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Multi-source joint domain
adaptation for cross-subject and
cross-session emotion
recognition from
electroencephalography
Shengjin Liang, Lei Su*, Yunfa Fu and Liping Wu

School of Information Engineering and Automation, Kunming University of Science
and Technology, Kunming, China

As an important component to promote the development of affective

brain–computer interfaces, the study of emotion recognition based on

electroencephalography (EEG) has encountered a difficult challenge; the

distribution of EEG data changes among different subjects and at different

time periods. Domain adaptation methods can effectively alleviate the

generalization problem of EEG emotion recognition models. However,

most of them treat multiple source domains, with significantly different

distributions, as one single source domain, and only adapt the cross-domain

marginal distribution while ignoring the joint distribution difference between

the domains. To gain the advantages of multiple source distributions, and

better match the distributions of the source and target domains, this paper

proposes a novel multi-source joint domain adaptation (MSJDA) network.

We first map all domains to a shared feature space and then align the

joint distributions of the further extracted private representations and the

corresponding classification predictions for each pair of source and target

domains. Extensive cross-subject and cross-session experiments on the

benchmark dataset, SEED, demonstrate the effectiveness of the proposed

model, where more significant classification results are obtained on the more

difficult cross-subject emotion recognition task.

KEYWORDS

affective brain–computer interface, affective computing, EEG, emotion recognition,
domain adaptation

Introduction

Affective computing is emotion-related computing that helps improve the user
experience during a human-computer interaction (Picard, 2000; Tao and Tan, 2005).
As one of the basic tasks of affective computing, emotion recognition can generate
labels that correspond to emotions such as positive, neutral, or negative emotions
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(Zheng and Lu, 2015; Cambria et al., 2017). Emotion plays an
important role in rational human behavior (Picard, 2000) and
influences people’s daily lives. For example, a positive emotion
often makes people feel good, while a negative emotion may
have the opposite effect. Therefore, research on emotions can
help people better cope with the impact of different emotions
to improve their quality of life. Facial expression and voice are
two recognized forms of sentic modulation that can be utilized
to identify human emotions (Picard, 2000). However, externally
presented behaviors, such as facial expression and voice, are
strongly influenced by individual factors. In addition, they are
very easy to disguise, for instance, one may pretend to smile
in some situations and hide an unusual voice in others. To
achieve more natural emotional communication in the process
of human-computer interaction, we need to find more reliable
methods for emotion recognition.

In recent years, many researchers have gradually focused
on the interesting field of brain–computer interfaces. By
using neural activity generated by the brain, the brain–
computer interface enables harmonious interactions between
the user and the computer (Vallabhaneni et al., 2005).
This makes sense for some people, such as those with
muscle movement difficulties (Vallabhaneni et al., 2005),
who now have an opportunity to apply a brain–computer
interface to communicate more amicably with devices or other
people. An affective brain–computer interface (Nijboer et al.,
2009) is a technique that can detect the user’s emotional
states from brain activity (Zheng and Lu, 2015). There
are various methods of recording brain activity (Ramadan
and Vasilakos, 2017), including electrocorticography (ECoG),
magnetoencephalography (MEG), and electroencephalography
(EEG). EEG is widely used in the study of affective brain–
computer interfaces (Zheng and Lu, 2015; Chai et al., 2016;
Zhang et al., 2021) due to its many advantages, such as non-
invasiveness, practicality, high temporal resolution, and high
accuracy (Vallabhaneni et al., 2005; Ramadan and Vasilakos,
2017; Egger et al., 2019). Unlike external modalities such as facial
expression and voice, EEG signals are not easily camouflaged,
and thus EEG-based emotion recognition methods can more
objectively evaluate the user’s emotional states.

However, the brain presents non-stationary states under
the interference of some internal or external factors (Ramadan
and Vasilakos, 2017), which means that an EEG measuring
brain activity has the property of non-stationarity (Paluš, 1996).
Hence, EEG signals vary within and between subjects, which
poses a huge challenge to the research of affective brain–
computer interfaces based on EEG. Personality, environment,
and many other factors may cause individual differences in the
EEG signals of different subjects. Furthermore, one’s EEG signals
will constantly change over time. Existing studies have shown
that there are large differences in the EEG data distributions
of different subjects, and the EEG data distribution of the
same subject varies at different time periods (Chai et al., 2016;

Li et al., 2019b; Shen and Lin, 2019). As a result, the performance
of the pretrained emotion recognition model is worse than
expected when it is applied to other subjects or different sessions
of the same subject, corresponding to cross-subject and cross-
session scenarios, respectively. To this end, traditional methods
(Zheng and Lu, 2015; Alhagry et al., 2017; Zhong et al., 2020)
need to collect and label a large amount of EEG data for
training a model from the subject waiting to be tested to satisfy
the important assumption that training data and test data are
independently and identically distributed (i.i.d.) in traditional
machine learning. However, such methods undoubtedly will
critically affect the user experience.

