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Joint Analysis of EEG and fMRI datasets can bring new insight into brain

mechanisms. In this paper, we employed the recently introduced Correlated

Coupled Tensor Matrix Factorization (CCMTF) method for analysis of the

emotion regulation paradigm based on EEG frontal asymmetry neurofeedback

in the alpha frequency band with simultaneous fMRI. CCMTF method assumes

that the co-variations of the common dimension (temporal dimension)

between EEG and fMRI are correlated and not necessarily identical. The

results of the CCMTF method suggested that EEG and fMRI had similar

covariations during the transition of brain activities from resting states to task

(view and upregulation) states and these covariations followed an increasing

trend. The fMRI shared spatial component showed activations in the limbic

system, DLPFC, OFC, and VLPC regions, which were consistent with the

previous studies and were linked to EEG frequency patterns in the range of

1–15 Hz with a correlation value close to 0.75. The estimated regions from

the CCMTF method were then used as the candidate nodes for dynamic

functional connectivity (dFC) analysis, in which the changes in connectivity

from view to upregulation states were examined. The results of the dFC

analysis were compared with a Normalized Mutual information (NMI) based

approach in two different frequency ranges (1–15 and 15–40 Hz) as the NMI

method was applied to the vectors of dFC nodes of EEG and fMRI data. The

results of the two methods illustrated that the relation between EEG and fMRI

datasets was mostly in the frequency range of 1–15 Hz. These relations were

both in the brain activations and the dFCs between the two modalities. This

paper suggests that the CCMTF method is a capable approach for extracting

the shared information between EEG and fMRI data and can reveal new

information about brain functions and their connectivity without solving the

EEG inverse problem or analyzing different frequency bands.
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Introduction

Neurofeedback is a non-invasive brain training technique
for modulation of brain activity/function with several medical
and non-medical applications like emotion regulation
(Hammond, 2005; Sterman and Egner, 2006; Jarusiewicz,
2008; Johnston et al., 2010; Scharnowski et al., 2012;
Enriquez-Geppert et al., 2019; Van Doren et al., 2019). In
neurofeedback as self-regulation of brain activity/function,
the brain activity/function is acquired, quantified, and then
returned to the participant to modulate and regulate the
brain mechanism toward a special level or direction. EEG
and fMRI are two neuroimaging modalities used for emotion
regulation neurofeedback. EEG frontal asymmetry was used
in several previous studies for emotion regulation using
the power spectrum of frontal EEG channels in the special
frequency band (Peeters et al., 2014; Allen and Reznik,
2015; Quaedflieg et al., 2015; Kelley et al., 2017; Mennella
et al., 2017; Reznik and Allen, 2018; Dehghani et al., 2020b).
For emotion regulation based on fMRI neurofeedback,
amygdala activity as feedback was used in several previous
neurofeedback studies (Zotev et al., 2016; Barreiros et al.,
2019).

EEG and fMRI modalities record different aspects of
brain activations. While EEG acquires neural oscillations,
fMRI records the Blood Oxygen Level Dependent (BOLD)
signal which reflects changes in deoxyhemoglobin and blood
oxygenation coupled to underlying neuronal activity. EEG has
high temporal resolution while its spatial resolution is low.
On the other hand, fMRI has a high spatial resolution, but its
temporal resolution is low and is affected by Hemodynamic
Response Function (HRF). Therefore, the two modalities can
be used simultaneously to compensate for the deficiencies of
one another (Cichy and Oliva, 2020). Recent advances in data
acquisition have made it possible to simultaneous recording
of these two modalities and it utilizes the advantages of
both modalities. The effectiveness of simultaneous EEG and
fMRI neurofeedback was demonstrated in previous studies
(Zotev et al., 2014, 2018b; Zich et al., 2015; Perronnet et al.,
2017; Lioi et al., 2018, 2020). Integration of EEG and fMRI
provides a better understanding of brain mechanisms during
neurofeedback, especially because of the low spatial or temporal
resolution that each modality has it alone. Therefore, the
fusion of EEG and fMRI modalities provides complementary
and valuable information for a deep understanding of brain
mechanisms during neurofeedback and may help to explain
and extract the Spatio-temporal brain regions which are
undetectable with only one modality (Daunizeau et al.,
2007).

