigilance and the Low vigilance conditions
(Gel: Z = 179, p = 0.0042; Water: Z = 183, p = 0.0023). The
machine learning-based analysis (Figure 8B) did not highlight
any difference between the AUC values of the two systems,
at any time resolution. The AUC overcame 0.8 at 10 s of
temporal resolution.

Study 2: Test on Realistic Driving
Neurometrics of workload computed by using both the two
technologies showed a significant difference between the easy
and the hard condition (Gel: Z = 34, p = 0.0064; Water: Z
= 35, p = 0.0073) (Figure 9A). The machine learning-based
analysis (Figure 9B) did not highlight any difference between the
AUC values of the two systems, at any time resolution. For both
systems, the AUC overcomes 0.8 at 30 s of temporal resolution.

To investigate the ability to generalize the proposed water-
based passive-BCI system, the data recorded during the
laboratory tasks have been used to calibrate the system.
Therefore, it has been tested on simulated driving. Results in
Figure 10A showed that the system reached an AUC value
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FIGURE 4 | Analysis of impedances and percentage of artifacts. (A) Analysis of the stability of impedances over time for water-based (in red), gel (in blue), and water

electrodes embedded on Mindtooth Touch headset. The asterisks show the results of the Wilcoxon signed-rank (Bonferroni corrected) test of the impedances of

water and gel electrodes compared with the start point (*p < 0.05, **p < 0.01). (B) Percentage of artifacts in EEG signals. The boxplots show the distributions of the

artifacts that occurred through the gel (blue) and water (red) acquisition system. Results have been obtained by averaging the electrodes in two groups: Frontal (AFz,

AF3, AF4, AF7, and AF8) and Parietal (P3, P4, and Pz) channels. The asterisks show the results of the Wilcoxon signed-rank test (***p < 0.001, ****p < 0.0001).

higher than 0.8 with 40 s of temporal resolution. The cross-
task approach did not perform significantly differently compared
to the intra-subject approach. In Figure 10B the related scores
obtained at 40 s of temporal resolution indicate that there is a
medium correlation between the outputs of the two models. The
median over the population of the correlation between the scores
obtained is R = 0.60 (IQR = 0.54, all p < 10−5), and the RMSE
= 0.16 (IQR= 0.05).

Neurometrics of stress (Figure 11A) computed by using both
the two technologies showed a significant difference between the
low stress and the high-stress conditions (Gel: Z = 0, p < 10−5;
Water: Z = 0, p < 10−5). The machine learning-based analysis
(Figure 11B) did not highlight any difference between the AUC

values of the two systems, at any time resolution, showing for
both the technologies AUC higher than 0.8 on average.

Even for the stress, it has been investigated the ability to
generalize of the proposed water-based passive-BCI system. First,
the data recorded during the laboratory multitasking have been
used to calibrate the system. Then, the calibrated system has been
tested on the simulated driving. Results in Figure 12A showed
that the system reached AUC values higher than 0.8 almost in real
time. The intra-subject calibration performed significantly better
than the cross-task approach until a temporal resolution of 45 s.
The related scores shown in Figure 12B indicated that there is
a high correlation between the outputs of the two models. The
median (IQR) over the population of the correlation between the
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FIGURE 5 | Spectral analysis. (A) EEG spectra for each channel in the interval 2–30Hz. Spectra obtained with water electrodes are shown in red, and spectra

obtained with gel electrodes are shown in blue. The last subplot shows the AFz-gel and control electrode. The solid lines represent the average of the spectra over the

population, and the shadowed areas represent the standard deviation. (B) Boxplots of Pearson’s correlation values computed between water and gel electrodes for

each channel and band. Each distribution has been compared with the values obtained from AFz-control correlation. The asterisks show the results of the Wilcoxon

signed-rank test (Bonferroni corrected, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

FIGURE 6 | Workload discrimination between easy and hard conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (***p < 0.001). (B) AUC values obtained by water (red) and gel (blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.
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FIGURE 7 | Stress discrimination between low and high conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (*p < 0.05, ****p < 0.0001). (B) AUC values obtained by water (in red) and

gel (in blue) electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the

mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The

threshold of significance (p = 0.05) has been highlighted in the same color.

FIGURE 8 | Vigilance discrimination between low and high conditions in laboratory settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.
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FIGURE 9 | Workload discrimination between easy and hard conditions in a realistic setting. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

scores obtained is R = 0.89 (IQR = 0.28, all p<10−3), and the
RMSE= 0.27 (0.16).