To decrease the amount of training data required for
test subjects and reduce the time-consuming and laborious
data labeling work, transfer learning (Pan and Yang, 2009)
or domain adaptation (Patel et al., 2015) was introduced into
EEG emotion recognition research to address cross-domain
problems. Domain adaptation techniques can leverage the
useful knowledge learned from existing subjects or sessions
(referred to as the source domain) to facilitate learning on other
subjects or sessions (referred to as the target domain). Many
current domain adaptation methods tend to reduce the marginal
distribution difference between the source and target domains
while usually simply assuming that the conditional distributions
between them will automatically match or remain unchanged.
Moreover, most works simply merge multiple subjects from
existing source domains into one single source domain, without
considering the differences in data distribution among the
different subjects. This may bring some performance gains to
the model due to the increased amount of data. However,
directly merging multiple source domains with different data
distributions may cause confusion in the distribution of the
merged data, which limits the further improvement of model
performance (Zhu et al., 2019; Chen et al., 2021).

To take full advantage of the data distributions of
multiple source domains, this paper proposes a novel multi-
source joint domain adaptation (MSJDA) network to improve
the generalization ability of the EEG emotion recognition
model across subjects and sessions. We assume that the
EEG data in the source domains are fully labeled, and the
target domain data are unlabeled, which is congruent with
unsupervised domain adaptation. We construct a multi-source
EEG emotion recognition network, which is divided into three
parts, a domain-shared feature extractor, domain-private feature
extractors, and domain-private label predictors. First, a domain-
shared feature extractor extracts the general features for all
the domains. Second, each pair of source and target domains
is further mined by a domain-private feature extractor for
specific features that are beneficial for distinguishing emotion
categories. Third, with labeled source domain data, a domain-
private label predictor can be trained separately for each
source domain. Moreover, we employ joint maximum mean
discrepancy (JMMD) (Long et al., 2017) to match the joint
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distributions of each pair of source and target domains across
multiple specific network layers. Our model can simultaneously
train label predictors and reduce the distribution differences
across domains. Finally, the predictions of target domain
samples can be jointly determined by the predictions of all the
source classifiers.

There are two main contributions in this paper. The first is a
multi-source joint domain adaptation network proposal, which
helps to solve the problem of cross-domain generalization in
EEG emotion recognition. The second is our extensive cross-
subject and cross-session transfer experiments on a publicly
available emotion EEG dataset that verify the effectiveness of the
proposed method.

The remainder of this paper is organized as follows. Section
“Related work” presents some of the research most relevant to
this paper. The proposed network model is described in detail
in the section “Materials and methods.” The content related
to the experiments, such as the dataset and the experimental
results, will be given in the section “Experiments.” “Discussion”
discusses and analyzes the proposed model. Finally, the section
“Conclusion” summarizes our main work.

Related work

Domain adaptation, especially in unsupervised scenarios
of transferring knowledge from a labeled source domain to
an unlabeled target domain, has been extensively studied in
fields such as computer vision and natural language processing.
In this section, we mainly review the domain adaptation
algorithms that are most relevant to this paper. To address the
challenge of model performance degradation across different
subjects or sessions, domain adaptation techniques have been
gradually applied to EEG emotion recognition in recent years.
Among the numerous previous works, there are two popular
types of approaches.

One approach employs metrics to measure and minimize
the distribution discrepancy across domains. Once the cross-
domain distance is reduced to an acceptable level, a model
trained with source supervision can better predict target
samples. One of the most commonly used metrics is the
maximum mean discrepancy (MMD) (Gretton et al., 2006),
which represents the distance between two distributions in a
reproducing kernel Hilbert space (RKHS). Zheng et al. (2015)
introduced transfer component analysis (TCA) (Pan et al., 2010)
to address the cross-subject generalization problem in EEG
emotion recognition. TCA can minimize the MMD between
the source and target domains in a latent space to reduce the
marginal distribution difference between them while preserving
their useful data properties. Based on TCA, joint distribution
adaptation (JDA) (Long et al., 2013) takes into account the
conditional distribution by iteratively optimizing the pseudo
labels of the target samples. Previous studies have shown

that deep learning has the capability to automatically learn
better feature representations, and thus there is a benefit to
embedding domain adaptation into neural networks. A deep
adaptation network (DAN) (Long et al., 2015) was applied to
the problem of individual differences in EEG signals, where the
multi-kernel MMD was calculated for the difference between
source and target subjects in the last two layers of the neural
network (Li et al., 2018). To avoid the degradation of the
emotion classification model in cross-subject and cross-session
situations, Liu et al. (2021) adopted joint adaptation networks
(JAN) (Long et al., 2017) to align the joint distributions of
two domains. However, they directly merged all subjects or
sessions of the source domains into one single source domain
without bearing in mind the multi-source scenario in practical
application.

