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Mental fatigue (MF) jeopardizes performance and safety through a variety of

cognitive impairments and according to the complexity loss theory, should

represent “complexity loss” in electroencephalogram (EEG). However, the

studies are few and inconsistent concerning the relationship between MF and

loss of complexity, probably because of the susceptibility of brain waves to

noise. In this study, MF was induced in thirteen male college students by a

simulated flight task. Before and at the end of the task, spontaneous EEG

and auditory steady-state response (ASSR) were recorded and instantaneous

frequency variation (IFV) in alpha rhythm was extracted and analyzed by

multiscale entropy (MSE) analysis. The results show that there were significant

di�erences in IFV in alpha rhythm either from spontaneous EEG or from ASSR

for all subjects. Therefore, the proposed method can be e�ective in revealing

the complexity loss caused by MF in spontaneous EEG and ASSR, which may

serve as a promising analyzing method to mark mild mental impairments.

KEYWORDS

mental fatigue, nonlinear analysis, complexity, multiscale entropy, auditory steady-

state response

1. Introduction

Mental fatigue (MF) represents a psychobiological state caused by prolonged periods

of demanding cognitive activity (Tran et al., 2020). MF jeopardizes performance

and safety through a variety of cognitive impairments, including decreased vigilance

(Dimitrakopoulos et al., 2018). There is no standard definition of fatigue; clinically,

fatigue is often defined as difficulty in performing voluntary activities (Chaudhuri and

Behan, 2004). MF can sometimes be called cognitive fatigue (Persson et al., 2007).
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Since MF impairs a variety of cognitive functions, it

should present “complexity loss” in physiological signals, e.g.,

electroencephalogram (EEG), heart rate variation, according to

complexity loss theory, which was initially proposed to define

aging as a progressive loss of complexity in the dynamics of all

physiologic systems (Lipsitz and Goldberger, 1992). Since it was

proposed, complexity loss theory has been applied to various

diseases, e.g., epilepsy (Lehnertz and Elger, 1995), heart failure

(Costa et al., 2003), Alzheimer’s disease (Dauwels et al., 2011),

diabetes (Churruca et al., 2008), patients with vegetative state

(Goldberger et al., 2002; Sarà and Pistoia, 2010), as well as in

sleep studies (Shi et al., 2017; Li et al., 2021).

However, the studies are few and inconsistent concerning

the relationship between MF and loss of complexity. For

example, MF caused by watching 3DTV reveals significant

complexity loss in occipital lobe in some scales (Chen et al.,

2018). Another study shows increased complexity of EEG

from subjects after performing days of intellectual competition

(Zhang et al., 2021). Complexity is often measured by multiscale

entropy (MSE) (Costa et al., 2002) and its variants (e.g., Wu

et al., 2013; Shi et al., 2017; Han et al., 2020) in a variety of

research fields by calculating sample entropy at multiple scales

of the coarse-grained versions of the original signal.

Alpha frequency is important in cognition. On long-time

scale, alpha frequency changes with age and certain diseases.

From early childhood up to puberty alpha frequency

increases, but then starts to decline with age (Niedermeyer,

2005; Stomrud et al., 2010; Grandy et al., 2013). For adults,

Köpruner et al. (1984) have found a linear relationship between

age and alpha frequency. Some studies have reported diseases

related decrease in alpha frequency, e.g., Alzheimer’s disease

FIGURE 1

Experimental protocol. (A) Experimental flow diagram of EEG acquisition of spontaneous EEG (SPON) and auditory steady-state response (ASSR)

in Sober and MF states. (B) Alpha rhythm extraction from SPON and ASSR with and without instantaneous frequency variation method (IFV),

producing preprocessed four types of time series, SPON-α, SPON-α-IFV, ASSR-α, and ASSR-α-IFV, before they were analyzed by multiscale

entropy methods (MSE) to compare Sober and MF states. (C) Schematic diagram of the coarse graining process, taking scale 2 and scale 3 as

examples. (D) An example of MSE comparison.

(Klimesch et al., 1990; Babiloni et al., 2008), thalamocortical

dysrhythmia (Llinás et al., 1999), chronic pain (Furman et al.,

2020), or other neurological diseases (e.g., Torres et al., 1983;

Moretti et al., 2007). In short-term scale, alpha power (or

amplitude), varying far more salient with a task than alpha

frequency does, is often used to identify mental fatigue (Wu

et al., 2022), or to explain cognitive mechanisms (Haegens et al.,

2022). Alpha frequency fluctuates with a cognitive demanding

task, indicating that alpha frequency plays a role in the task

(Klimesch et al., 1993; Angelakis et al., 2004).