Neurometrics of vigilance (Figure 13A) computed by using
the two technologies showed a significant difference between
the High vigilance and the Low vigilance conditions (Gel: Z
= 198, p = 0.00013; Water: Z = 177, p = 0.0056). The
machine learning-based analysis (Figure 13B) did not highlight
any difference between the AUC values of the two systems, at any
time resolution. AUC values higher than 0.8 were reached at 30 s
of temporal resolution.

The data recorded during the PVT has been used to calibrate
the water-based passive-BCI system. Then, the calibrated system
has been tested on the simulated driving. Results in Figure 14A

showed that the cross-task and the intra-subject calibration did
not provide significantly different performances, even if the intra-
subject approach provided the highest values of AUC overcoming
0.9. The scores shown in Figure 14B have been analyzed in terms
of correlation and distances between the curves. Themedian over
the population of the correlation between the scores obtained is
R= 0.48 (IQR= 0.36, all p < 0.01), and the RMSE= 0.19 (0.12).

DISCUSSION

Passive-BCI systems are an effective tool for strengthening
human-machine interaction. The use of such technologies
has been proved to be particularly useful in those human-
centered areas where safety and adaptive training are relevant
concerns. However, their employment away from laboratories
or research activities has not yet taken place. The reason for
this lies in shortcomings in three fundamental aspects: reliability,
generalizability, and ease of use. In this context, this work aimed

to evaluate a new water-based passive-BCI system covering (i)
each of the aforementioned features; (ii) laboratory and realistic
settings; and (iii) three different human factors.

Water-Based vs. Gel-Based System:
Impact on the Ease of Use and Reliability
The results obtained showed that the use of the new water-based
system represents a decisive improvement in terms of usability
and that the signal quality guarantees result comparable to those
obtained with the gel system.

The usability test of the Mindtooth Touch headset embedded
with water-based electrodes showed that it allows a quick
and easy application, 10 s on average, avoiding every kind of
damaging skin preparation. However, one of the participants
found it “Hard” to take off the headset (Figure 3). This issue was
mainly due to the imperfections at the corners of the electrode
holders, which could get stuck in the hair. This possible issue will
be mitigated by smoothing and rounding edges. No participants
found it uncomfortable to wear the headset. After 10min, 30%
considered wearing the headset acceptable. By interviewing the
participants, we understood that the comfort issue was mainly
due to the pressure induced by the frontal holders. One solution
implemented to mitigate this issue was to place a soft foam pad
attached with Velcro to the front to evenly distribute pressure
over the front head and improve overall comfort. In general,
due to the ease of use and comfort, the system proved to be
ready for recording EEG out of the lab, and its use will be
validated in real settings like pilots and driver training and during
working activities.

To analyze the stability of each system during the recording,
the impedances of the analyzed systems were evaluated at the
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FIGURE 10 | Comparison between intra-subject and cross-task calibration for workload discrimination in a realistic setting. (A) AUC values obtained by water

electrodes through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC

among the participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of

p-values of the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The workload index obtained from each

of the two models at 40 s of temporal resolution. The line represents the average over the population, the shadow represents the standard deviation.

beginning and the end of each experimental condition. The
results demonstrated that the impedances of gel electrodes did
not significantly vary over time, except for AF7 showed a

significant reduction compared to the start of the experiment
(Figure 4A). This is because the impedances of gel electrodes are
usually subjected to a natural adaptation before the gel gets dry
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FIGURE 11 | Stress discrimination between low and high conditions in a realistic setting. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (****p < 10−5). (B) AUC values obtained by water (in red) and gel (in blue)

electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean absolute

deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

(Toyama et al., 2012). The impedances of water electrodes are on
average lower than 100 kΩ . Unlike the parietal electrodes, the
frontal electrodes showed a significant increment of impedances
in the 40-minute window that has been analyzed. This indicates
that the electrodes on the forehead were subjected to a faster
drying than the parietal, whereas the presence of hair can
prevent this from happening. However, these differences did
not depend only on the electrochemical characteristics of the
electrodes, but also on the mechanical fixation. Analyzing the
same water electrodes placed on the specially designed structure,
the impedances decreased to 50 kΩ , even if they showed the
same increase on the frontal sites over time. As seen so far,
the Mindtooth Touch structure in purpose has been specifically
designed to facilitate the use of water electrodes while promoting
comfort, time spent fitting the headset, and ease of use. However,
as the recording advances, and the saline solution evaporates,
impedances increase over time and this can negatively affect
the data quality of long recordings (Noreika et al., 2020). For
long recording (more than 30min) the saline solution could be
reapplied using a pipette and without removing the headset.