The other approach is to extract domain-invariant features
through adversarial learning. Generative adversarial nets
(GANs) (Goodfellow et al., 2014) generate new samples from
random noise that are indistinguishable from the training data,
meaning they can make two different distributions similar.
Naturally, the idea of adversarial learning is introduced into
the study of domain adaptation. Jin et al. (2017) exploited
a domain-adversarial neural network (DANN) (Ganin and
Lempitsky, 2015; Ganin et al., 2016) to improve the accuracy
of emotion recognition across subjects. The gradient reversal
layer (GRL) included in DANN is a key component to
extract the domain-invariant features. Through two stages of
pretraining and adversarial training, Wasserstein generative
adversarial network domain adaptation (WGANDA) (Luo et al.,
2018) learned independent source and target generators to
map the corresponding domain to a common feature space,
in which the target distribution was moved closer to the
source distribution to deal with the cross-subject domain shift
problem. Li et al. (2019a) matched the marginal and conditional
distributions of latent representations from the source and
target domains in the shallow and deep layers of the network,
respectively. Although their method approximated matching
joint distributions, they only considered the scenario of one
single source domain. To reduce the calibration time of the
cross-subject emotion recognition model, Zhao et al. (2021)
explicitly extracted the shared representations of all subjects
and the private representations of each subject and enhanced
the domain invariance of the shared representations through
a domain classifier. They treated each subject independently,
but their approach only considered the marginal distributions
between domains.

The above methods validated their performance under
different settings, indicating that domain adaptation can
generalize models for EEG emotion recognition. In affective
brain–computer interfaces, we are usually given labeled
data from multiple subjects or sessions. Moreover, the data
distributions of the different subjects differ from each other,
as do the different sessions of the same subject. However,
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most of the above methods simply merge different subjects
or sessions of the source domains into one single domain,
ignoring the differences between them. Many methods assume
that after aligning the marginal distributions of source and
target domains, their conditional distributions are automatically
aligned or remain unchanged throughout the process, which
may not always be the case in practical application. Therefore,
this paper considers the cross-subject and cross-session
scenarios and treats different source subjects or sessions as
different source domains, while the target domain contains one
subject or one session. We then propose a multi-source joint
domain adaptation network that aligns the joint distribution of
the deep features and classification predictions for each source
domain and target domain.

Materials and methods

This section introduces a metric for the difference between
two joint distributions, followed by a formal description of our
proposed multi-source joint domain adaptation network.

Metric between joint distributions

In the domain adaptation problem, if the data distributions
of two domains are different, the intuitive approach is to
seek some well-performing metrics to help reduce the domain
differences. Related studies (Gretton et al., 2006; Song et al.,
2013; Long et al., 2017) reveal that a probability distribution can
be embedded as a point in an RKHS H by an implicit feature
map φ, which is called the kernel embedding of distribution.
One of its most common applications is MMD (Gretton et al.,
2006), which is able to determine whether two samples come
from different distributions. MMD can be expressed as the
distance between the kernel embeddings of the corresponding
marginal distributions. In actual computation, the implicit
feature map φ is usually implemented by operations on kernel
functions, such as the Gaussian RBF kernel and Laplace kernel
(Song et al., 2013).

When two or more random variables are involved,
according to Song et al. (2013) and Long et al. (2017), the
kernel embedding of their joint distribution can be represented
as an element in a tensor product feature space. Specifically,
for the joint distribution P

(
Z1, ...,Zm) obeyed by m variables

Z1, ...,Zm, a set DZ1...Zm =
{(
z1

i , ..., z
m
i
)}n

i = 1 of n i.i.d. samples
is given. Then, using an implicit feature map ⊗m

l = 1φ
l in the

tensor product feature space⊗m
l = 1H

l, the kernel embedding of
this joint distribution can be estimated empirically as:

CZ1...Zm =
1
n

n∑
i = 1
⊗

m
l = 1φ

l
(
zl

i

)
. (1)

To measure the discrepancy between two joint distributions,
Long et al. (2017) proposed a metric called the JMMD.

The JMMD can be interpreted as the squared distance
between the kernel embeddings of two joint distributions.
It is often embedded in a neural network to evaluate the
difference in the joint distributions of activations from two
domains across multiple layers. Given two different domains
sampled from joint distributions Ps (Xs,Ys) and Pt (Xt,Yt),
their corresponding sample sizes are ns and nt , respectively.
After forward propagation in the neural network, these two
domains separately produce activations

{(
zs1

i , ..., z
s|L|
i

)}ns

i = 1

and
{(

zt1
j , ..., z

t|L|
j

)}nt

j = 1
in multiple domain-specific layers L.

