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A core issue in motor control is how the central nervous system generates
and selects the muscle activation patterns necessary to achieve a variety
of behaviors and movements. Extensive studies have verified that it is the
foundation to induce a complex movement by the modular combinations
of several muscles with a synergetic relationship. However, a few studies
focus on the synergetic similarity and dissimilarity among different types of
movements, especially for the upper extremity movements. In this study, we
introduced the non-negative matrix factorization (NMF) method to explore
the muscle activation patterns and synergy structure under 6 types of
movements, involving the hand open (HO), hand close (HC), wrist flexion
(WF), wrist extension (WE), supination (SU), and pronation (PR). For this, we
enrolled 10 healthy subjects to record the electromyography signal for NMF
calculation. The results showed a highly modular similarity of the muscle
synergy among subjects under the same movement. Furthermore, Spearman’s
correlation analysis indicated significant similarities among HO-WE, HO-SU,
and WE-SU (p < 0.001). Additionally, we also found shared synergy and
special synergy in activation patterns among different movements. This study
confirmed the theory of modular structure in the central nervous system,
which yields a stable synergetic pattern under the same movement. Our
findings on muscle synergy will be of great significance to motor control and
even to clinical assessment techniques.

muscle synergies, muscle activation patterns, surface electromyography, motor
control, non-negative matrix factorization
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Introduction

Human movement is a highly complex activity produced by
neuromuscular activation and biomechanical output (Gottlieb,
1998). It is a common assumption that the central nervous
system (CNS) with a modular structure can simplify motor
tasks to low-dimensional modules by linear combinations of
muscle synergy (Cheung et al., 2012; Bizzi and Cheung, 2013;
d’Avella and Lacquaniti, 2013), which refers to several muscles
participating in a movement in a fixed combination (Flash
and Bizzi, 2016; Liang et al., 2021). Additionally, some studies
pointed out that the CNS is endowed with a set of intrinsically
representative synergetic modules, and it can dominate some of
the modules as a combination to involve different movements
(Israely et al, 2018; Gueugnon et al, 2019; Cheung et al,
2020; Jonsdottir et al., 2020). However, it is still unclear
how to choose the muscle activation pattern, and organize
and coordinate muscles to mobilize different behaviors and
movements.

Over the last few years, extensive studies have sought
methodologies to elucidate muscle synergy. The present studies
mainly depended on the theories of dimension reduction
and blind source separation, such as independent component
analysis (ICA), principle component analysis (PCA), second-
order blind identification (SOBI), and non-negative matrix
factorization (NMF). Here, with respect to both ICA and
PCA, two types of blind source separation can reveal several
patterns of muscle synergy but have limitations in the specific
assumptions in the extracted muscle synergy (orthogonality
for PCA and statistical independence for ICA) and the quite
highly mean communality of the data (Ivanenko et al., 2004;
Weiss and Flanders, 2004; Esmaeili and Maleki, 2019). Later,
some studies tried to use the SOBI method for muscle synergy
estimation, but it is the best algorithm with four channels
(no dimension reduction) and is not suitable for this study
(Belouchrani et al., 1997; Ebied et al.,, 2018). Compared with
the above methods, the NMF method has its advantages
in extracting the synergetic module by decomposing the
EMG matrix into several low-dimensional spaces and time-
dependent variables, which is widely applied in muscle synergy
(Amundsen Huffmaster et al., 2018; Bahadur et al, 2019;
Matsuura et al.,, 2020). Recently, many studies have explored
muscle synergy and its similarities between upper-and lower-
limb movements (Rabbi et al, 2020; Chen et al, 2021).
Additionally, the NMF method can be used to decompose
signals into the non-negative elements in the matrix and has
better robustness. Therefore, we applied the NMF algorithm
to extract muscle synergy under different upper extremity
movements.