In recent years, several methods have been developed for
the fusion of EEG and fMRI. Among them, several methods
are based on joint factorization of these two modalities such
as Canonical Correlation Analysis (Correa et al., 2010), joint

Independent Component Analysis (ICA) (Moosmann et al.,
2008), and Independent Vector Analysis (Lee et al., 2008)
in which a matrix representation of data is employed and
an objective function is minimized to find out the common
profiles. On the other side, there is N-way Partial Least Square
(N-PLS) (Martínez-Montes et al., 2004), Advanced Coupled
Matrix Tensor Factorization (ACMTF) (Acar et al., 2014),
and Correlated Coupled Matrix Tensor Factorization (CCMTF)
(Mosayebi and Hossein-Zadeh, 2020) methods based on matrix
and tensor representation of the two modalities in which an
objective function is defined such that the common signature
between a matrix and a tensor is estimated.

Tensors are arrays with higher dimensions. Therefore, for
multi-dimensional data such as EEG (channel, Spectrum, trial,
and so on), tensors are proper choices and permit the natural
representation of the dataset. Also, with tensor-based methods
for fusion of EEG and fMRI data, the relation of more features is
extracted between the two modalities. For example, the relation
between the EEG spectrum and channel maps with the fMRI
spatial maps are extracted while an amplitude modulation of
these signatures is also estimated. In this paper, we used the
CCMTF method to estimate the shared and hidden information
between EEG and fMRI datasets through neurofeedback and
retrieve the positive autobiographical paradigm. Then, the
extracted fMRI spatial information is used for state-wise
connectivity analysis to analyze the connectivity changes across
the transition of different states.

CCMTF method was introduced by Mosayebi and Hossein-
Zadeh (2020). This method has superiority over the other
two tensor-based methods (ACMTF and N-PLS). The ACMTF
method considers an identical shared profile between the two
datasets, which is a confining assumption and is not always
acceptable in two different modalities such as EEG and fMRI
with many differences in their physiological measures. On the
other hand, compared to the N-PLS method, in the CCMTF
method, the significance of each component is estimated, and
the interpretation of the results is more justifiable in the case of
over-factorization. In Mosayebi and Hossein-Zadeh (2020), the
authors have made a full comparison between these methods.
As a result, employing the CCMTF method for the fusion
of EEG and fMRI datasets has more advantages compared
with the other methods and makes it a proper choice for the
fusion analysis of EEG and fMRI data, especially in an emotion
neurofeedback paradigm for a deep understanding of brain
mechanisms.

The details of EEG and fMRI datasets used in this
study were described in Dehghani et al. (2020a). The task
contained three main blocks, named “Rest,” “View,” and
“Upregulate.” These datasets are arranged such that the
common profile is considered across the state mode and
reflects the amplitude modulation of other features, such as
EEG Spectrum, EEG channel maps, and fMRI spatial profile.
We estimate the fMRI spatial locations that have similar
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amplitude modulation in EEG data. The estimated brain regions
are then compared with the results of the GLM analysis
and ICA method. The corresponding frequency content and
channel map are also estimated simultaneously in the CCMTF
method.

The candidate regions are then employed as the nodes of
a connectivity graph to analyze the variation of connections
between these nodes during the transition from view to
upregulation states. In the sham group, the connectivity graph
is also analyzed in the candidate regions to determine the effect
of the neurofeedback on the connectivity among the selected
nodes. To form the connectivity graphs, Pearson correlation is
used between the BOLD signals in each Region of Interest (ROI).
The results of the connectivity analysis are then compared
with a previous study (Wirsich et al., 2020). In this study,
a Normalized Mutual Information (NMI) method is used to
extract the shared dynamics in the matrix of EEG and fMRI
connectivity.

This paper is organized as follows. In section “Materials
and methods,” the tensor factorization, the CCMTF method,
and the NMI approach are briefly introduced. The experimental
paradigm and application of the CCMTF method on the
experimental data are described in section “Data.” The
results are illustrated in section “Results,” and sections
“Discussion” and “Conclusion” are devoted to discussion and
conclusion of the paper.