Higher impedances characterizing the water-based system
could impact on signal to noise ratio (SNR) of EEG signals
because of the common-mode rejection and cephalic skin
potentials. Common mode rejection refers to the ability of a
recording system to reject noise that is in common with the
recording sensors and reference electrodes. As the electrode
impedance increases, the common-mode rejection of the
system decreases, and the SNR of the recording decreases as
well. To deal with the problem of decreased common-mode
rejection with high electrode impedances, amplifiers with a

higher input impedance have been used. In this regard, the
used LiveAmp amplifier has a very high input impedance
(i.e., 200 MΩ), so this first problem could be automatically
solved. Electrode impedances that are too high may lead
to a second problem that cannot be solved using changes
to the amplifier’s input impedance, namely, an increase in
skin potential artifacts. Skin potentials arise because of the
standing electrical potential that is normally present between
the inside and the outside of the skin (Edelberg, 1972). Current
literature demonstrated that high impedance values (i.e., 200
kΩ) could increase noise and induce changes in a frequency
lower than 5Hz since skin potentials induce slow voltage
variations (Ferree et al., 2001; Kappenman and Luck, 2010). In
this regard, both systems showed a higher number of artifacts
on frontal electrodes compared to parietal ones (Figure 4B).
Frontal electrodes seem more sensitive to unrelated electrical
signals originating from non-brain physiological activities in
particular muscular and ocular activities, reflecting a non-
homogenous distribution of artifacts over the scalp (Abdi-
Sargezeh et al., 2021). Even if both systems showed a
percentage of artifacts on average that is lower than 5% of
the total amount of data recorded, the frontal water electrodes
recorded a significantly higher number of artifacts compared
to gel ones. In contrast, the number of artifacts on parietal
sites is not different between the two systems. The higher
number of artifacts on frontal sites could be due to the
mechanical fixation of the used EEG cap that disadvantaged
the water electrodes. As demonstrated, water sensors placed on
the Mindtooth Touch structure guarantee better contact and
lower impedances.
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FIGURE 12 | Comparison between intra-subject and cross-task calibration for stress discrimination in a realistic setting. (A) AUC values obtained by water electrodes

through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the

participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of

the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The stress index obtained from each of the two

models at 20 s of temporal resolution. The line represents the average over the population, and the shadow represents the standard deviation.

From the spectral perspective, we investigated if the higher
impedance values of the water-based technology compared to
the gel-based technology would negatively affect the spectral

features used to compute EEG neurometrics. Visual inspection
of the spectra obtained through water and gel electrodes showed
that the shape is very similar (Figure 5A). The most evident
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FIGURE 13 | Vigilance discrimination between low and high conditions in realistic settings. (A) Statistical comparison has been performed for water-based and

gel-based Neurometrics. The asterisks show the results of the Wilcoxon signed-rank test (**p < 0.01, ***p < 0.001). (B) AUC values obtained by water (in red) and gel

(in blue) electrodes for different time resolutions (1–60 s). The solid lines represent the median of the AUC among the participants. The shadows represent the mean

absolute deviation of the AUC across participants. The dashed green line represents the results in terms of p-values of the Wilcoxon signed-rank test. The threshold of

significance (p = 0.05) has been highlighted in the same color.

difference is that water electrodes showed higher values in the
theta band, while gel showed higher values in the alpha band.
The correlation analysis of specific EEG features (e.g., theta,
alpha, beta, and high beta bands) during open eyes conditions
suggested that the correlation between gel and water features
is high (R > 0.95). Comparing the distribution of R values
with that obtained from correlating the AFz-gel electrode with
the Control electrode (correlation between two gel electrodes
was used as a benchmark, therefore eventually differences in
correlation depend on the distances between the two electrodes),
we found that even if the correlation between gel and water
spectral features is high, it is significantly lower compared to the
control-AFz spectra especially for alpha and beta bands, whereas
this is less evident in the theta band. These differences found
between the different bands are coherent with similar spectral
comparisons performed between a gel-based and water-based
system (Topor et al., 2021). The authors found that the water-
based system behaves significantly different from the gel-based in
the detection of high-beta desynchronization, that the theta band
was the less consistent between the two systems, and that there
was a frontal shift of maximal power in theta and alpha bands. A
slow drift noise has been hypothesized to be the cause of this. This
correlation analysis has been performed on a highly controlled
condition (i.e., open eyes), however, the degree of freedom during
the analyzed paradigms could impact the spectral correlation
depending on the type of electrode (Tautan et al., 2014). The
possible loss of quality of EEG signal recorded from water-based
electrodes could not impact neurometrics assessment when the
experimental task is very controlled (i.e., the participant does
not move too much, simple tasks, low number of expected
artifacts), but it could affect the computation in real settings (i.e.,