Recently, several studies also have set out to investigate the
synergetic similarity and dissimilarity among different types of
movements. A previous study pointed out that the synergetic
similarity named shared synergy, meant the synergetic module
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participated in more than one movement, while the synergetic
dissimilarity, called special synergy, was just involved in the
specific movements without involvement in other tasks (Russo
et al., 2014). The shared synergy and special synergy have
become a biomarker to explore the muscle activation pattern
among different movements (Torres-Oviedo and Ting, 2010;
Nazifi et al, 2017). For example, Roh et al. (2011) found
some muscle synergies shared in jumping, swimming, kicking,
and walking in frogs. Boccia et al. (2018) found a shared
synergy between Nordic walking and traditional walking.
Additionally, Allen et al. (2017) found that the shared synergy
was highly consistent during walking, and the special synergy
also had a lesser consistency in muscle synergy from mild
to moderate for patients with Parkinson’s disease. The above
studies showed that the shared synergy and specific synergy
can represent consistent motor modules that map intention to
movement and reflect the synergetic physiological mechanism
(Singh and Latash, 2011; Yun et al., 2015; Afzal et al., 2017).
However, similar studies mostly focus on the lower limb
movement, and few reports focus on the upper extremity.
It is worthy of deep consideration to explore the muscle
activation pattern and the combinations of muscle synergy
(shared synergy or special synergy) to mobilize upper extremity
movement.

Mostly, the main contribution of this study is to explore the
muscle activation patterns and muscle synergy among different
modes of coordination during upper extremity movement. For
this, we introduced the NMF method to the electromyography
(EMG) signals of upper extremity movement from 10 subjects
under 6 types of upper extremity movements. Consequently, we
used Spearman’s correlation analysis to quantify the similarity
of different movements. We analyzed the synergy similarity
within the same movement and among different movements.
Furthermore, we compared the cooperative structure with
the muscle activation pattern and extracted the special
synergy and shared synergy. The present study explores the
cooperative mechanism of the upper extremity movement by
the nervous system.

Materials and methods

Subjects

Ten healthy right-handed subjects (7 men and 3 women;
mean age, 24.6 & 1.51 years; range, 23-28 years) were enrolled in
this study. All participants had no history of upper-limb motor
dysfunction or joint injury. They participated according to the
declaration of Helsinki and gained the consent and approval of
the Ethical Review Board of Yanshan University. All participants
had not exercised vigorously within 24 h before the test to
remove the influence of fatigue.
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EMG signals. (C) The flow of the experimental task.

Experiment program. (A) Recording of 8-channel electromyography (EMG). (B) Electrode positions for the experiment on the acquisition of

Experimental paradigm

Each subject was asked to complete six types of upper
extremity movements, including hand open (HO), hand close
(HC), wrist flexion (WF), wrist extension (WE), supination
(SU), and pronation (PR), as shown in Figure 1C. All subjects
were required to sit on the test chair, with the upper arm
retracted close to the ribs, the elbow joint appressed to the
body, while the elbow bent 90 degrees, and the forearm forward
(Figure 1A). To avoid interference by other muscles, the
subjects are not permitted to swing their shoulders during
the test. The standard of movement during collecting was to
reach the most standard maximum position in the experimental
process according to the clues. The tasks were given in
Figure 1C. In the entire task, there were 4 sessions with a 60-
s break between each session, and each session included 50 s
and contained 10 trials. The subjects had a 5-min break after
each set of movements to relax the arm muscles and avoid
muscle fatigue.

EMG data recording and preprocessing

In this study, the EMG signal was recorded by an 8-
channel Trigno™ Wireless EMG system (Delsys Inc., Natick,
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MA, USA). The system’s built-in bandpass filter was set at 5-
500 Hz, and all recorded EMG data were sampled at 1,000 Hz
per channel. Before the electrode application, the skin surface
was cleaned with alcohol. We simultaneously collected the EMG
data from eight muscles in the right upper limb, involving flexor
digitorum superficialis (FDS), extensor digitorum communis
(EDC), brachioradialis (B), radial carpi flexor muscles (flexor
carpi radialis, FCR), flexor carpi ulnaris (FCU), extensor carpi
radialis brevis (ECRB), extensor carpi ulnaris (ECU), and biceps
(biceps brachii, BB). The position of each electrode was shown
in Figure 1B.