In the previous study, we have found that alpha frequency

fluctuates constantly in a nonlinear fashion by analyzing the

complexity of instantaneous frequency variation (IFV) of alpha

rhythms (Li et al., 2021). And it turns out that this complexity

of IFV well-differentiates underlying cognitive states showing

low complexity in sleep EEG than in wakeful EEG, which is in

accordance with the complexity loss theory (Li et al., 2021).

In this study, We have analyzed the complexity of alpha

rhythm and its IFV from spontaneous EEG, and from ASSR,

which has been induced by stimulating the subjects with Don

chirp sounds (Elberling et al., 2007) to test the hypotheses that

MF may cause the complexity loss in EEG.

2. Materials and methods

2.1. Participants

Thirteen male college students, aged 20–22 years old

(means = 21, standard deviation = 1.2), were recruited for this

experiment. All the subjects met the following conditions, which
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were assessed by a questionnaire: no dementia; no significant

changes on brain imaging; right-handedness; no history or

evidence of psychiatric or neurological disease, cardiovascular

disease, diabetes, thyroid disease, vitamin B12 deficiency, or

substance abuse; normal vision or corrected normal vision; and

being native Chinese. They were asked to ensure 8 h of sleep per

day the week prior to the experiment, to abstain from food that

might affect the excitability of the nervous system.

Informed consent forms were signed by all the subjects in

this study. This study has been approved by the Institutional

Committee of the Air Force Medical University.

2.2. ASSR stimulation

A chirp stimulus attempts to compensate for the cochlear

traveling wave delay by aligning the arrival time of each

frequency component in the stimulus to its place of maximum

excitation along the basilar membrane (Elberling et al.,

2007). The observed latency-frequency functions of the

electrophysiological data can all be described by the same power

function as suggested by (Anderson et al., 1971):

τ = kf−d (1)

where τ is the latency in seconds, f is the frequency in hertz

(Hz), and k and d are constants. According to Elberling et al.

(2007)’s study, k = 0.0920, d = 0.4356. ASSR can be elicited

effectively with frequency range 40–50 and 80–100 Hz, and

clinical applications often use the 40 or 80 Hz (Dobie and

Wilson, 1998; Maki et al., 2009). We chose f = 80 Hz,

which is far away from alpha and beta waves, to avoid possible

interference of the stimulating frequency with the spontaneous

EEG activity as well as mains interference around 100 Hz, which

is the harmonic of 50 Hz. Broad band Don chirp signal was

constructed by adding together a harmonic series of cosines

with the frequencies, 160, 240, 320, . . . , 7,920 Hz. Huawei

CM33 in-ear wired headphones were used to play the Don

chirp sound.

2.3. EEG acquisition

EEGs of the subjects were collected from 16-scalp electrodes

according to the international 10-20 system through a wireless

FIGURE 2

MSE analysis of SPON-α (A), ASSR-α (B), SPON-α-IFV (C), and ASSR-α-IFV (D) on frontal lobe (channel F3) from four exemplary subjects. The

blue and red lines represent the Sober and MF states, respectively. See Section 2.5 for the definitions of terms.
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device (model: NSW316, Neuracle, Changzhou, China). The

raw EEGs were filtered with a band-pass filter from 0.01

to 100 Hz and sampled at 1,000 Hz with reference of

CPz. Electrode impedance was kept below 5 k� throughout

the recording.

2.4. Experimental protocol

Subjects were asked to repeat the airfield traffic pattern

under visual flight rules in a simulated flight task inside an

electromagnetically shielded room. The subjects were seated in a

comfortable chair that supported their backs and heads in front

of a computer monitor. Before flight, 2-min of spontaneous

activity and 2-min of evoked activities by Don chirp sound

were recorded with eyes closed. During the 2-h flight, the

subjects were also asked to mentally solve 60 problems of

additions or subtractions between two 3-digit numbers. After

the flight task, 2 min of spontaneous activity and 2 min of

evoked activities by Don chirp sound were recorded again

with eyes closed. The Experimental Protocol is demonstrated

in Figure 1.

2.5. Alpha rhythm extraction and IFV
computation

Alpha rhythm was extracted from the spontaneous

EEGs (SPON) or ASSR by a zero-phased fourth-order

Butterworth band-pass filter with cutting-off frequencies

8 and 13 Hz. Alpha rhythm time series extracted from

SPON and ASSR were named SPON-α and ASSR-α.

Instantaneous frequencies were computed from alpha

rhythm by Hilbert transform and then detrended to

obtain the IFV (Li et al., 2021), resulting in time

series SPON-α-IFV and ASSR-α-IFV, with data length

10,000 points.