Their joint distributions Ps (Zs1, ...,Zs|L|) and Pt (Zt1, ...,Zt|L|)
are considered to still be different and can act as proxies for
the joint distributions Ps (Xs,Ys) and Pt (Xt,Yt) of the original
data, respectively (Long et al., 2017). Based on the empirical
kernel embedding of the joint distribution mentioned above,
the finite sample estimate of the JMMD between the two joint
distributions Ps (Zs1, ...,Zs|L|) and Pt (Zt1, ...,Zt|L|) is

JMMD
(
Ps, Pt)

=

∣∣∣∣∣
∣∣∣∣∣ 1

ns

ns∑
i = 1
⊗
|L|
l = 1φ

l
(
zsl

i

)
−

1
nt

nt∑
j = 1
⊗
|L|
l = 1φ

l
(
ztl

j

)∣∣∣∣∣
∣∣∣∣∣
2

⊗
|L|
l = 1Hl

.

(2)

The multi-source joint domain
adaptation network

In the cross-domain EEG emotion recognition problem, it is
often necessary to deal with multiple domains with significantly
different distributions. To reduce the cost of labeling training
data for the target task, experience can be gained from multiple
labeled source subjects to help predict the target subject. When
data are prone to staleness, the predictions of a new session for
one subject can benefit from its known multiple labeled sessions.

Unlike many existing studies that directly combine multiple
source domains into one single source domain, we try to
explore a more challenging and practical multi-source scenario
in which each source domain with a different distribution
is treated as an independent source domain. In multi-source
unsupervised domain adaptation, K distinct source domains
Ds =

{
Dsk

∣∣ k = 1, ...,K
}

, where the k-th source domain
Dsk =

{(
xsk

i , y
sk
i
)}nk

i = 1 contains nk i.i.d. labeled examples drawn
from the joint distribution Psk (Xsk ,Ysk), and a target domain
Dt =

{
xt

j

}nt

j = 1
of nt i.i.d. unlabeled examples sampled from the

joint distribution Pt (Xt,Yt), are generally given. It is assumed
that the joint distributions of different source domains are not
equal to each other, and each source domain and target domain
also have different joint distributions. Our aim is to reduce
the difference between the labeled K source domains and the
unlabeled target domain to make the extracted features domain-
invariant so that the source learner has better performance when
applied to the target domain.
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FIGURE 1

The proposed multi-source joint domain adaptation (MSJDA) framework. For brevity, here, only the i-th and j-th (i 6= j and i, j ∈ {1, ..., K}) of the
K source domains are selected to present our network framework.

Network framework
We propose a network capable of handling multiple

domains with different distributions for the cross-
domain EEG emotion recognition problem. As shown
in Figure 1, our proposed Multi-Source Joint Domain
Adaptation (MSJDA) framework consists of three parts:
(a) domain-shared feature extractors, (b) domain-
private feature extractors, and (c) domain-private label
predictors.

A domain-shared feature extractor E refers to a shared
network structure through which the EEG data of all the source
and target domains first pass. Its goal is to enable the neural
network to learn abstract representations that are shared by
different domains. These representations should be general to all
domains for subsequent further processing. For an input sample
x from a specific domain, the feature extracted by E is denoted
as e = E (x).

Each of the domain-private feature extractors,
F =

{
Fk
∣∣ k = 1, ...,K

}
, is a separate feature extraction

structure for each pair of the k-th source domain and the target
domain, which follows the domain-shared feature extractor
E. In other words, there are K network branches after E, each
of which corresponds to one source domain. The role of Fk
is to extract some deep representations relevant to the final
classification task for each pair of source and target domains.
If ek is used to uniformly represent the general features of the
k-th source domain or the target domain input to Fk, then the
output corresponding to Fk is fk = Fk (ek).

The domain-private label predictors are denoted as
G =

{
Gk
∣∣ k = 1, ...,K

}
, where Gk is connected to Fk.

We treat each labeled source domain as an independent
source domain. Each source domain has an independent label
predictor, which is trained by means of supervised learning
and connected to the corresponding private feature extractor.
The output of the k-th label predictor can be expressed as
gk = Gk (fk).

Our work is inspired by the work of Zhu et al. (2019),
who proposed a multiple feature spaces adaptation network
to address the cross-domain image classification problem in
computer vision. They utilized MMD to match the marginal
distributions of each pair of source and target domains
and reduced the prediction divergence of individual source
classifiers on target samples. Different from the work of
Zhu et al. (2019), our method separately considers the joint
distributions of each pair of source and target domains and does
not need to align classifiers from different source domains.