To obtain effective EMG signal characteristics, we needed
to preprocess the original signal. First, we used the fourth-
order Butterworth high-pass filter (cutoff frequency of 40 Hz)
to filter the signal and then removed the means and rectification
(Myers et al., 2003). Then, we used the fourth-order Butterworth
low-pass filter (cutoft frequency of 4 Hz) to extract the signal
envelope and introduced the maximum normalization method
(Esmaeili and Maleki, 2019; Korak et al., 2020) to normalize each
channel EMG data for every trial according to the maximum
amplitude value in each channel. We preprocessed all signals
for each movement according to the above methods and built
a data matrix of L x K (L was the number of muscles, K
was the number of data points), which was set as the muscle
activation matrix M.
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Muscle synergy extraction method

Muscle activation model based on synergy

Previous studies have pointed that the activation model of
muscle M can be regarded as a linear combination of the muscle
synergy recruitment coeflicient C; (f) (activation coeflicient) and
the muscle synergy vector of recruitment W; (Wenger et al,
2016). The activation model of muscle can be expressed as
follows:

N
M) =D WiGi (1)

i=1

1

where i =1, 2, ..., N is the number of muscle synergies, and
M (t) is the M-dimensional vector of the activation degree at
point t. C; (¢) is the activation coeflicient, which indicates how
the i muscle synergy is modulated at the moment t and reflects
the contribution of each muscle synergy to muscle excitation. W;
is the muscle synergy vector, which represents the relative weight
of each muscle in the i muscle synergy. We can use formula (1)
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to reverse the simulation reconstruction by setting the activation
coeflicient C; (¢) and the muscle synergy vector W .

Non-negative matrix factorization

To analyze the essence of muscle synergy in the movement,
it is necessary to select an effective method to decompose
the EMG signal. In this study, we introduced the NMF
algorithm (Dwivedi and Shibata, 2019) to extract muscle
synergy. The NMF method can obtain the mapping matrix by
projecting the high-dimensional data into the low-dimensional
subspace and decomposing the high-dimensional matrix into
the multiplication of two low-dimensional matrices. The NMF
algorithm can be approximated as the following structure:

r

Viu ~ (Wc)iu = Z Wi(xCOLM (2)
a=1

where Wi, denotes the base matrix, and Cy, is the

coefficient matrix. The column vector of the matrix

Viw can be interpreted as the weighted sum of all the

frontiersin.org


https://doi.org/10.3389/fnhum.2022.912440
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

Chen et al.

10.3389/fnhum.2022.912440

o
C
=%
0.95 IwWE _
Isu
PR

0.85

0.8~

Variability Accounted For(VAF)

0.75 - H T
0.7 T
0.65 — T T
0.6
1 2 3 4 5 6 7 8
Number of synergies
FIGURE 3
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column vectors Wiy, and the weight coefficients are the
elements in the corresponding column vector Cy.. The

1]
matrices Wjq and Cyy, which can be obtained from the

reconstructed matrix V;, is obtained by multiplying the

matrix Vj,. The consistency of the matrix is quantified by
2

/
(- %,)’
and the iterative optimization is continued until the sum

of the squared errors of the base matrix and coeflicient
matrix is minimum.

calculating the sum of the squared errors

This study uses the above muscle activation model
to decompose the muscle activation pattern matrix M of
all movement cycles under different movements of each
subject. The muscle activation model matrix is decomposed
to obtain two matrices of muscle coordination W and
activation scale coefficient C. Among them, M has L rows
and K columns (K is the number of sampling points),
W is a matrix of L rows and N columns (N is the
number of coordination), and C is a matrix of N rows
and K columns. The matrix obtained after decomposition is
quantified for consistency to get the optimal target matrix
W and C.

Determination of the minimum
synergy humber
To determine the number of columns of the matrix W in the

above decomposition, namely, the minimum synergy number,
we introduced the variability accounted for VAF calculation
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method, which is defined as follows:

, 2
VAF = 1 RSS ) 2z (MEMG - MEMG)
TTSS > Miye

where RSS and TSS are the residual and total sum of squares,

)

respectively. Mgy is the original muscle activation model
matrix, and M;E M 18 the data matrix reconstructed by the NMF.
The square in the molecule is calculated as the square of each
element in the new matrix, which is the difference between the
two matrices.

The VAF of the muscle activation models under different
synergy numbers can be calculated by the formula (3). To
determine the number of decomposition columns of the matrix
W, the N is considered as the minimum synergy number, when
the mean of VAF is greater than 90% under a certain value
of N and if one more synergy number is added, and the VAF
increment is less than 5% (Santuz et al., 2017).