2.6. Complexity measurement: Multiscale
entropy analysis

MSE has been proposed to quantify the complexity of

biomedical time series (Costa et al., 2002). In this paper, MSE

is used to analyze the complexity of spontaneous EEG activities

and ASSR in alpha band.

FIGURE 3

MSE analysis of SPON-α (A), ASSR-α (B), SPON-α-IFV (C), and ASSR-α-IFV (D) on parietal lobe (channel P4) from four exemplary subjects. The

blue and red lines represent the Sober and MF states, respectively. See Section 2.5 for the definitions of terms.
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Refer to Costa et al. (2002) for details of MSE method. A

short summary is as follows.

Assume that there is a discrete time series X of length N,

X = [x1, x2, x3, · · · , xN ]. The non-overlapping coarse graining

process is defined as:

y
(τ )
j =

1

τ

jτ∑

i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ (2)

where τ denotes the time scale, jτ is the maximal scale, and N/τ

denotes the length of each time series after coarse granulation.

When τ = 1, the result of coarse-grained data is the original

time series. In this study, jτ was set to 20 following MSE

convention (Costa et al., 2002). Figure 1C shows the coarse-

grain process.

Next, the sample entropy is calculated for each time

resolution corresponding to the MSE,

MSE(τ ) = SampEn(τ ,m, r, n) (3)

where m represents the reconstruction dimension, r is the

similarity tolerance, and n is the length of the data. r is calculated

as r = c · σ , in which, σ is the standard deviation of the

original sequence Xi and c is the tolerance factor, a percentage

of σ with typical values between 0.1 and 0.25. In this study,

m = 2, c = 0.15.

We define the complexity index (C) as the averaged MSE

values over all scale factors (from 1 to 20):

C =

20∑

τ=1

MSE(τ )/20 (4)

We also define the complexity loss rate (L) as:

L =
Cbefore − Cafter

Cbefore
(5)

where Cbefore and Cafter mean the complexity indices before and

after the flight task.

2.7. Statistics

The data were tested for normality first. As the data were

not normally distributed, the nonparametric Mann–WhitneyU-

test was used to test whether there was significant difference

FIGURE 4

MSE analysis of SPON-α (A), ASSR-α (B), SPON-α-IFV (C), and ASSR-α-IFV (D) on temporal lobe (channel T4) from four exemplary subjects. The

blue and red lines represent the Sober and MF states, respectively. See Section 2.5 for the definitions of terms.
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FIGURE 5

MSE analysis of SPON-α (A), ASSR-α (B), SPON-α-IFV (C), and ASSR-α-IFV (D) on occipital lobe (channel O1) from four exemplary subjects. The

blue and red lines represent the Sober and MF states, respectively. See Section 2.5 for the definitions of terms.

between the two states, Sober (before the task) and MF (after the

task) on each scale factor. For analyses that produced significant

inter-group differences, a post-hoc test (Bonferroni p-value) was

performed to determine the specific nature of the differences

between the two states.

All statistical analyses above were carried out using

R (R Core Team, 2021), and a significant level was set

to 0.05.

3. Results

3.1. MSE analysis of alpha rhythm from
spontaneous EEG (SPON-α)

We analyzed four examples of MSE of SPON-α time

series on frontal (Figure 2A), parietal (Figure 3A), temporal

(Figure 4A), and occipital (Figure 5A) lobes. To quantify the

differences among the four methods, we analyzed all subjects

and carried out statistical analysis. Frontal lobe (Figure 6A),

parietal lobe (Figure 7A), temporal lobe (Figure 8A), and

occipital lobe (Figure 9A) show the group comparisons between

Sober and MF states of MSE of SPON-α time series. In

Figure 6A, the two MSE values of the two states on each scale

are not significantly different (p >0.05, Mann–Whitney U-test).

In Figures 7A, 8A, the two MSE values of the two states on

scales from 10 to 20 are significantly different (p <0.05, Mann–

Whitney U-test). In Figure 9A, the two MSE values of the two

states on scales from 9 to 20 are significantly different (p < 0.05,

Mann–Whitney U-test).

3.2. MSE analysis of IFV in alpha rhythm
from spontaneous EEG (SPON-α-IFV)

We analyzed four examples of MSE of SPON-α-IFV

time series on frontal (Figure 2B), parietal (Figure 3B),

temporal (Figure 4B), and occipital (Figure 5B) lobes. To

quantify the differences among the four methods, we

analyzed all subjects and carried out statistical analysis.