Model optimization
For a labeled source domain sample, the error between its

predicted label and its ground-truth label, which we call the
label prediction loss, can be calculated by the cross-entropy loss
function LCE (·, ·). The label prediction loss for the k-th source
domain is:

Lk
LP =

1
nk

nk∑
i = 1

LCE
(
Gk
(
Fk
(
E
(
xsk

i
)))
, ysk

i
)
. (3)

After passing through the domain-shared feature extractor,
the unlabeled data of the target domain will enter the network
branch of each source domain. In this way, we measure the
JMMD between each source domain and target domain in a
one-to-one manner. The network model proposed here only
takes into account the case where each label predictor has one
layer, but it can also be easily generalized to the multilayer
case. The domain-private feature fk and label prediction gk, i.e.,
the activations of the last two layers of each network branch,
are used to compute the joint distribution difference (joint
adaptation loss) in these layers for each pair of source and target
domains. This difference is taken as an approximation of the
difference in the original joint distributions of the corresponding
source and target domains. Then, the joint adaptation loss
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between the k-th source and target domains is computed as:

Lk
JA =∣∣∣∣∣
∣∣∣∣∣ 1

nk

nk∑
i = 1

φ1
(
fsk
k,i

)
⊗ φ2

(
gsk

k,i

)
−

1
nt

nt∑
j = 1

φ1
(
f t

k,j

)
⊗ φ2

(
gt

k,j

)∣∣∣∣∣
∣∣∣∣∣
2

H1⊗H2

.

(4)

Therefore, the total loss function is the sum of the label
prediction loss and the joint adaptation loss; that is, the objective
function of the proposed network is

Ltotal =
1
K

K∑
k = 1

(
Lk

LP + λLk
JA

)
, (5)

where λ > 0 is the tradeoff parameter between the two losses.
The objective function is optimized as

min
E,F,G

Ltotal, (6)

to improve the performance of the label predictors and reduce
the distribution difference between the source and target
domains, thereby learning discriminative and domain-invariant
feature representations.

During training, the EEG data samples of one of the source
domains and target domain are input to fit the model in each
iteration. At test time, the prediction of each sample in the target
domain is determined by the average of the outputs of all the
label predictors.

Experiments

We compare the proposed MSJDA network with several
baseline methods in cross-subject and cross-session scenarios.

Dataset

To verify the effectiveness of the proposed MSJDA model,
we conducted extensive cross-domain EEG emotion recognition
experiments on the benchmark dataset SEED (Zheng and Lu,
2015). SEED is a public dataset for evaluating the performance
of EEG emotion recognition models, in which the EEG signals
were collected from 15 subjects with an average age of 23.27,
consisting of 7 males and 8 females. When they watched some
specially selected emotional movie clips, the electrode caps they
wore synchronously recorded the corresponding EEG signals.
The electrode cap used has 62 channels, and their positional
layout follows the international 10-20 system. Each subject was
asked to participate in three experiments that collected EEG data
on different days. Each such experiment was called a session.
In a data collection session, each participant was required to
perform 15 consecutive trials. In each trial, each subject was
required to watch a carefully prepared emotional movie clip of
approximately 4 min in length and self-evaluate it with the aim

One Session

45-sec Self-
assessment

5-sec Start 
Hint

4-min Movie 
Watching 15-sec Rest

Trial i
Trial 
15

Trial 
1

FIGURE 2

Flowchart of the acquisition of EEG in one session for one
subject.

of eliciting positive, neutral, or negative emotions. The number
of movie clips was the same for each emotion; in other words,
each emotion corresponded to roughly the same number of
samples. The flowchart of EEG acquisition is shown in Figure 2.

The raw EEG data first were preprocessed, including
downsampling to 200 Hz, removing artifacts from the signals,
and passing through a bandpass filter between 0 and 75 Hz.
Next, the preprocessed data were further divided into five
frequency bands, namely, delta (1–3 Hz), theta (4–7 Hz), alpha
(8–13 Hz), beta (14–30 Hz), and gamma (31–50 Hz). In previous
studies (Duan et al., 2013; Zheng and Lu, 2015), the differential
entropy features were shown to be more suitable for emotion
recognition than other features under the same conditions.
Many domain adaptation works in EEG emotion recognition
have adopted differential entropy features as sample data fed to
the models (Zheng et al., 2015; Li et al., 2018; Liu et al., 2021;
Zhao et al., 2021). So we follow them to use such features. The
differential entropy feature (Duan et al., 2013) was extracted
from the time series data of each frequency band for each
channel as:

DE (X) = −
∫

X p (x) log
(
p (x)

)
dx = 1

2 log
(
2πeσ2), (7)

where X is a random variable with Gaussian distribution
N
(
µ, σ2), and its corresponding probability density function is

p (x). Finally, the number of samples per session was 3394. Each
sample had a dimension of 310 (62 times 5) and was generated
from one second of raw EEG data.