Materials and methods

Tensor decomposition

Tensors are multiway arrays with higher dimensions.
Principle Component Analysis, Singular Value Decomposition,
or other matrix factorization methods employ two features
of multi-dimensional datasets. For multivariate data such
as EEG, tensors are useful for the estimation of the
interdependency between different features and the underlying
profiles. A multiway tensor χ can be decomposed using different
techniques. Among these techniques, Canonical Polyadic
Decomposition (CPD) or PARAFAC is very noticeable because
of its unique property. Besides CPD, Block Term Decomposition
and Tucker decomposition are other widely used methods.
Consider the χ ∈ RI × M × N as a three-way tensor, then its CP
decomposition is written as follows (Yilmaz et al., 2011):

χ =

R∑
r = 1

λra◦r b◦r cr (1)

where, ar , br , and cr are the components in the first, second
and third mode, respectively, R is the rank of χ and λr is the
corresponding weight. The symbol “o′′ represents the vector
outer product. We use this decomposition in the next section.

Correlated coupled matrix tensor
factorization

CCMTF method is developed for the fusion of a tensor and
a matrix with similar covariations in their common profiles. The
objective function is expressed as follows:

g
(
Ay, B, Ax, C, D

)
= ||Y − Ay6BT

||
2

+ ||χ− [[λ;Ax, C, D]] ||2

+ µ
∑R

r = 1

(
1− e−

(σrλr )2
ε

)
(
1− C

(
ayr, axr

))
+ β||λr||1 + β||σr||1

s.t.||ayr|| = ||br|| = ||axr||

= ||cr|| = ||dr|| = 1

for r = 1, . . . , R (2)

Y is the data matrix in which Ay and B are its two underlying
factors in a singular value decomposition approach and 6 is
the diagonal matrix with σ as its diagonal entries. χ is the data
tensor in which Ax, C, and D are its three underlying factors
in a Canonical Polyadic Decomposition approach. Ay and Ax

are the common profiles between the two datasets and λ is the
weight (singular value). T is denoted as matrix transpose, µ, ε,
and β are penalty parameters which are described in Mosayebi
and Hossein-Zadeh (2020), R is the total rank of datasets and C
is defined as the squared correlation between the corresponding
components of the common profiles as follow:

C
(
axr, ayr

)
=
(
corr

(
axr, ayr

))2

=

(
(axr − axr)

T(ayr − ayr)

|| (axr − axr) ||||
(
ayr − ayr

)
||

)2

(3)

Components are the columns of each factor. The
shared components are discriminated against with unshared
components using the values of λ and σ. If these two weights
have simultaneously significant values for two corresponding
components in datasets, these two components are considered
shared, otherwise, the components are unshared. In the third

term in (2),
(

1)e−
(σrλr )2

ε

)
is defined as an adaptive penalty

parameter in Mosayebi and Hossein-Zadeh (2020), that limits
the significance of the third term only to the shared components.
Therefore, only the correlation between the shared components
is maximized.

Normalized mutual information

The results of the current study are compared with a method
based on NMI, which has been published in Wirsich et al. (2020).
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NMI is computed for vectors of dynamic functional connectivity
(dFC) of two identical nodes between EEG and fMRI datasets.
The NMI metric is:

Y (E, F) =
H (E)+H(F)

H(E, F)
(4)

In which, H(E) and H(F) are the entropies of EEG and fMRI
dFCs and H(E, F) is the joint entropies of two dFCs.

Data

Neurofeedback paradigm and data
acquisition

The research protocol was approved by the ethics
committees of the Iran University of Medical Sciences,
Tehran, Iran. 18 healthy subjects (age 26.7 3.6 years, all-male
as the experimental group, and 14 healthy subjects (age 27
3.8 years, all-male) as the control group participated in this
study. The paradigm and data collection were described in
detail in previous studies (Dehghani et al., 2020a,b, 2021, 2022).
As a short description, the experimental paradigm in this
study was according to retrieving positive autobiographical
memories and the effectiveness of the neurofeedback paradigm
was demonstrated in the previous studies (Dehghani et al.,
2020a,b, 2021, 2022). The experimental paradigm included 10
runs of three blocks, namely, rest, view, and upregulation with
a duration of 20, 40, and 60 s with 4–6 s intervals between View
and Upregulation blocks. During the rest block, participants
were asked to relax without doing anything. In the view
block, two pictures (from individual positive autobiographical
memories) were presented for 40 s and participants were asked
to see them without remember anything. In the upregulation
block, two images like the previous view block were presented
and participants were asked to retrieve the autobiographical
positive memories related to the presented images and increase
the height of the neurofeedback bar. Neurofeedback was
presented only in the upregulation period based on the
approach–withdrawal hypothesis (Davidson, 1998) and was
calculated as the difference between the EEG power in the right
and left hemispheres in the alpha frequency band in 2 s time
windows, updated every 1 s with 50% overlap between the
consecutive windows. Participants in the control group received
sham neurofeedback according to the random signal proposed
in Dehghani et al. (2020a,b).