Frontal lobe (Figure 6C), parietal lobe (Figure 7C), temporal

lobe (Figure 8C), and occipital lobe (Figure 9C) show the

group comparisons between Sober and MF states of MSE

of SPON-α-IFV time series. In Figure 6C, the two MSE

values of the two states on each scale are significantly
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FIGURE 6

Comparison of MSE from frontal lobe (channel F3) on: (A) alpha rhythm from spontaneous EEG (SPON-α), (B) alpha rhythm from ASSR (ASSR-α),

(C) IFV in alpha rhythm from spontaneous EEG (SPON-α-IFV), and (D) IFV in alpha rhythm from ASSR (ASSR-α-IFV). The sign * indicates

significance at p < 0.05. Shades indicate the standard errors.

different on scale 13, 17, 19 (p <0.05, Mann–Whitney

U-test). In Figures 7C, 8C, 9C, the two MSE values of the

two states on all scales are significantly different (p < 0.05,

Mann–Whitney U-test).

3.3. MSE analysis of alpha rhythm from
ASSR (ASSR-α)

We analyzed four examples MSE of ASSR-α time series on

frontal (Figure 2C), parietal (Figure 3C), temporal (Figure 4C),

and occipital (Figure 5C). To quantify the differences among

the four methods, we analyzed all subjects and carried out

statistical analysis. Figures 6B, 7B, 8B, 9B show the group

comparisons between Sober and MF states of MSE of

ASSR-α time series. In Figure 6B, the two MSE values of

the two states on each scale are not significantly different

(p > 0.05, Mann–Whitney U-test). In Figures 7B, 8B,

9B, the two MSE values of the two states on scales

from 10 to 20 are significantly different (p < 0.05,

Mann–Whitney U-test).

3.4. MSE analysis of IFV in alpha rhythm
from ASSR (ASSR-α-IFV)

We analyzed four examples of MSE of ASSR-α-IFV time

series on frontal (Figure 2D), parietal (Figure 3D), temporal

(Figure 4D), and occipital (Figure 5D) lobes. To quantify the

differences among the four methods, we analyzed all subjects

and carried out statistical analysis. Frontal lobe (Figure 6D),

parietal lobe (Figure 7D), temporal lobe (Figure 8D), and

occipital lobe (Figure 9D) show the group comparisons between

Sober and MF states of MSE of ASSR-α-IFV time series. In

Figures 6D, 7D, 8D, 9D, the two MSE values of the two states

on each scale are significantly different on all scales (p < 0.001,

Mann–Whitney U-test).

3.5. Comparison of four methods

Figure 10 shows that there was significant difference between

the complexity loss rates of SPON-α and SPON-α-IFV (p =

7.41×10−18, Mann–Whitney U-test), and between ASSR-α and
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FIGURE 7

Comparison of MSE from parietal lobe (channel P4) on: (A) alpha rhythm from spontaneous EEG (SPON-α), (B) alpha rhythm from ASSR

(ASSR-α), (C) IFV in alpha rhythm from spontaneous EEG (SPON-α-IFV), and (D) IFV in alpha rhythm from ASSR (ASSR-α-IFV). The sign * indicates

significance at p < 0.05. Shades indicate the standard errors.

ASSR-α-IFV (p = 1.89×10−17, Mann–Whitney U-test). No

significant differences were found between the complexity loss

rates of SPON-α and ASSR-α (p = 0.62, Mann–Whitney U-test)

was found either and between SPON-α-IFV and ASSR-α-IFV (p

= 0.20, Mann–Whitney U-test).

We compared the time consumption of calculating MSE

of SPON-α, SPON-α-IFV, ASSR-α, ASSR-α-IVF on a desktop

computer (Laptop computer, Windows 10, Intel Core i7-9750H

CPU, 2.60 GHz). The average MSE calculation time of ASSR-

α-IVF was 79.033 s, which is ∼8.9 times as long as that of the

conventional MSE on SPON-α method (Table 1).

4. Discussion

In this study, we have focused on the hypothesis that MF

can induce the complexity loss. EEG signals were recorded from

resting state with and without ASSR stimulus. From the EEG

signals, alpha rhythms were extracted using a filter and then IFV

in alpha rhythms was calculated using Hilbert transform, and

analyzed using theMSEmethod. Finally, the complexity loss rate

(defined in Equation 5) of four types of time series, SPON-α,

SPON-α-IFV, ASSR-α, and ASSR-α-IFV, between Sober andMF

states were calculated and compared.