Implementation details

We conducted the cross-domain transfer experiments in
two scenarios. One scenario was the cross-subject transfer
experiment, which takes the new subject as the target domain
and the existing subjects as the source domains. The other was
the cross-session transfer experiment that used the new session
as the target domain and the existing sessions of the same subject
as the source domains. In all the experiments, we adopted
the leave-one-out cross strategy; that is, each time, one subject
(session) was selected as the target domain, and the remaining
subjects (sessions of the same subject) were selected as the source
domains, so that each subject (session) had a chance to be the
target domain. It should be noted that our MSJDA did not have
access to the labels of the target domain during the training of
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FIGURE 3

Results of cross-subject experiments in the first session.

FIGURE 4

Results of cross-subject experiments in the second session.

the model, which means that it was an unsupervised domain
adaptation method.

The proposed network was compared with several baseline
methods. The regularization parameter C of the support vector
machine (SVM) was fixed to 1, and a linear kernel was
chosen for it. The settings of TCA (Zheng et al., 2015) and

JDA (Long et al., 2013) were basically the same, that is,
the dimension of the latent space was 30, the regularization
parameter was 1, and a subset of size 5000 was randomly
selected from all the source samples as the source domain
data for the model training (it is difficult to include all
the source samples with limited memory). In addition, since
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FIGURE 5

Results of cross-subject experiments in the third session.

TABLE 1 Average results of cross-subject experiments (%).

Method Session 1 Session 2 Session 3 All sessions

Mean Std. Mean Std. Mean Std. Mean Std. P-value

SVM 72.32 6.97 70.20 11.47 73.64 10.50 72.06 9.72 ***

KPCA 72.57 10.57 71.04 14.55 68.68 13.28 70.76 12.72 ***

TCA 74.89 6.38 74.75 9.23 72.96 10.59 74.20 8.75 ***

JDA 76.84 10.84 74.81 10.95 75.72 9.53 75.79 10.26 ***

MLP 76.59 7.06 74.79 10.06 77.05 11.00 76.15 9.36 ***

JAN 80.68 6.55 73.58 10.74 78.22 9.74 77.49 9.45 ***

MEERNet 80.96 6.87 76.74 8.75 78.48 11.02 78.73 9.01 ***

MSJDA 83.60 7.82 79.95 9.12 81.97 11.15 81.84 9.37 –

The p-values correspond to paired samples t-tests between our proposed method and other comparison methods (***p< 0.0001).

JDA is an iterative method, we chose its iteration number
to be 10. Since TCA involves the process of dimensionality
reduction, Kernel Principal Component Analysis (KPCA)
(Schölkopf et al., 1997; Zheng et al., 2015), a traditional
dimensionality reduction method, is often used for comparison.
For KPCA, the number of components was set to 30, and
the source domain contained the same number of samples
as TCA. For the multilayer perceptron (MLP) and JAN (Liu
et al., 2021), their entire architectures consist of multiple
fully connected layers (512-256-128-64-32-3). The activations
of the last two layers in the network were used to calculate
the JMMD for JAN. The methods mentioned above combine
all source domains into one single source domain. Methods
without transfer techniques (SVM and MLP) directly apply

their models trained on the source domain to the target
domain.

For our proposed MSJDA method, the number of neurons
in each layer of the domain-shared feature extractor is 512,
256, and 128. Each domain-private feature extractor has 2 layers
with 64 and 32 neurons, respectively. Each domain-private label
predictor has one layer with an output size of 3. Each source
domain extends a network branch after passing through the
domain-shared feature extractor, where the activations of the
last two layers of each network branch are used to compute the
joint adaptation loss.

Furthermore, Multi-Source EEG-Based Emotion
Recognition Network (MEERNet) (Chen et al., 2021) is a
multi-source method that computes MMD loss to reduce the
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difference between source and target domains, and its network
structure is similar to our method.

For the neural network-based methods, the setting of the
learning rate, α = α0/

(
1+ βp

)γ, is the same as that in
Ganin and Lempitsky (2015), where α0 = 0.0001, β = 10,
γ = 0.75, and p (linearly increasing from 0 to 1) represents
the training progress of the model. For JAN, MEERNet, and
our MSJDA, the value of the tradeoff parameter is computed by
λ = 2/

(
1+ e−ηp)

−1 with η = 10 so that it varies from 0 to 1,
which also follows the setting in Ganin and Lempitsky (2015).

In addition, the differential entropy features for each session
of each subject are separately standardized before being fed to
the model to speed up convergence.

Cross-subject experimental results

First of all, we verify the superiority of the proposed network
in cross-subject experiments. Most of the existing studies only
select the EEG data of one session from each subject for
transfer experiments. For a more comprehensive comparison,
we conducted cross-subject experiments in 3 different sessions.
Specifically, each subject has EEG data from 3 sessions, and
previous studies have shown that the data distribution varies
between sessions. Accordingly, it is not appropriate to directly
combine all sessions for each subject, so we conducted three
cross-subject experiments. The data for the i-th (i ∈ {1, 2, 3})
cross-subject experiment consisted of the i-th session of all the
subjects. The mean accuracy (Mean) of the i-th session refers to
the average of 15 test accuracies obtained by taking each of the
15 subjects in turn as target domain (corresponding remaining
subjects as source domains), where all subjects’ data are from the
i-th session. The standard deviation (Std.) corresponding to the
mean accuracy is also calculated.

