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The multi-armed bandit (MAB) problem models a decision-maker that optimizes its

actions based on current and acquired new knowledge to maximize its reward. This

type of online decision is prominent in many procedures of Brain-Computer Interfaces

(BCIs) and MAB has previously been used to investigate, e.g., what mental commands

to use to optimize BCI performance. However, MAB optimization in the context of BCI

is still relatively unexplored, even though it has the potential to improve BCI performance

during both calibration and real-time implementation. Therefore, this review aims to

further describe the fruitful area of MABs to the BCI community. The review includes

a background on MAB problems and standard solution methods, and interpretations

related to BCI systems. Moreover, it includes state-of-the-art concepts of MAB in BCI

and suggestions for future research.

Keywords: multi-armed bandit (MAB), Brain-Computer Interface (BCI), reinforcement learning, calibration, real-

time optimization

1. INTRODUCTION

The multi-armed bandit (MAB) problem, introduced by Robbins (1952), models an agent
(decision-maker) that wishes to optimize its actions with the goal of maximizing the expected
reward from these actions. The agent must decide between multiple competing actions based on
only partial knowledge of their expected rewards and only gains new knowledge after an action is
taken. In other words, the agent has to explore the action-space before it has enough knowledge
to start to exploit the learned best action. The exploration vs. exploitation trade-off is recognized
from reinforcement learning, which MABs are one the simplest form of Sutton and Barto (2018).
MABs have been applied to many different fields of research, such as healthcare, finance, and
recommender systems (Bouneffouf and Rish, 2019).

This paper aims to review the MAB framework for the general Brain-Computer Interfaces
(BCIs) community. The exploration vs. exploitation tradeoff exists naturally within the procedures
of BCI systems, such as deciding which data or paradigm to utilize for a particular task. It is
especially so in the online setting, where properties of different choices might only be partially
known but become better understood as more data is gathered. The MAB framework provides a
structured approach for designing and analyzing BCI systems.

It is assumed that the reader is familiar with the BCI-field and we refer to, e.g., Nicolas-Alonso
and Gomez-Gil (2012) or Nam et al. (2018) for any of the BCI-related nomenclature used in the
paper. In Section 2, MABs are introduced as well as the algorithms often used to solve them. Section
3 highlights existing examples of MABs in the context of BCIs, while Section 4 provides suggestions
for future research. Finally, someMAB programming packages are listed in Section 5 and the paper
is concluded in Section 6.
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2. MULTI-ARMED BANDITS THEORY—A
CRASH COURSE

2.1. The MAB Problem Formulation
The MAB problem is described as: at each time instant t,
an agent chooses an action at out of K possible actions and
receives a reward rat . In a BCI setting, MABs could be used
to optimize calibration data collection for motor imagery (MI)
experiments as in Fruitet et al. (2012). Then, t corresponds to
the next time for data collection, K to the available MI classes,
at to the class for the next data collection, and rat to the
increase of classification accuracy when retraining the classifier
with the newly gathered data. The reward for each action is
not known beforehand. Moreover, the rewards are governed by
some probability distribution. This means that the agent needs to
perform an action a, oftenmultiple times, in order to gain enough
knowledge to accurately estimate or predict the reward ra (Sutton
and Barto, 2018).

The aim in a MAB problem is to design a strategy, or policy
φ, for the agent on how to choose the actions such that the

gain, Gφ(T) = E

[

∑T
t=1 rat

]

is maximized. The policy is based

on the agent’s gathered knowledge from previous actions. The
time horizon T, also called the agent’s budget, is always finite in
practice. However, when theoretically analyzing MAB problems,
results for finite and infinite time-horizons, T → ∞, exist,
summarized and explained in Burtini et al. (2015) and Lattimore
and Szepesvári (2020a).

In the original MAB problem the rewards are stationary with
a binary distribution; 1 or 0, win or lose, with a probability θa of
a win (Robbins, 1952). A beta distribution (see, e.g., Faisal et al.,
2020) is often used to describe the distribution of θa (different
actions have different beta distributions; Scott, 2010). An estimate
of the probability to win with an action, θ̂a, can for instance be
sampled as αa

αa+βa
where αa and βa are the number of wins and

losses for that action, respectively. The certainty of the estimate
increases with the number of samples.

Another common assumption on the rewards’ distribution
is Gaussianity, see Faisal et al. (2020) for a definition. The
reward can then take any value, not only 0 or 1. Each
action has an unknown true mean µ for the reward and a
standard deviation σ . Upon receiving a reward, the agent can
update the estimated values µ̂ and σ̂ (Sutton and Barto, 2018).
Many other assumptions on the rewards’ distributions can be
made, and we refer to Lattimore and Szepesvári (2020b) for
further information.