The MRI data were acquired using a 3 Tesla Scanner
(Prisma, Siemens, Erlangen, Germany) located in the National
Brain Mapping Lab (NBML), Tehran, Iran. Functional MRI
were acquired using a T2∗-weighted gradient-echo, echo-
planar (EPI) pulse sequence (TR = 2,000 ms, TE = 30 ms,
flip angle = 90◦, matrix size = 64 × 64 × 30, and voxel
size = 3.8 × 3.8 × 4 mm). Structural images were acquired

using a gradient-echo, T1-weighted MPRAGE pulse sequence
(TI = 1,100 ms, TR = 1,810 ms, TE = 3.47 ms, and voxel
size = 1× 1× 1 mm).

The 64-channel EEG data were recorded at 5K samples/s
simultaneously with fMRI using an MRI-compatible EEG
system (Brain Products, München, Germany) according to
the 10–20 system.

Correlated coupled tensor matrix
factorization for neurofeedback
paradigm

Before applying the CCMTF method, it is necessary to
choose the common profile between EEG and fMRI data.
Preprocessing pipline of EEG and fMRI were completely
described in previous study (Dehghani et al., 2020b). For
EEG data, several steps, e.g., removing fMRI artifact, detecting
the QRS complexes from an ECG channel, removing the
pulse (ballistocardiography/BCG), and finally ICA for removing
eye blinking, head movement, and cardioballistic or BCG
residual were done. For fMRI data, preprocessing methods like
slice-timing correction, motion correction, temporal high pass
filtering (cut-off = 0.005 Hz), and spatially smoothing using
an 8 mm full-width at half-maximum Gaussian kernel were
applied. Considering the paradigm for data acquisition, in each
run, we have three distinctive states. At first, the resting state
with a total duration of 20 s is recorded, followed by a 40
s duration of view state, in which two different pictures are
shown to the subject, each with a duration of 20 s. Then,
the upregulation state is recorded which has a total duration
of 60 s, in which two different pictures are shown alongside
the neurofeedback signal and each picture has a duration of
30 s. In each run, we have considered four different features
for analyzing the data, including states, spectrum, and channel
maps for EEG and states and spatial locations for fMRI. The
state feature is the common profile between the two modalities.
In the other words, in each state, we computed the spectrum of
EEG signals for each electrode and then arrange the resulting
data in a matrix. This procedure is repeated for the next runs.
We divided the view and upregulation states into two similar
states corresponding to each illustrated picture, to have more
data in the state mode. Therefore, in state mode, there are 10
rows corresponding to the rest state, 20 rows corresponding to
the view state, and 20 rows corresponding to upregulation state,
resulting in 50 rows in state mode. In each state row, we have a
matrix computed from EEG data in the spectrum and channel
dimensions. For fMRI data, the BOLD signal is averaged during
the data acquisition procedure in each state. As a result, for each
state of fMRI data, we have a vector corresponding to the average
BOLD value of each voxel of the brain. The idea of averaging
the BOLD signal stems from the fact that the average BOLD
signal is increased during the neurofeedback in comparison to
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FIGURE 1

The arrangement of datasets for CCMTF method.

the other two states (Birbaumer et al., 2009; Dehghani et al.,
2020b).

As a result, we have a three-way array for EEG data with
state, spectrum, and channel topoplots as its three modes and a
matrix for fMRI data with state and voxels as its two modes. The
dimension of state mode, spectrum mode, channel mode, and
voxels mode are 50, 256, 64, and 63,665, respectively.

The CCMTF method is then applied to the configured data
sets as follows:

g
(
Sf , V, Se, F, C

)
= ||Y − Sf 6VT

||
2

+ ||χ− [[λ; Se, F, M]] ||2

+ µ
∑R

r = 1

(
1− e−

(σrλr )2
ε

)
(
1− C

(
sfr, ser

))
+ β||λr||1 + β||σr||1

s.t.||sfr|| = ||vr|| = ||ser||

= ||fr|| = ||mr|| = 1

for r = 1, . . . , R (5)

Where, Y and χ represent the fMRI and EEG datasets,
respectively. Sf and Se are the state factor of fMRI and EEG
data, V is voxel factor, F is frequency spectrum factor, and M
is channel map factor. The objective function in (5) factorizes
EEG tensor and fMRI matrix such that the shared components
of the common profile (state mode) are maximally correlated.
Therefore, we find the underlying amplitude modulation across
the states captured by both EEG and fMRI datasets.