higher number of expected artifacts, movement of the head, and
real tasks). For this reason, the employment of the proposed
water-based passive BCI has been tested in both laboratory and
realistic settings.

Study 1: Human Factors Discrimination During

Laboratory Tasks
The aim of Study 1 is to test the proposed system during
controlled laboratory tasks and to use these data to calibrate the
passive-BCI system based on a machine learning model. Before
going on to test a system during a realistic application, the step
to a more controlled application is a must in the case of passive-
BCI. One of the reasons is that the targeted human factors are not
independent variables. For example, stress is affected by workload
level, conversely, the effort involved in coping with stress actually
adds to the task demands (Stanton and Young, 2000); a variation
in workload is associated with a variation in fatigue (Roy et al.,
2016), and so on. Thanks to controlled tasks performed in the
laboratory it is more likely to induce a variation of a single
human factor per time compared to realistic contexts. Therefore,
two standard tasks have been used to elicit workload, stress, and
vigilance variations.

Multitasking has been chosen as a laboratory task to induce
workload and stress modulation. This task is similar to the
simultaneous capacity (SIMKAP) task usually used to elicit
workload variation and whose effectiveness in eliciting stress
variation has been already proved (Wetherell and Sidgreaves,
2005; Lim et al., 2018). Multitasking has been preferred
to operate-orientated task paradigms like the multi-attribute
task battery (MATB) because it consists of common tasks
like entry numbers, mathematical additions, bar filling, and
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FIGURE 14 | Comparison between intra-subject and cross-task calibration for vigilance discrimination in a realistic setting. (A) AUC values obtained by water

electrodes through intra-subject (red) and cross-subject (green) calibration for different time resolutions (1–60 s). The solid lines represent the median of the AUC

among the participants. The shadows represent the mean absolute deviation of the AUC across participants. The dashed green line represents the results in terms of

p-values of the Wilcoxon signed-rank test. The threshold of significance (p = 0.05) has been highlighted in the same color. (B) The vigilance index obtained from each

of the two models at 40 s of temporal resolution. The line represents the average over the population, the shadow represents the standard deviation.

auditory test, and the time of familiarization is shorter than
those required for the MATB (Comstock, 1992). Compared
to multitasking, the MATB was born in the context of

aviation research and usually requires 1 week of training
to avoid any learning bias. As the employed task should
be used to calibrate a cross-task system to be used in a
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realistic environment, it is necessary that the training is fast
and straightforward.

The results obtained on multitasking showed that the
neurometrics obtained with both gel and water electrodes were
able to significantly discriminate the high level of the workload
from the low. This confirms previous research, where a measure
of workload based on frontal activity in the theta band and
parietal activity in the alpha band has been consolidated and
applied in different contexts (Borghini et al., 2014). The same
neurophysiological information used as features to calibrate a
machine learning model based on a random forest showed AUC
values higher than 0.8 for high temporal resolution, and values
of almost 1 for resolution lower than 30 s in the laboratory
setting. There is not a statistically significant difference between
the performance obtained with the two systems. On a similar
multitasking dataset, 69.2% of accuracy has been reached through
a support vector machine (Lim et al., 2018) and 82.57% accuracy
using the LSTMmodel (Chakladar et al., 2020).

Analogously, the neurometrics obtained with gel and water
electrodes were both able to significantly discriminate between
high and low stress during the multitasking levels. Moreover, the
discrimination of stress levels during the laboratory task through
the machine learning-based approach showed significantly
different performances between the water and the gel systems.
In particular, the AUC values obtained with the water-based
system are significantly higher than those obtained with the
gel ones by about 10%. The proposed passive BCI system
employed to discriminate between two levels of stress showed
higher performance compared with the gold standard during the
laboratory experiment.We could hypothesize that this increment
could be associated with spectral differences discovered during
spectral analysis. Comparing these outcomes with the literature,
Attallah (2020) reached an accuracy of 99.26% for discriminating
between two levels of stress with a KNNmodel.