The MAB problem can be varied in multiple ways. For
instance, the probability distributions of the rewards rat can
be considered to be stationary or changing over time. The set
of possible actions K can be fixed or non-fixed. The reward
distributions could change depending on contextual information,
and the policy of the agent needs not be restricted to one action
at a time. Table 1 illustrates the so-called original MAB problem,
restless and switching bandits, mortal and sleeping bandits,
contextual bandits as well as dueling bandits, some common
variants of MAB problems.

2.2. Algorithms for Solving MAB Problems
The aim for all algorithms, also called policies, is to balance the
exploration vs. exploitation of the actions (Sutton and Barto,
2018). Here, we present the most common algorithms in the
context of the original MAB problem formulation. We refer to
the survey by Burtini et al. (2015) and the book by Lattimore and
Szepesvári (2020a) for other algorithms.

The regret, Rφ(T), is used to evaluate and compare algorithms.
It is the difference between the total reward for the best action and
the agent’s gained reward over the time horizon T. In Equation
(1), r∗ is the best achievable reward, i.e., the expected reward for
the best action, and rat is the agent’s received reward at each time
step using the policy φ. The theoretical (upper) bounds on the
regret, meaning the worst-case expected regret after n number
of plays, are often compared for different policies. If the regret
bound is logarithmic, the optimal action is found with the policy.
Analysis of the lower bounds on the regret shows the best case
for finding the optimal action (Burtini et al., 2015; Lattimore and
Szepesvári, 2020b).

Rφ(T) = Tr∗ − E

[

T
∑

t=1

rat

]

= Tr∗ − Gφ(T) (1)

2.2.1. Random Policy
In the random policy, the agent takes a random action at each
time instance. This policy is often used as a baseline when
comparing policies—a policy should not be worse than the
random policy.

2.2.2. ǫ-Greedy Policy
The agent gets an initial estimate of each action’s reward by
performing each action once. In a greedy policy, the agent
always chooses the action with the highest estimated reward. This
method only exploits and never explores after the initial phase.
If the agent’s initial reward estimates are off, the policy will be
stuck in always choosing a non-optimal action, giving a linear
regret growth.

In the ǫ-greedy policy on the other hand, the agent chooses
the best action but with an ǫ probability picks a random
action (Sutton and Barto, 2018). The occasional random action
forces the agent to explore all actions, which helps the agent
to better estimate the actions’ rewards so the agent can exploit
the best action. Though the occasional random action will force
the agent to act non-optimally, which is unwanted. Gradually
decreasing ǫ over time reduces the probability of such non-
optimal actions. Theoretically, such ǫ-decreasing policies can
be constructed which guarantee logarithmic bounds on regret
(Auer et al., 2002), which is a significant improvement over
linear growth.

Another variant of the ǫ-greedy policy is the ǫ-first policy. The
agent takes a random action for the first ǫT time steps and picks
the action with the highest estimated reward for the remaining
(1 − ǫ)T steps. This policy has proven to be superior to the ǫ-
greedy policy when the time horizon is known and the rewards
are stationary (Burtini et al., 2015).
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TABLE 1 | Overview of MAB variants and their characteristics compared to the

original MAB problem.

Multi-armed bandit

variant

Characteristic

Original MAB problem Static reward and fixed set of

actions

Restless and switching

bandits

Non-static reward

Mortal and sleeping bandits Set of available actions changes

Contextual bandits Rewards change based on state

of surrounding environment

Dueling bandits Agent chooses two actions at

each time step

2.2.3. Upper Confidence Bound (UCB)
In the Upper Confidence Bound (UCB) algorithm, the agent
looks at the estimated reward plus an extra margin based on
the uncertainty of the reward’s estimate. The extra margin is
calculated from the number of actions that have been taken in
total and the number of times that action has been taken. The
algorithm for the next action at is mathematically described as
Equation (2) where r̂a is the estimated reward for that action, t
is the current time step, na is the number of times the action has
been taken and c > 0 is a parameter. The UCB algorithm was
extensively developed in Auer et al. (2002) and is summarized in
Sutton and Barto (2018).

at = argmaxa



r̂a + c

√

ln t

na



 (2)

The UCB algorithm does not have any assumption on the
distribution of the rewards, and its regret is logarithmically
bounded, as proven in Auer et al. (2002). There are many
variants of the UCB algorithm that cope with non-stationary
rewards or contextual information, such as LinUCB, Adapt-Eve,
DiscountedUCB, and SlidingWindowUCB (Burtini et al., 2015).