As it is shown in Figure 1, the common mode is the state
feature which depicts the variation of the other features (EEG
spectrum and channel map and fMRI spatial component) over
time. Hereinafter, we call this mode the Amplitude Modulation
(AM) mode because it shows the amplitude modulation of the
other features in the datasets. It is noteworthy to mention that
we extract the common neural activities between EEG and fMRI
which their amplitude modulation profiles in these three states
are maximally correlated.

Results

Results of the correlated coupled
tensor matrix factorization method

The CCMTF method is applied to the configured datasets.
One important point before applying the CCMTF method is to
select the rank of the dataset. For this purpose, the rank of the
EEG tensor is computed using the Corcondia test. The best rank
according to the value of the Corcondia test is 2. To choose the
rank of the total dataset, we start from this value and compute
the components for larger values of R. As we increase R, we
observe that repetitive components or some components with
no biological concept are estimated. Therefore, the value of R
is selected as equal to 2. Besides, for R greater than 2, some
of the weights in EEG and fMRI data become simultaneously
zero, which indicates the over-factorization problem. The most
important point is that for all values of R, only one shared
component between EEG and fMRI is extracted and we are
interested in this shared component.
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FIGURE 2

The results of CCMTF method: (A) the correlation matrix between EEG and fMRI modulation profiles, (B) EEG frequency components, (C,D) EEG
topoplots, and (E) EEG and fMRI amplitude modulation, solid lines show the EEG AM profile.

Figure 2 illustrates the results of applying the CCMTF
method. Figure 2A shows the correlation value between the
EEG and fMRI components. As can be seen in this figure, the
second component of EEG data is correlated with the fMRI
component with a correlation value close to 0.75. The first EEG
component has no corresponding counterpart in fMRI data
and therefore no significant correlation is estimated. Figure 2B
shows the frequency spectrum of two EEG components. The
unshared component contains a wide range of frequency
rhythms from alpha to gamma oscillations. Its corresponding
EEG topoplots in Figure 2C show activations in parietal and

occipital regions. On the other hand, the shared frequency
component contains parts of theta and the whole range of alpha
oscillations, in which the EEG topoplots in Figure 2D show
neural activation in parietal, occipital and frontal regions (Zotev
et al., 2018a).

In Figure 2E, the amplitude modulation of neural activities
across each state follows an increasing trend. This phenomenon
shows that the extracted brain activities increase from rest
to view and then from view to upregulation (The samples
from 1 to 10, 11 to 30, and 31 to 50 are corresponding
to resting, view, and upregulation state). In the lower plot
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FIGURE 3

The activated regions in fMRI spatial component that are FDR corrected at the level of 0.05 for multiple comparisons. The slice numbers from
left to right are 15, 19, 23, 27, 31, 35, 39, 46, 50, 52, and 56 in MNI coordinate.

of Figure 2E, an interesting jump in EEG component from
samples 30 to 31 shows an effective increase in brain activity in
upregulation, with respect to the view state. The corresponding
fMRI component in Figure 3 illustrates activation in amygdala,
caudate, cerebellum, cingulate cortex, cuneus, inferior temporal
lobe, insula, hippocampus, palladium, putamen, superior frontal
gyrus, superior parietal gyrus, thalamus, middle temporal gyrus,
frontal operculum, occipital lobe, middle frontal gyrus, inferior
frontal gyrus, and ventral striatum, and corrected for multiple
comparisons using false discovery rate (FDR) at the level of
0.05. This change is confirmed by previous results of emotion
regulation paradigms (Zotev et al., 2014, 2016; Dehghani et al.,
2020a,b), that the neural activation in these regions increases
in response to neurofeedback signals. The phenomenon shows
the increase of average BOLD signal from rest to view and view
to upregulation, which confirms the shape of the estimated AM
components in the two modalities.