Statistical analysis

In our study, we used the two-way ANOVA to analyze
the difference between the VAF of each movement under
different numbers of synergy and then used the LSD test
for multiple comparisons. Additionally, we used Spearman’s
correlation analysis to calculate the similarity coefficient
and the significance p-value of the average muscle synergy
under different movements and make comparisons among each
paired movement. We set up the thresholds for r referring
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to existing studies and the control mechanism of upper limb
movements (Torres-Oviedo and Ting, 2010; Nazifi et al., 2017).
When the correlation reaches r > 0.500 and p < 0.05, we

4

Subject 10

believe that there is a statistical similarity between different
synergetic modules to extract the shared synergetic module

1.000**

|

for each movement; when the correlation reaches r < 0.400

4
4

and p > 0.05, it is considered no statistical similarity among
synergetic modules; and the synergetic module is judged to
be a special synergetic module, when the correlation reaches
0.400 < r < 0.500, and it is viewed that there may be errors

Subject 9

1.000**
0.636**

|

caused by limited data collection or individual differences in

4
4

the experiment.

Subject 8

1.000**
0.623**
0.572*

Results

|

4
4
4
4

Modular numbers and structure for
muscle synergy

Subject 7

1.000**
0.628**
0.559*

0.675**

Figure 2 shows the NMF decomposition results with various
conditions of the VAF values for one subject under the WF
movement. Here, we could find that the VAF value was 88.59%
as the synergy number was 3, and the VAF value got to 92.54%

|

4
3
4
4
4

Subject 6

along with the number increasing to 4. When the synergetic

1.000**
0.481
0.608**
0.569*
0.570*

number added one more, the VAF value became 95.55% with

|

less than 5% increments.
To further exhibit similar trends for all subjects, we

calculated the mean VAF values for all subjects under each
movement with the modular numbers of muscle synergy

n
o
0
2
a
>
a

n
S
©
o
E <+ | *| ¥ | | o
0
=
©
o
0
=
©
o

1.000**
0.635**
0.640**
0.639**
0.515
0.523

increasing from 1 to 8. Figure 3 shows that the mean VAF

|

values increased as the number of synergies increased, although

4
3
4
4
4
3
4

the period of a relative slowdown of growth continued from

4 to 8. We found that when the number of synergies ranged
from 1 to 4, the VAF values of HO and HC movements were
higher than the other four movements (p < 0.01). However,

Subject 4

1.000%*
0.500

0.624**
0.598**
0.630**
0.475

0.709**

|

there was no significant difference in the VAF values of the six

4
4
3
3
4
4
4
4

movements, when the number of synergies was high (p < 0.05).

It could be seen that when the number of synergies was 4, the
mean VAF values of the six movements were greater than 90%,
and the increase of VAF was less than 5% after adding one

Subject 3

1.000**
0.695**
0.519

0.523

0.796**
0.722**
0.720**
0.649**

|

more synergy, so the number of synergies of the six movements

4
3
4
4
4
4
4
4
4

was determined to be 4. According to the principle in Section
“2.5 Determination of the minimum synergy number, we
considered the muscle synergy matrix with four modules as the
effective synergy structure.

Subject 2

1.000**
0.549

0.635%*
0.595**
0.585**
0.619**
0.654**
0.660**
0.595**

|

4
4
4
4
3
4
3
4
4
4

Synergetic similarity analysis

Subject 1

1.000**
0.682**
0.626**
0.745%*
0.496
0.657**
0.518
0.551*
0.653**
0.695**

Synergetic similarity within the same
movement

To analyze the similarity of muscle synergy among
subjects under the same movement, we applied Spearman’s

|

Subject 1
Subject 2
Subject 3
Subject 4
Subject 5
Subject 6
Subject 7
Subject 8
Subject 9
Subject 10

TABLE 1 The correlation coefficients , of muscle synergies and similar pairs among subjects during hand open (HO) movement.

*P < 0.05, **p < 0.001, -Omit.
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correlation analysis to compare similar pairs of synergetic
modules. Table 1 listed the results for all subjects during
HO movement, and showed that each subject yielded
a basically similar synergy. We also drew the same
conclusion in other movements, which indicated a stable
muscle synergetic pattern under the

among subjects

same movement.