MF impairs a variety of cognitive functions (Mast and

Heimstra, 1964) and according to the complexity loss theory

(Lipsitz and Goldberger, 1992), should induce lower complexity

in EEG. However, the few studies that cover this topic report

inconsistent results (Chen et al., 2018; Zhang et al., 2021). In

this study, we have applied two strategies in the attempt to

test the hypotheses that MF can also cause the complexity loss.

Our results of MSE analysis on SPON-α are in accordance

with the work (Chen et al., 2018) in that on some scales, there

are complexity loss after cognition demanding tasks (watching

3DTV in Chen et al.’s work or flying a simulated plane in

this study). In addition, we have shown that IVF in alpha

rhythms either from spontaneous EEG or from ASSR, the

complexity loss is more obvious showing higher detectability.

While in Zhang et al. (2021)’s study, MF induced by days of

intellectual competition caused increased complexity and may

have involved unexpected factors.

Alpha frequency has bee associated with age (Grandy

et al., 2013), visual perception (Battaglini et al., 2020), memory

performance (Klimesch et al., 1993), cognitive preparedness

(Angelakis et al., 2004), speed of reaction (Klimesch et al.,
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FIGURE 8

Comparison of MSE from frontal lobe (channel T3) on: (A) alpha rhythm from spontaneous EEG (SPON-α), (B) alpha rhythm from ASSR (ASSR-α),

(C) IFV in alpha rhythm from spontaneous EEG (SPON-α-IFV), and (D) IFV in alpha rhythm from ASSR (ASSR-α-IFV). The sign * indicates

significance at p < 0.05. Shades indicate the standard errors.

TABLE 1 Time consumption comparison of MSE calculation.

Method SPON-α SPON-α-IFV ASSR-α ASSR-α-IFV

Time consumption

± standard deviation(s)
8.894± 0.424 76.304± 5.798 8.928± 0.574 79.033± 3.985

1996). Alpha peak frequency varies constantly, and the variation

does not represent random fluctuations but instead constitutes

the basis of an adaptive mechanism mirroring the activation

level of neural populations (Mierau et al., 2017). Previously,

we have shown that the EEG alpha rhythm changes its peak

frequency constantly and the MSE analysis of the instantaneous

frequency variation (IVF) can be used to show the complexity

loss of the brain in sleep comparing to in wakefulness

(Li et al., 2021).

In Li et al. (2021)’s work, the reason for using MSE

analysis on IFV in spontaneous alpha rhythm or delta wave

instead of on the brain wave itself is that the MSE algorithm

suffers from the artifact of the carrying frequency of the brain

waves. In this study, we have also shown the IFV in alpha

rhythm either from spontaneous EEG or from ASSR has much

higher separation power. The possible reason is that the alpha

amplitude is more subject to noise, while the IFV is frequency

modulated, which is more stable. It is similar to the higher

quality of frequency-modulated (FM) radio signal comparing to

the amplitude-modulated (AM) signal.

The ASSR is a type of event related potential which is often

used to test the integrity of auditory pathways and the capacity

of these pathways to generate synchronous activity at specific

frequencies (Brenner et al., 2009). In our study, MSE analysis

of ASSR-α-IFV significantly increase the complexity loss effect

than that of ASSR-α. We have chosen 80 Hz instead of 90 Hz to

avoid mains interference around 100 Hz, which is the harmonic

of 50 Hz.

4.1. Limitations

In the current study, we focused on the complexity loss

of IFV in alpha rhythm from spontaneous EEG and auditory

stimulated EEG, and in the future, we need to investigate the

other frequency bands.
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FIGURE 9

Comparison of MSE from occipital lobe (channel O1) on: (A) alpha rhythm from spontaneous EEG (SPON-α), (B) alpha rhythm from ASSR

(ASSR-α), (C) IFV in alpha rhythm from spontaneous EEG (SPON-α-IFV), and (D) IFV in alpha rhythm from ASSR (ASSR-α-IFV). The sign * indicates

significance at p < 0.05. Shades indicate the standard errors.

FIGURE 10

Complexity loss rates of SPON-α, ASSR-α, SPON-α-IFV, and

ASSR-α-IFV from all subjects and channels. See Section 2.5 for

the definitions of terms. The sign * indicates significance at p <

0.05.

5. Conclusion

In this study, we have shown mental fatigue can cause

complexity loss of EEG, by analyzing the multiscale

entropy of the IFV in alpha rhythm extracted from

spontaneous EEG and ASSR. This complexity loss

phenomenon can be largely concealed with conventional

MSE analysis on spontaneous EEG. This implicates

that the MSE analysis on IFV in brain rhythms can

be a promising method to reveal the complexity of a

physiological process.
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