The results of the cross-subject experiments are shown in
Figures 3–5 and Table 1. “All Sessions” in Table 1 means
that the experimental results of all three sessions were directly
averaged. Some important observations can be drawn from the
experimental results.

First, methods based on deep neural networks perform
much better than non-deep ones. The most obvious result
is that the MLP (76.15%) without the transfer technique is
better than the best non-deep method JDA (75.79%), which
adopts the transfer technique. This indicates that, although
the differential entropy features manually extracted from
the raw EEG data are used in the experiments, a deep
neural network can still discover some deep representations
from such features that are beneficial for distinguishing
emotion categories.

Second, among traditional methods without deep learning,
the transfer learning-based methods (TCA and JDA) are better
than SVM without transfer technique; the same finding is also
found in the deep methods, that is, JAN, MEERNet, and MSJDA

are clearly better than MLP. Therefore, transfer learning can
reduce the difference between the source and target domains,
making the model perform better in the target domain.

Third, both JDA and TCA are better than KPCA, which
only performs dimensionality reduction. This shows that there
is still a large difference between the source and target domains
after only performing dimensionality reduction. By explicitly
reducing the differences between domains, the distribution
between domains can be better aligned, thereby improving the
performance of the model on the target domain data.

Fourth, JDA with JDA performs better than TCA with only
a marginal distribution adaptation. This shows that, compared
to just adapting the marginal distributions of the source and
target domains, adapting the joint distributions can reduce more
differences between the domains, resulting in better results.

Fifth, our MSJDA outperformed JAN and MEERNet by
4.35% (p < 0.0001) and 3.11% (p < 0.0001) on average,
respectively. Compared with JAN, such an observation suggests
that in the multi-source scenario, the target domain acquires
more beneficial knowledge from multiple independent source
domains than from one single merged source domain. MSJDA
narrows the distance between each source domain and target
domain by aligning their joint distributions of deep features
and predictions, making it better than MEERNet, which only
considers single-layer feature adaptation to match marginal
distributions. Hence, the superiority of the proposed MSJDA is
demonstrated in the cross-subject experiments.

Sixth, we also note that in the cross-subject experiments
in Session 2, most methods achieved worse results than the
other sessions. It can be deduced that Session 2 should be more
difficult to handle than the other two sessions. However, in
Session 2, our method still achieved the highest mean accuracy,
indicating that our model has better generalization abilities.

Cross-session experimental results

For cross-session experiments, each subject needs to
conduct three experiments, respectively, so that the three
sessions of the same subject are taken as target domain in turn
(the remaining sessions of the same subject as source domains).
To better evaluate the performance of the model, we did not
average the experimental results for each subject. Instead, the
mean accuracy of the i-th (i ∈ {1, 2, 3}) session refers to the
average of 15 test accuracies, each obtained by one of the 15
subjects using the i-th session as the target domain.

The results of the cross-session experiments are presented in
Figures 6–8 and Table 2. “Session 1,” “Session 2,” and “Session
3” in Table 2 denote different target sessions (which are different
from those in Table 1 for cross-subject experimental results),
while “All Sessions” means that the results of all three cross-
session experiments were directly averaged. Several observations
can also be drawn from the cross-session experimental results.
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FIGURE 6

Results of cross-session experiments for each subject being transferred from their respective source sessions to their first session.

FIGURE 7

Results of cross-session experiments for each subject being transferred from their respective source sessions to their second session.

First, the results of the cross-session experiments are
generally much better than those of cross-subject experiments.
It can be seen that the difference in data distribution between
different sessions of the same subject is much less than
that between different subjects. Intuitively, this is reasonable
because the difference in EEG signals between subjects is

usually large due to individual factors. In contrast, the
data distribution for the same subject varied less over a
shorter period of time (approximately a week or longer in
the SEED dataset).

Then, the same observations as the cross-subject
experiment can be obtained; that is, deep learning-based
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FIGURE 8

Results of cross-session experiments for each subject being transferred from their respective source sessions to their third session.

TABLE 2 Average results of cross-session experiments (%).