Averaged muscle synergy under different
movements

Considering the similarity and robustness of the muscle
synergy for all subjects, Figure 4 shows the averaged results
of the synergetic modules and activation coeflicients extracted
from each movement. Hereby, the variable W; (i = 1,2, 3, 4)
represented the four modules, and C;(i=1,2,3,4) was
the corresponding activation coeflicients. To elaborate on
the dominant muscle combinations in each W; module
for all movements, we calculated them and listed them
in Table 2. For example, when we performed the HO
movement, the main components were ECU and ECRB
in the module W;; EDC in the module W5; BB in the
module W3; and FCR, FDS, and FCU in the module
Wy, respectively. All modules coordinated with each other
to achieve the HO movement, and there was a similar
phenomenon in other movements. Although each subject
showed a different trend of the activation coefficients for each
movement, all subjects presented the same trend for a certain
fixed movement.
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Synergetic similarity among different
movements

To explore the similarities of the muscle activation
patterns among different upper extremity movements, we used
Spearman’s correlation analysis to compare the average muscle
synergy matrix. Table 3 shows the results of the correlation
coefficient r, significance p, and t-test statistics ¢t with a
significance level of 5%. The results showed that there was a
highly significant similarity in the HO-WE, HO-SU, and WE-
SU groups (p < 0.001), a significant similarity in the HO-WE,
HO-PR, WE-PR, and WF-WE (p < 0.05), and no significances
in other groups (p > 0.05).

Shared synergy and special synergy

To further analyze the similarity of the muscle activation
patterns among various movements, we used Spearman’s
correlation analysis on each module to explore the shared
synergy and special synergy. Table 4 shows the correlation
coefficient r and the significance p-value of each synergetic
module between different movements. We found that the
correlation coefficient value of the W3 module was basically
greater than 0.500, indicating that all movements shared the
module W3 composed of BB. Although there yielded a low
linear correlation of the W3 module between WE-PR and
SU-PR groups, they still had similarities. For example, the
module Wy in the HO-WE group had a correlation coefficient
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TABLE 2 The analysis of major activated muscle groups in different modules under different actions.

Action name

10.3389/fnhum.2022.912440

HO HC \WF WE su PR |
Wy ECU, etc. FCU, FCR, etc. EDC is active ECU, etc. ECU, ECR and other FCR is the active muscle
Carpi radiali is extend | Carpi radiali is adduction | Fingers bend The active muscle of the |extensor muscle group
wrist extension
W, EDC is the active muscle |FDS is the active muscle |ECRB, ECU and other | FCU, FCR, etc. B is the active muscle B, ECRB, etc.
extensor sets Main antagonistic Keep the wrist flexed Auxiliary wrist inward
Main antagonistic muscle groups of wrist turning
muscles of wrist flexion |extension
W3 BB BB BB BB BB BB
maintain smooth upper |maintain smooth upper |maintain smooth upper 'maintain smooth upper |maintain smooth upper |maintain smooth upper
limbs limbs limbs limbs limbs limbs
Wy Antagonistic flexor Antagonism extensor FCR, FCU is the active | Flexor muscle group FCR, FDS, etc. FDS, FCU, etc.
collection collection muscle collection Auxiliary extorsion wrist | Antagonistic flexor
Wrist adduction collection

TABLE 3 Spearman'’s correlation of representative muscle synergies matrixes during different movements.

of 0.570 and a 95% significant correlation, while modules
Wi and W3 were 99% significantly correlated with a strong
correlation. According to the description in Section “2.6
Statistical analysis,” the modules, Wi, W3, and W, were the
shared synergy for the HO-WE group. Additionally, we found
a significantly high similarity in W3 module among all six types
of movements, especially for HO-WE, HO-SU, and WE-SU
groups, while multiple groups of movements had no statistical
similarity.