Finally, both systems provided neurometrics that can
significantly discriminate the high level of vigilance from the low
during the PVT. The discrimination of the two levels of vigilance
during the PVT, through the machine learning-based approach
provided AUC values higher than 0.7 on average for high
temporal resolution, and values higher than 0.95 for resolution
lower than 30 s in the laboratory setting. There is not a statistically
significant difference between the performance obtained with
the two systems. Therefore, the proposed passive BCI system
employed to discriminate between two levels of vigilance did not
behave differently from the gold standard. The results obtained
are in line with the literature: using an SVMmodel,Mehreen et al.
(2019) obtained 76% of accuracy, while Wei et al. (2018) reached
0.85 of AUC using a non-hair bearing EEG. In Choi et al. (2019),
the PVT task has been used to effectively train a system to detect
instantaneous drowsiness with EEG. Using an extreme gradient
boosting as a machine learning classifier, the authors tested both
a wired/wet EEG and a wireless/dry EEG verifying that the latter
reached 0.81 of AUC, 7 % less than the standard system.

In conclusion, analyzing the results of Study 1 the proposed
system did not behave differently from the gel-based system
when neurometrics are used to discriminate between human
factors levels. Moreover, water-based electrodes overcame the

traditional ones for the discrimination of the two levels of stress
and did not behave significantly differently in case of vigilance or
workload discrimination.

Study 2: Human Factors Discrimination During

Realistic Driving
The neurometrics obtained with both gel and water electrodes
were able to significantly discriminate the high level of the
workload from the low during realistic driving. Analogously, the
workload during the driving task has been discriminated with
AUC around 0.6 for high resolution (i.e., 1 s) and the threshold
of 0.8 was surpassed only after 30 s of time resolution. Also, in
this case, there was no significant difference between the two
systems. Therefore, the proposed passive BCI system employed
to discriminate between two levels of workload showed higher
performance in laboratory settings compared to the realistic
ones for the same time resolution. However, it did not behave
differently from the gold standard. Comparing the obtained
results with the literature, 72% accuracy has been obtained
through a support vector machine and a driving simulator
(Hernández et al., 2018). The author (Fan et al., 2015) obtained
an accuracy of 81.46% using a KNN and a driving system in
virtual reality.

The neurometrics obtained with gel and water electrodes were
both able to significantly discriminate between high and low
stress in realistic settings. Moreover, there is not a statistically
significant difference between the performance obtained with
the two machine -learning based systems during the realistic
driving. Both systems showed an AUC higher than 0.9 for
a temporal resolution that is lower than 4 s. Therefore, the
proposed passive BCI system employed to discriminate between
two levels of stress, showed higher performance compared
with the gold standard during the laboratory experiment,
while they behave similarly during realistic tasks. We could
hypothesize that this minimal decrease could be associated with
the differences in the position of the electrodes, thus, representing
one limitation of the current study. In Halim and Rehan (2020)
more than 50 automotive drivers have been tested during
various driving situations. An SVM model reached 97.95% of
accuracy in discriminating rest and stress during driving through
EEG signals.

The neurometrics obtained with gel and water electrodes were
both able to significantly discriminate the high level of vigilance
from the low ones in realistic settings. The vigilance during the
driving task has been discriminated with AUC around 0.6 for
high temporal resolution (i.e., 1 s) and the water-based electrodes
allowed to overcome 0.9 on average AUC for temporal resolution
lower than 50 s. Therefore, the proposed passive BCI system that
was employed to discriminate between two levels of vigilance
showed higher performance in a laboratory setting compared
to the real ones for the same time resolution. However, it did
not behave differently from the gold standard. Similar results
have been already obtained through dry electrodes in the driving
context. A case study involving 15 participants in an immersive
virtual driving environment demonstrates the reliability and the
feasibility of predicting the driver’s vigilance through support
vector regression (Lin et al., 2014).
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Generalizability of the Cross-Task
Approach
The generalizability of a passive-BCI system depends strictly on
the implemented algorithms, in terms of features and models.
Generalizability has been defined as the algorithm’s ability to
generalize across tasks, sessions, or subjects with an accuracy
higher than 80% (Zhou et al., 2021). In this work, we focused
on cross-task generalizability. For all the targeted human factors,
the water-based passive-BCI system has been calibrated using
laboratory data. The design of appropriate training tasks for a
cross-task approach is the main challenge since the tasks should
be simple, short, and without confounding effects (Gerjets et al.,
2014).