2.2.4. Thompson Sampling
Thompson sampling, first introduced in Thompson (1933), also
called probability matching, is an algorithm for MABs with
binary rewards. The idea is to match the probability of choosing
an action to its probability of being the best action. This means
that the agent samples an estimated reward, θ̂a, from each action’s
beta distribution and chooses the action with the highest such θ̂a.
The theoretical regret bound is logarithmic (Agrawal and Goyal,
2012).

3. CURRENT USE OF
MULTI-ARMED BANDITS IN
BRAIN-COMPUTER INTERFACES

There is limited use of MABs in BCI systems today. The
following subsections describe two applications which together
are representative of the state-of-the art of MAB in BCI. The

MAB formulations utilized in these applications are variants of
the original MAB problem formulation previously explained.

3.1. One Button BCI—Improving
Calibration
Fruitet et al. (2012) have a BCI system with one button that
the user can press by Motor Imagery (MI) movements, e.g.,
imagining moving the right hand (Pfurtscheller and Neuper,
2010). Different motor imagery tasks are optimal for different
users and might also differ between sessions. Fruitet et al. aim
to improve the calibration of such systems by focusing data
collection on MI high-performing tasks rather than collecting
data for all MI tasks, as in uniform calibration. In their MAB
problem formulation, the set of actions K correspond to the
available MI tasks, the time-horizon T to the total number of data
samples to collect, the action at to the MI task of the following
data sample to collect, and the reward rat to the classification rate
of the corresponding MI task. The goal for MAB problems is to
maximize the total reward, while the goal for Fruitet et al. is to
maximize the classification rate of the optimal MI task. Despite
the slight goal difference, the exploration vs. exploitation trade-
off is the same, and Fruitet et al. have based their algorithm on the
UCB algorithm. They report higher classification rates with their
algorithm than the uniform calibration approach. In a follow-
up paper (Fruitet et al., 2013), they try their algorithm in an
online setting and proves it to be more efficient than the uniform
calibration approach, confirming their findings in the first paper.

3.2. Multi-Armed Bandits in P300
Spellers—Real-Time Implementations
In the original setup for a P300 speller, the letters are arranged
in a grid, and a P300 signal is elicited when the row/column with
the target letter is highlighted (Rezeika et al., 2018; Riggins and
Scott, 2020). In the paper Ma et al. (2021), they use Thompson
sampling to shorten the time for finding the target letter by
reducing the number of non-target row/column highlights. In
their MAB problem formulation, the set of actions K correspond
to the available stimuli groups of letters to highlight, the action
at to the next group, and the reward rat (being 0 or 1) to
whether the selected group contained the target letter or not. The
actions’ rewards follows a beta distribution where θ̂a represents
the probability of the action’s corresponding stimuli group
containing the target letter. Their algorithm selects and evaluates
multiple actions in each iteration, in contrast to classical MAB
algorithms that select one action at each step. They use a pre-
defined stopping criterion rather than a fixed time-horizon T.
They conclude that the use of MABs improve the performance
of the BCI system.

There are multiple variants of MABs in P300 spellers, e.g.,
Koçanaoğulları et al. (2018) and Guo and Huang (2021). The
MAB problem formulation in Koçanaoğulları et al. (2018) is
similar to Ma et al. (2021) (above), but Koçanaoğullari et al.
additionally include language models as a priori information for
the MAB algorithm. In Guo and Huang (2021), the agent uses
a variant of the UCB algorithm which interprets EEG signals as
contextual information when choosing actions. Only two actions
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with a binary reward rat are available at each time step (the set of
K is two actions), respectively, representing if the EEG signal had
a P300 component or not.

4. DISCUSSION OF FUTURE USE OF
MULTI-ARMED BANDITS IN
BRAIN-COMPUTER INTERFACES

There are many promising uses for MABs in BCI systems. Here,
we present some directions for future research and draw parallels
to the MAB variants in Table 1. It is worth noting that mainly the
original MAB formulation has been investigated in the context of
BCI in literature, as is evident from the previous section.

4.1. Attention Selection
Adaptive hearing aids are currently being developed by many
world-leading hearing aid companies. Often, adaptation is based
on EEG measurements of the user’s brain activity, deciphering
their experienced hearing comfort. Hence, the adaptive hearing
aid is in fact a BCI system, e.g., aiming to identify and aid the user
in listening to an attended sound source (Alickovic et al., 2019).