To provide an intuitive understanding of the shared synergy
and special synergy of all upper extremity movements, we
presented them in a mixture of synergies as described in
Figure 5. Figure 5A shows the shared synergetic module W3
largely of BB, which was the shared synergy of six types
of movements. Additionally, Figure 5B shows the shared
synergetic modules, W largely of extensor muscles and Wy
largely of flexor muscles, for HO, WE, and SU movements,
and Figures 5D-F show the special synergetic module W,
for HO, WE, and SU movements, respectively. The special
synergy for HO was a synergetic module based on the active
muscle EDC, for WE was based on the antagonistic muscles
FCR and FCU, while for SU, it was one of the active muscles
B. Figure 5C also shows the shared synergetic modules W,
and Wy for WF and PR movements, and Figures 5G, H
show the special synergetic module W; for WF and PR
movements, respectively. The special synergy for WF consisted
largely of the antagonistic muscle EDC, while for PR, it
consisted largely of one of the active muscles FCR. Compared
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TABLE 4 Spearman’s correlation coefficients among muscle
synergetic modules from different movements.

Synergy vector| W A A Wy
HO-HC 0.062 0.002 0.662* | 0.047
HO-WE 0.405 0.302 0.684** | 0298
HO-WE 0.783 | 0.004 0.799% | 0.570*
HO-SU 0.807* | 0.067 0702 | 0.569*
HO-PR 0.173 0.009 0.685 | 0.194
HC-WE 0.049 0.549* 0.631 | 0.005
HC-WE 0.012 0.134 0.735% | 0224
HC-SU 0.081 0.015 0.684** | 0235
HC-PR 0.054 0.470 0.644 | 0.001
WE-WE 0.263 0.024 0.885 | 0.021
WE-SU 0.316 0.134 0.820 | 0.093
WE-PR 0.399 0.589* 0.483 0.869*
WE-SU 0.877 | 0340 0.790* | 0.525%
WE-PR 0.021 0.001 0.766* | 0.006
SU-PR 0.066 0.019 0.412 0.065

*p < 0.05,**p < 0.001.

with other movements, the HC movement only shared the
module W3 and it's special synergy were shown in the
Figure 5I.
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FIGURE 5
A mixture of synergies shared across different movements and synergies for specific movements showing six movements have a shared
synergetic module (A); hand open (HO), wrist extension (WE), and supination (SU) have two shared synergetic modules (B); wrist flexion (WF)
and pronation (PR) have two shared synergetic modules (C); and the special synergetic modules (D-I) of six movements.

Discussion

This study illustrated a relatively similar and stable synergy
structure under a movement in humans. The activated muscles
are combined into different modules according to their
functions, which verifies the hypothesis of the modular control
with hierarchy in the CNS (Cheung et al., 2009a; Hagio and
Kouzaki, 2014; Santello and Lang, 2014). Our study showed that
muscle synergy was effective for CNS in solving the problem
of complex movement control with multi-degree of freedom
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which can produce different movements. Similar results are also
found in the research on potential movement behavior (Roh
et al,, 2011). The synergetic effect gathers related muscles and
simplifies the control of special biomechanical characteristics by
activating muscle groups together, such as angle and direction. It
also provides a transition for movement control from task-level
goals to executive-level commands (Safavynia and Ting, 2013;
Min et al., 2018, 2020).

Many studies have confirmed that the low-dimensional

structure of muscle synergy can express the electrical signal
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generated by the specific spatiotemporal combination (Cheung
etal., 2009b; Russo et al., 2014). For example, Filipe Barroso et al.
(2013) found that the EMG signal under different movements
was reconstructed into a series of spatial structure combinations,
which can quantitatively analyze the muscle activation. Our
results about the trend of activation coefficients also reflect
that the corresponding modules of modulation activation have
similar relationships in different individuals, with the CNS as
the control center of human movement production modulation.
Furthermore, the activation coeflicient changes with time,
which reflects the changing excitation contribution of each
module to the muscle synergy mode (Geyer and Herr, 2010;
Balasukumaran et al., 2020). However, the relationship between
the activation scale and the neural control remains to be further
studied.