We also used the results GLM and ICA methods to the
fMRI data (Dehghani et al., 2020a,b) for comparison with the
CCMTF method. The stimulus pattern is used as the regressor
for GLM analysis, and 45 independent components are extracted
for the ICA method. The activated regions are reported in
Table 1. The extracted brain regions by CCMTF are in limbic,
frontal, temporal, and occipital regions. The involvement of
these regions justifies according to emotion regulation models
in previous studies (Kohn et al., 2014; Dehghani et al., 2020b).
As a short description, limbic and deep brain regions like the
amygdala, insula, thalamus, caudate, putamen, and palladium
play a key role in emotion regulation/generation, recalling
positive and negative memories and they connect with several
regions involved in emotion regulation especially prefrontal and
frontal regions. Prefrontal/frontal cortex regions are involved
in a wide range of activities related to emotion and recalling
memories. Activation of parietal regions is related to these
regions’ role in attention deployment, especially to positive
images presented to recall the individual autobiographical
(Andersen, 1997; Svoboda et al., 2006; Ochsner and Gross, 2008;

Bracht et al., 2009). As is illustrated in Table 1, the active regions
obtained by the CCMTF method are similar to those obtained
by ICA and GLM methods. However, there are some differences
as a result of joint analysis of EEG and fMRI in the CCMTF
method.

Brain connectivity changes

To estimate the dynamics of brain connectivity from the
view to the upregulation state, we used the estimated activated
regions of the previous section as the candidate nodes of the
brain connectivity graph. Therefore, for this analysis, there are
30 candidate nodes for each connectivity matrix in each state.
In each state, the correlation coefficient between the averaged
BOLD signals of the voxels of each region is computed between
the candidate nodes, and a connectivity graph is generated.
This graph shows the strength of connectivity between the
activated regions of the previous section in each state. Besides
the individual connectivity of each state, we want to observe the
changes in connectivity during the transition of the states in the
neurofeedback paradigm. To accomplish this, we used the two
paired t-tests on the view-upregulation connectivity matrices.
Then, the results are thresholded at the p-value of 0.05 to extract
the significant variations of connectivity between each pair.

The connectivity graph is extracted with the BrainNet
Toolbox (Xia et al., 2013). Figure 4 shows the individual
connectivity graph for each state in the brain.

There are a few links generated only in the upregulation
blocks. Two assumptions are considered about these links. They
can be because of neurofeedback or recalling autobiographical
paradigm. To examine these assumptions, we used a control
group who received a sham neurofeedback. The activated
regions of the CCMTF method in Table 1 was used as the
nodes of the connectivity graph in the control group. Then,
the connectivity variations from view state to upregulation state
were computed for the control group. Then, the links created in
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TABLE 1 The extracted activated ROIs obtained by CCMTF, GLM, and ICA methods.

Method Activated regions

CCMTF Amygdala, caudate, cerebellum, cingulate cortex, cuneus, inferior temporal lobe, superior frontal gyrus, superior parietal gyrus, middle temporal gyrus,
middle frontal gyrus, inferior frontal gyrus (VLPFC, DLPFC, and OFC), frontal operculum, occipital lobe, ventral striatum, insula, hippocampus,
palladium, thalamus, putamen

GLM Cuneus, fusiform, lingual gyrus, middle occipital, thalamus, hippocampus, amygdala, caudate, putamen, insula, ventral striatum, prefrontal, and frontal
cortex (VLPFC, DLPFC, and OFC), inferior parietal gyrus, middle temporal gyrus, precuneus, insula

ICA Cuneus, Precuneus, Posterior Cingulate Cortex, Dorsolateral Prefrontal Cortex, Amygdala, Caudate, Hippocampus, Insula, Putamen, Thalamus, Right
Middle Occipital, Fusiform, Ventral Striatum, Lingual Gyrus, Ventrolateral Prefrontal Cortex, Dorsolateral Prefrontal Cortex, Orbitofrontal Cortex,
Middle Temporal Gyrus, Inferior Parietal

FIGURE 4

The connectivity graph of view and upregulation states from different views in the brain: (A) view state, (B) up-regulation state.

the upregulation state but not in the view state were statistically
compared with those in the real group and then corrected for
multiple comparisons using FDR at the level of 0.05 to extract
the significant links as a result of neurofeedback. These links are
reported in Table 2.

The results of the current study are then compared with a
method based on NMI.

Based on Wirsich et al. (2020), we have applied the NMI
method to our datasets in three steps:

1. The EEG sources are calculated using the Minimum Norm
Imaging method with BrainStorm Software (Tadel et al.,
2011).

2. The connectivity between the candidate regions obtained
by inverse problem and CCMTF method is calculated in
each state, for EEG sources in two different frequency
bands (1–15 Hz) and (15–40 Hz) and for fMRI BOLD
signal. Therefore, there is a vector with a length of 50 for
each corresponding connectivity between nodes.