Method Session 1 Session 2 Session 3 All sessions

Mean Std. Mean Std. Mean Std. Mean Std. P-value

SVM 87.18 6.11 85.93 8.95 86.37 8.57 86.49 7.81 ***

KPCA 83.75 7.54 82.62 9.57 83.19 10.67 83.19 9.15 ***

TCA 81.11 7.27 81.18 10.81 82.55 9.40 81.61 9.08 ***

JDA 85.53 8.69 83.92 10.84 84.72 12.84 84.72 10.69 **

MLP 87.18 6.33 86.38 8.01 87.01 7.46 86.86 7.14 ***

JAN 89.53 4.72 88.05 8.80 87.21 6.33 88.26 6.74 *

MEERNet 87.98 7.79 87.07 10.57 87.76 8.25 87.60 8.76 **

MSJDA 91.36 4.87 89.54 8.83 89.75 6.58 90.22 6.84 –

The p-values correspond to paired samples t-tests between our proposed method and other comparison methods (*p< 0.01; **p< 0.001; ***p< 0.0001).

methods perform better than those without deep learning,
and transfer learning-based methods (such as MSJDA
and JAN) outperform methods (MLP) without transfer
techniques. It can be seen that the combination of transfer
learning and deep learning can learn more transferable feature
representations, thereby improving the effect of knowledge
transfer. Likewise, JDA matching the joint distribution clearly
outperforms TCA matching the marginal distribution in terms
of average accuracy.

Additionally, we observe that SVM performed
surprisingly well, even better than the transfer learning
methods TCA and JDA. There may be two reasons for
this. On the one hand, the data distribution of different
sessions of the same subject does not vary greatly. On

the other hand, SVM covers all source samples, while
TCA and JDA only use a subset of the source samples
due to limited memory. Under the influence of these
factors, the transferability of shallow transfer learning
methods is limited.

Finally, our proposed MSJDA achieved the best results,
improving by 1.96% (p < 0.01) and 2.62% (p < 0.001)
over JAN and MEERNet, respectively. In connection with the
previous cross-subject experiments, it can be seen that when
there is a large difference across domains and the number of
source domains is large, MSJDA can achieve a more significant
performance improvement compared to the baseline method.
When the number of source domains increases, the framework
of MSJDA can be easily extended. This makes a lot of sense in

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2022.921346
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-921346 September 13, 2022 Time: 8:17 # 12

Liang et al. 10.3389/fnhum.2022.921346

FIGURE 9

Convergence times of JAN, MEERNet and MSJDA.

practical applications when we have data from multiple domains
with different distributions.

Discussion

Computational cost

The domain-shared feature extractor of MSJDA and
MEERNet has the same amount of network parameters as
that of JAN, while the domain-private feature extractors
and label predictors of MSJDA and MEERNet have K
times the amount of network parameters of JAN, where
K is the number of source domains. We compare the
computational cost of JAN, MEERNet, and MSJDA by
comparing their convergence times in a single cross-
subject transfer experiment. As shown in Figure 9, as
the number of source domains increases, JAN has an
advantage in the convergence time, while the convergence
times of MEERNet and MSJDA are very close. This means
that MSJDA achieves better transfer results for EEG
emotion recognition at a very close computational cost to
MEERNet.

Confusion matrix

The confusion matrix of predictions for MSJDA in a
cross-subject transfer experiment is shown in Figure 10.
It can be found that the prediction accuracy of positive
emotion is the highest, followed by negative emotion
and neutral emotion. Additionally, negative emotion is
easily predicted as neutral emotion and vice versa. This
indicates that negative emotion may be close to neutral
emotion, making it difficult to distinguish one from the
other.

FIGURE 10

The confusion matrix of predictions in a cross-subject transfer
experiment.

Superiority

Based on the previous experimental results and
findings, below we will discuss the reasons why MSJDA
outperforms the other methods. (1) MSJDA is constructed
by a neural network, which can extract more transferable
features compared with shallow methods (such as TCA
and JDA). (2) MSJDA aligns the joint distribution of
features and predictions in the network, which can
make the source and target domains more similar than
the baseline method, MEERNet that only aligns the
marginal distribution. (3) Compared to the baseline
methods (such as JAN) that only consider a single source
domain, MSJDA is able to exploit multiple available
source domains to reduce the distribution difference
between each source domain and target domain, thus
achieving better performance with the help of multiple
label predictors. (4) MSJDA benefits from being able to
integrate all these advantages. In other words, MSJDA
has the ability to embed a joint adaptation module into
the neural network and utilize each of the multiple
source domains for adaptation with the target domain
separately. Therefore, MSJDA outperforms the baseline
methods in both cross-subject and cross-session EEG
emotion recognition.

Conclusion

In this paper, we address the challenge of the insufficient
generalization abilities of the EEG emotion recognition models
in cross-subject and cross-session scenarios. To better transfer
knowledge from multiple source domains to the target
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domain, we propose a multi-source joint domain
adaptation network that separately matches the
joint distributions of deep features and classification
predictions for each pair of source and target
domains. The cross-domain EEG emotion recognition
experiments demonstrate the effectiveness of the
proposed method.
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