In this study, we determined the synergetic module as 4
under the six types of upper extremity movements and believed
that the number of synergetic modules was sufficient to explain
the changes in the EMG signal recorded during movement. As
Figure 2 shows, under synergy number 3, the synergy matrix W
had the BB with more components only in W3, which meant
that the BB muscle cooperated with other muscles to maintain
the stability of the upper limb, and there was no obvious
contribution difference between the muscle components in
other synergy matrix component, so the relationship of specific
synergy could not be clarified. However, the contribution of
each muscle component in the synergy matrix was obviously
different in the condition of synergetic number four, which
could show the different synergetic relationships in the WF
movement. In addition, the changes in the activation scale
coefficient C with time showed that each synergetic module was
modulated by the corresponding activation scale coefficient at
different times, and the activation level of different synergetic
modules also changed accordingly, which reflects the excitation
contribution rate C to muscle activation pattern. A similar
conclusion is also found in the study on the collaborative
extraction of human walking and cycling muscles (Barroso et al.,
2013), while in the muscle synergy research on frogs swimming,
jumping, kicking, and other actions, five synergetic modules are
extracted to reconstruct EMG signals (Roh et al., 2011). Hence,
we can infer that the modular number of muscle synergy is
fewer in some low-complexity movements, while in some high-
complexity movements, more modules may be called by CNS to
control movement which can ensure the correct execution of the
task.

Our results also showed that the upper extremity
movements possessed both shared synergetic modules with
higher similarity and special synergetic modules without
statistical similarity. The module W3 under the HC is shared
by the other five movements, which is consistent with the
conclusion that there may be shared synergistic effects in
multiple behavioral activities in related studies (Barroso
et al, 2015). Meanwhile, we also pointed out the special

Frontiers in Human Neuroscience

10

10.3389/fnhum.2022.912440

synergetic modules by comparing the correlation coefficients.
For example, the special synergetic module is their own module
W, for the movement of HO, WE, and SU. Thus, we infer
that the CNS can activate shared modules such as W or
W3 and select an appropriate subset such as W, to form a
muscle synergetic pattern when controlling certain upper
arm movements.

Finally, we found that the changing trend of the scale
coefficient with time was obviously different by comparing
the shared and special synergetic modules under different
movements. When performing a motor task, the CNS controls
the muscles to form different movements by selecting a certain
number of synergies with the modulation change of the
synergetic module, the excitation contribution of each muscle,
and the activation scale coeflicient. The synergistic effect in
humans is also in line with a relatively primitive solution of the
nervous system of spinal animals such as frogs (Roh et al., 2011).
The nervous system uses the direct inhibition or activation of
muscle synergy to adaptively express more precise behaviors by
breaking or avoiding the synergy structure, that is, the process
of synergy modulation.

The limitation of this study is that it only explored muscle
activation and synergism in the time domain, but not in the
frequency domain. This may lack the exploration of multi-
level conclusions. In future studies, we will add the frequency
domain to see the muscle synergy in different frequency
bands. By doing so, a conclusion can be made whether the
muscle synergetic pattern fits well with the time domain.
Another interesting aspect would be studying the setting of
the thresholds for r, which can measure the shared synergy.
Since the selection of the r threshold is very important for
shared synergy, we will consider updating the algorithm in
the future study, so that r can be selected adaptively for
different tasks and individuals. Additionally, we only explored
the muscle activation patterns in healthy humans, while less
referred to the patients with motor dysfunction, such as stroke.
For patients, the activation and inhibition of muscle synergy
may be relatively weakened, so the muscles contract and
expand chaotically due to the synergistic effect, resulting in
a joint response of motor control. Therefore, the exploration
of muscle synergy provides a more theoretical basis for
clinical application.

Conclusion

This study focused on the muscle activation patterns and
the similarity of muscle synergy under different movements.
We found that the synergetic pattern among subjects was
highly similar in the same movement, which showed that
the muscle synergetic module called by the central nervous
system was task oriented. Additionally, this study indicated the
conclusion that muscle synergy between three groups of tasks,
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namely, HO-WE, HO-SU, and WE-SU, showed a significant
similarity, which meant that there were shared synergies among
certain movements. Furthermore, this result confirmed the
shared synergy and special synergy among different movements.
The special synergetic modules meant some unique modules
without participating in other movements. In summary, CNS
forms different movements by selecting synergetic modules,
with the changing of modulation mode of synergy, excitation
contribution of each muscle, and the activation scale coefficient.
This article can effectively describe the muscle activation
pattern under different movements and provide a basis for
exploring the activation pattern of motor control. Future
studies will include an exploration of the multi-level synergy
features in the frequency domain and the adaptability of
conclusion in other parts of the body, such as elbow flexion and
extension. Furthermore, we will investigate whether the same
conclusions exist in patients with motor dysfunction, such as
patients with stroke.
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