3. The matrix of NMI is calculated between the
EEG and fMRI dFCs.

4. The matrix of NMI is also calculated for EEG and fMRI
dFCs for the control group.

5. The two NMI matrices are then statistically analyzed
(FDR-corrected for multiple comparisons at level of 0.05).

Figure 5 illustrates the above steps for applying NMI
method on the dFC of the two modalities.

The resulting NMIs for two different EEG frequency bands
are illustrated in Figure 6.

Figure 6 shows that for the frequency range of 1–15 Hz,
there are more shared links between EEG and fMRI datasets
and their variations across the paradigm are similar. On the
other hand, for the frequency range of 15–40 Hz, a few links
have similar covariation across the paradigm according to NMI
criteria. The links with similar covariations between EEG and
fMRI in two different frequency ranges are reported in Table 3.

In Table 4, the resulting links of neurofeedback are reported
for each method. The results show that most of the generated
links in the CCMTF method are also estimated by the NMI
approach in the frequency range of 1–15 Hz.

Discussion

The results of the CCMTF method on the emotion
regulation paradigm suggest that the frequency content of
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TABLE 2 The generated links as the result of neurofeedback, obtained by the CCMTF method.

Nodes New links

Amygdala Caudate, inferior temporal gyrus, inferior temporal gyrus, Pallidum, The putamen, middle temporal gyrus, middle frontal gyrus, Cuneus,
superior frontal gyrus, thalamus, lingual gyrus

Caudate Putamen

Cerebellum Inferior temporal gyrus, inferior temporal gyrus, superior parietal lobe, middle temporal gyrus, frontal operculum, lingual gyrus

Inferior temporal gyrus Hippocampus, middle temporal gyrus

Hippocampus Pallidum, superior frontal gyrus, superior parietal lobe, thalamus, middle temporal gyrus, Caudate, lingual gyrus

Pallidum Putamen, middle temporal gyrus, inferior frontal gyrus,

Putamen Superior parietal lobe, frontal operculum, Ventral Striatum, frontal operculum, middle frontal gyrus

Superior parietal lobe Cerebellum

Thalamus Middle temporal gyrus

Middle temporal gyrus The occipital lobe, lingual gyrus

Middle frontal gyrus Inferior frontal gyrus

FIGURE 5

The NMI analysis for EEG and fMRI dynamic Functional Connectivity matrixes. The sham group is used to determine the statistically significant
link generated as the result of neurofeedback. The figure is obtained from Wirsich et al. (2020) with a few changes.

FIGURE 6

The two NMI matrixes computed from the EEG and fMRI dFC from resting state to view and upregulation states. (A) In the frequency range of
1–15 Hz, (B) in the frequency range of 15–40 Hz.
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TABLE 3 The results of the NMI method for two frequency bands.

Frequency band Strong NMI between EEG-fMRI
dFCs

1–15 Hz Amygdala-Hippocampus, Caudate,
Hippocampus, Insula, Putamen, Thalamus,
Middle temporal gyrus, cuneus, Inferior
temporal gyrus, Superior frontal gyrus, Middle
frontal gyrus, frontal operculum
Prefrontal Cingulate Cortex -Dorsolateral
prefrontal cortex,
Precuneus – Prefrontal Cingulate Cortex,
Dorsolateral prefrontal cortex, caudate,
hippocampus,
Hippocampus – Cerebellum, Inferior temporal
gyrus, Superior frontal gyrus,
Putamen – Superior Parietal gyrus, Inferior
frontal gyrus, Frontal Operculum, Cingulate
Cortex
Ventrolateral Prefrontal Cortex –
Orbitofrontal cortex, Middle temporal cortex,
Orbitofrontal cortex-middle temporal gyrus
Inferior temporal gyrus – Middle frontal gyrus
Inferior parietal gyrus-cerebellum
Palladuim—frontal operculum

15–40 Hz Amygdala – putamen, Cuneus, Caudate,
middle temporal gyrus, frontal operculum
Caudate – thalamus, Cingulate Cortex,
Superior frontal gyrus
Putamen-Frontal Operulum

TABLE 4 The extracted links as the result of neurofeedback, by
CCMTF and NMI methods.