In a MAB formulation of BCI based attention steering, each
action corresponds to the hearing aid aiding the user in listening
a surrounding sound source. The reward for each action should
reflect the user’s satisfaction with the hearing aid’s selected sound
source and could be measured from EEG data as Error potentials
(ErrP) (Abiri et al., 2019), or the overall mental state (Krol et al.,
2018). The MAB problem can be formulated in a few different
ways based on different assumptions:

i) Within a limited time, the surrounding sound sources are the
same, and the user keeps the same interest in them. Hence, the
reward for each action is stationary, analogous to the original
MAB formulation.

ii) The user can change their preferred sound source at any time,
which can be modeled with non-stationary rewards, such as a
switching bandit formulation. One can assume as in Hartland
et al. (2007) that it is only the best action that has a change in
the reward, which means that the user can only lose interest in
the target source, rather than hearing something else that gains
their interest.

iii) Another approach would be to assume that sound sources can
appear and disappear more or less randomly, which could be
viewed as a mortal bandit problem as in Chakrabarti et al.
(2008).

4.2. Data for Transfer Learning
A problem for BCI systems is the long calibration time due to
the need for diverse data. Using data from previous sessions or
persons and using transfer learning to adapt the old data to the
current session is one solution (Lotte, 2015). To find relevant
data, one can among other approaches use tensor decomposition
(Jeng et al., 2021), Riemannian geometry (Khazem et al., 2021), or
a generic machine learning model (Jin et al., 2020). In Gutiérrez
et al. (2017), they use the classic MAB problem to find clusters
of data in a big medical data set which increases the classification
accuracy. The set of actions K, corresponds to the clusters, and

the reward rat mirrors the classification accuracy when using
training data from the selected cluster. A similar setup could be
used for transfer learning with BCI data.

4.3. Optimal Calibration Data
Another solution to the problem with calibration time (Lotte,
2015) is to collect calibration data cleverly. Instead of collecting
from all classes, as in uniform calibration, data could be collected
from the class that would improve the classification accuracy the
most. Finding the optimal class could be formulated as a MAB
problem where the set of actions K represent the available classes,
and the reward rat the gain in classification accuracy. Non-
stationary rewards are a challenge in this setup since they will
change with the current classification performance. Compared to
the “one button BCI” described in Section 3.1, the aim here is
to have a “multi-button BCI system” using all classes for control,
while the “One button BCI system” aims to find a single optimal
class and solely use that one for control (Fruitet et al., 2012,
2013). Another application would be for choosing the stimulation
frequencies in a SSVEP-BCI.

4.4. Best Stopping Time
Another interesting aspect of the calibration phase in BCI
systems raised in Fruitet et al. (2012) is to find the best stopping
time. This means that the MAB agent stops taking actions before
reaching the time horizon T. Stopping time is discussed in
Lattimore and Szepesvári (2020a) for several algorithms. For the
BCI system, this means that the calibration phase automatically
stops, e.g., when the optimal class has been found for the task or
when no further improvements to the classification can be made.

5. GETTING STARTED WITH
MULTI-ARMED BANDITS IN BCI
RESEARCH

For most popular programming languages one can find examples
of MABs (Github, 2022). Among other ready to use packages are:
“SymPyBandits” for Python (Besson, 2018), “Bandits” for Julia
(Celles et al., 2020), and “Contextual” for R (van Emden and
Kruijswijk, 2020). None of these packages are aimed at MABs in
BCIs. Hence, we provide a pedagogical Python script for MAB
novices that can act as a starting point for future BCI research,
inspired by Fruitet et al. (2012): https://gitlab.control.lth.se/
FridaH/mab_for_bci-public/-/tree/main/MAB_for_BCI_1.

6. CONCLUSION

Multi-armed bandits (MABs) have been used successfully in
many fields, yet few applications for Brain-Computer Interfaces
(BCIs) exist. Firstly, this review summarizes MABs to the BCI
community. Common algorithms to solve the classic MAB
problem with stationary rewards include the ǫ-greedy policy,
the UCB algorithm, and Thompson sampling, all with the aim
to balance the trade-off between exploration and exploitation of
available actions. Secondly, the review highlights current research
that interprets and solves BCI problems as MAB problems,
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prominently occurring in calibration optimization and real-
time implementations of BCI systems. Finally, some suggestions
are provided on promising further research directions in the
intersection of MABs and BCIs.
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