The obtained results showed that the water-based passive-BCI
system calibrated cross-task allowed the discrimination between
two levels of the targeted human factors. In particular, this
approach applied to the workload monitoring reached an AUC
higher than 0.8 at 40 s of temporal resolution providing the same
performance as the intra-subject approach. Similar results have
been obtained for the monitoring of vigilance. The intra-subject
approach provided performances 10% higher than the cross-task
approach, even if they are not significantly different. The highest
values in terms of AUC have been reached during the stress
monitoring: in both cases, the systems reached values higher than
0.95 after 20 s of temporal resolution. As said, these results are
affected by the choice of the task for calibration, therefore the
results indicated that the choice made for stress is as far better
than those made for workload and vigilance.

The approach used here allowed a continuous estimate of the
targeted human factors in terms of score (i.e., the probability
of belonging to the high class), which can be considered the
output index of the passive-BCI system. We have analyzed the
similarity between the indices obtained through the intra-subject
and the cross-subject approach. In particular, the stress indices
were highly correlated to the population (R = 0.89), whereas
they showed also higher distances (RMSE = 0.27) between
the curves compared to the indices obtained for vigilance and
workload. In contrast, the correlation between the workload
and vigilance indices obtained with the intra-subject and cross-
subject approach is medium (0.6 and 0.48, respectively). The
temporal delay between the training and testing data may
have disadvantaged the cross-task results. Future testing should
involve cross-session recordings to better investigate this bias.
Overall, the obtained results confirmed the appropriateness of
the cross-task approach used for stress assessment, and that
improvement should be achieved for workload and vigilance. In
future work, different calibration tasks will be designed and tested
on realistic driving.

Contextualizing these results in the literature, acceptable
values of performance have been found only for cross-task
calibrated and then tested on similar tasks. For example, Ke
et al. (2015) reached an accuracy higher than 0.9 in mental
workload classification using spatial and verbal n-back. In
contrast, the study of Baldwin and Penaranda (2012) showed
low accuracy in the cross-task classification using three different
working memory tasks. The authors hypothesized that this result
was due to the different neural structures underpinning each

task. Therefore, when the cross-task procedure encompasses a
predefined set of features, on the one hand, this can avoid the
misclassification due to diverse concurrent mental states. On the
other hand, a predefined set of features limits the generalizability
of the cross-task approach. Therefore, in future attempts, the
two approaches (predefined set of feature vs. features selection)
should be compared.

Limitations and Future Work
One limitation of this study is related to the choice of performing
simultaneous recording with the two kinds of electrodes. On
the one hand, the simultaneous registration allows for avoiding
temporal bias. On the other hand, there is a spatial bias that
can affect the obtained correlation because they record different
bioelectrical activities. The distance between the electrodes was
about 1.5 cm to avoid electrical bridges due to the simultaneous
presence of gel and water. A second limitation is related to
the specificity of neurophysiological indices in realistic contexts.
For example, visual-related activity during the task could hide
a variation of parietal alpha due to workload. Also, systematic
artifacts could be erroneously selected as features by the system
leading to incorrect classification. Moreover, the current paper
showed the system can discriminate between two levels of
workload, stress, or vigilance. However, it is essential to move
from a binary classification to multi-class classification. For
example, the well-known inverted-U function of the Yerkes–
Dodson law (Yerkes and Dodson, 1908) associated arousal with
performance. According to this, it would be ideal to distinguish
at least a suboptimal, an optimal, and an overload condition.

In the future, guidelines should be provided for the
description of the tasks to be performed for effective cross-task
calibration. The task in question must be simple to not require
too much time for training, although it must be long enough
to guarantee enough data for training the model. Finally, these
water-based electrodes should be tested against already existing
water electrodes (Volosyak et al., 2010; Schwarz et al., 2020).

CONCLUSION

The main aim of this work was to test a new water-based
passive BCI system for workload, vigilance, and stressmonitoring
for out-of-the-lab applications. The results showed that water
electrodes guarantee higher ease of use, without lowering the
performance compared to the gold standard. In addition, a
proper structure for housing the EEG equipment would make the
system wearable, so easy to fit and comfortable, and consequently
acceptable for many different real-life applications. Moreover,
the generalizability of the system, analyzed through a cross-task
approach, showed acceptable performance according to different
values of temporal resolution for each investigated human factor.
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