Method Links that are extracted as the
result of neurofeedback

CCMTF Amygdala and Thalamus, caudate, middle
temporal gyrus, inferior temporal gyrus,
Cuneus, Middle temporal gyrus,
Hippocampus and Superior frontal gyrus,
inferior temporal gyrus
middle temporal gyrus, occipital lobe, lingual
gyrus
inferior parietal lobe and cerebellum
Putamen and superior parietal lobe, frontal
operculum, middle frontal gyrus

NMI Amygdala and Hippocampus, Thalamus,
caudate, middle temporal gyrus, Cuneus,
Middle temporal gyrus, Putamen
PCC-Dorsolateral prefrontal cortex
Hippocampus – Cerebellum, Superior frontal
gyrus,
Putamen – Superior Parietal gyrus, middle
frontal gyrus,
superior parietal lobe and cerebellum
Ventrolateral Prefrontal Cortex –
Orbitofrontal cortex, Middle temporal cortex

the shared component of EEG and fMRI data mostly lies
in the range of 1–15 Hz. These results are expected as
emotion regulation can increase the happiness and calmness

in the subjects (Cisler et al., 2010). The modulation profile
corresponding to the shared component shows an increasing
trend from rest to view and upregulation states. These
results are consistent with the results in Dehghani et al.
(2020a,b) as the BOLD signal increased as a result of
emotion regulation neurofeedback. The activated regions of
the fMRI shared components in Table 1 are consistent with
the results of Dehghani et al. (2020a). There are activations
in the Cerebellum, frontal operculum, palladium which have
not been detected by the GLM or ICA methods and can
be the result of the joint EEG-fMRI analysis in CCMTF
because of additive information during the analysis from each
modality.

The results of the CCMTF method are compared with those
of the NMI method (Wirsich et al., 2020). It is also shown
by the NMI approach that the most common information
between the two modalities is in the frequency range of (1–
15) Hz. However, for the range of 15–40 Hz, there are also a
few links shared between the two modalities, because NMI is a
non-linear metric and can identify both linear and non-linear
relationships. However, CCMTF uses a linear metric based on
correlation criteria. Therefore, the CCMTF method may miss
some non-linear relations between the two modalities. Another
reason for the estimated links in the beta frequency band by the
NMI approach is this frequency range has some overlap with
the shared frequency range obtained in the CCMTF method.
Both methods have estimated some common links as a result
of neurofeedback and there are also some differences. These
differences are the results of:

1. The changes in connectivity in the CCMTF method are
obtained on the shared activated regions estimated by the
CCMTF method through a simultaneous fusion approach,
but in NMI, the shared links are calculated after a separate
analysis on each modality.

2. The NMI method uses the inverse problem on EEG data.
The inverse problem is ill-posed and cannot identify all
activated sources.

3. CCMTF uses a linear criterion which may miss the non-
linear relations between the two modalities.

To wrap up, the CCMTF method can estimate the shared
and unshared activated region in emotion neurofeedback and
making a clear correspondence with EEG frequency rhythms
through one single analysis. The results of this method can
be used for further analysis. CCMTF method does not require
solving the inverse problem to identify the shared and unshared
activated regions and the activated links in the brain between
the two modalities. Besides, the relation of brain activities and
their connectivity with EEG frequency bands are examined
by the CCMTF method with a single analysis. The extracted
connectivity links by CCMTF are among limbic, frontal,
temporal, and limbic and temporal, frontal, and occipital and
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between temporal and occipital regions and these connectivity
links can be justifies according to emotion regulation models
and recalling positive autobiographical memories (Kohn et al.,
2014). On the other hand, CCMTF employs a linear constraint
on the shared components and misses the non-linear relations
between the modalities. To gain the advantages of the CCMTF
method and consider the non-linear relations, the next step is
to apply a non-linear constraint in the objective function of
CCMTF method.

Conclusion

In this paper, we applied CCMTF method on a self-
regulation neurofeedback paradigm using simultaneous
acquisition of EEG and fMRI data. The results suggest that
CCMTF method is capable to extract the shared information
between two neuroimaging modalities. Comparison the
calculated dFC from CCMTF analysis and those of NMI method
shows that CCMTF considers linear relation between shared
components, but it can extract the common dFC between
EEG and fMRI without the need for inverse problem-solving.
Moreover, CCMTF can extract the relation of dFCs with the
brain oscillation patterns in EEG frequency bands with a
single analysis.
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