
TYPE Original Research

PUBLISHED 25 August 2022

DOI 10.3389/fnhum.2022.933559

OPEN ACCESS

EDITED BY

Jana Zweerings,

RWTH Aachen University, Germany

REVIEWED BY

Amelie Haugg,

Psychiatric University Hospital

Zurich, Switzerland

Pegah Sarkheil,

University Hospital RWTH

Aachen, Germany

*CORRESPONDENCE

Ranganatha Sitaram

ranganatha.sitaram@stjude.org

Sergio Ruiz

sruiz@uc.cl

SPECIALTY SECTION

This article was submitted to

Brain Imaging and Stimulation,

a section of the journal

Frontiers in Human Neuroscience

RECEIVED 01 May 2022

ACCEPTED 25 July 2022

PUBLISHED 25 August 2022

CITATION

Pereira JA, Ray A, Rana M, Silva C,

Salinas C, Zamorano F, Irani M,

Opazo P, Sitaram R and Ruiz S (2022) A

real-time fMRI neurofeedback system

for the clinical alleviation of depression

with a subject-independent

classification of brain states: A proof of

principle study.

Front. Hum. Neurosci. 16:933559.

doi: 10.3389/fnhum.2022.933559

COPYRIGHT

© 2022 Pereira, Ray, Rana, Silva,

Salinas, Zamorano, Irani, Opazo,

Sitaram and Ruiz. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.
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Most clinical neurofeedback studies based on functional magnetic resonance

imaging use the patient’s own neural activity as feedback. The objective of

this study was to create a subject-independent brain state classifier as part of

a real-time fMRI neurofeedback (rt-fMRI NF) system that can guide patients

with depression in achieving a healthy brain state, and then to examine

subsequent clinical changes. In a first step, a brain classifier based on a support

vector machine (SVM) was trained from the neural information of happy

autobiographical imagery and motor imagery blocks received from a healthy

female participant during an MRI session. In the second step, 7 right-handed

female patients with mild or moderate depressive symptoms were trained to

match their own neural activity with the neural activity corresponding to the

“happiness emotional brain state” of the healthy participant. The training (4

training sessions over 2 weeks) was carried out using the rt-fMRI NF system

guided by the brain-state classifier we had created. Thus, the informative

voxels previously obtained in the first step, using SVM classification and E�ect

Mapping, were used to classify the Blood-Oxygen-Level Dependent (BOLD)

activity of the patients and converted into real-time visual feedback during the

neurofeedback training runs. Improvements in the classifier accuracy toward

the end of the training were observed in all the patients [Session 4–1 Median=

6.563%; Range = 4.10–27.34; Wilcoxon Test (0), 2-tailed p = 0.031]. Clinical

improvement also was observed in a blind standardized clinical evaluation

[HDRS CE2-1 Median = 7; Range 2 to 15; Wilcoxon Test (0), 2-tailed p =

0.016], and in self-report assessments [BDI-II CE2-1 Median = 8; Range 1–15;

Wilcoxon Test (0), 2-tailed p= 0.031]. In addition, the clinical improvement was
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still present 10 days after the intervention [BDI-II CE3-2_Median= 0; Range−1

to 2; Wilcoxon Test (0), 2-tailed p = 0.50/ HDRS CE3-2 Median = 0; Range −1

to 2;Wilcoxon Test (0), 2-tailed p= 0.625]. Although the number of participants

needs to be increased and a control group included to confirm these findings,

the results suggest a novel option for neural modulation and clinical alleviation

in depression using noninvasive stimulation technologies.

KEYWORDS

real-time fMRI, neurofeedback, depression, brain-pattern classification, brain-

computer interfaces, support-vector machine, neuromodulation, endogenous

neurostimulation

Introduction

Brain-computer interfaces are systems in which a translation

of biological neural information into digital information is

performed, resulting in different types of artificial outputs. These

artificial outputs can be used to replace, restore or improve

a motor function (Weiskopf et al., 2004; Daly and Wolpaw,

2008; Shih et al., 2012). They can also be used to feedback

neural information to the user (neurofeedback) to guide the

participant, whether consciously or not, to reach a specific brain

state (Birbaumer et al., 2009, 2013; Weiskopf, 2012; Sulzer et al.,

2013; Ruiz et al., 2014; Sitaram et al., 2017).

Brain-computer interfaces (and therefore NF) are composed

of 4 main elements. These are the neural signal acquisition

module, the signal analysis/translation module, the artificial

output, and the participant with whom a learning loop is

closed. Given how the neural information is accessed, and the

neural features extracted to generate the artificial output, there

are several variations of neurofeedback modalities, each with

different advantage profiles. Thus, the information needed to

develop a neurofeedback system can be originated from the

electrical, metabolic or hemodynamic neural information, and

it can be extracted invasively or non-invasively.

About 20 years have passed since the first successful

implementation of a real-time neurofeedback system based on

functional magnetic resonance imaging (rt-fMRI NF) (Linden

et al., 2021), a non-invasive neurofeedback system of high

spatial resolution (Sitaram et al., 2007, 2011; Weiskopf et al.,

2007). Several studies have demonstrated that it is possible

to perform neuromodulation via rt-fMRI by extracting the

Abbreviations: rt-fMRI NF, Neurofeedback based on real-time functional

magnetic resonance imaging; SVM, Support vector machine; BOLD,

Blood-oxygen-level dependent; NF, Neurofeedback; BDI-II, Beck

depressive symptom inventory; HDRS, Hamilton depression rating

score; MNI, Montreal neurological institute; USD, US dollar; EPI, Echo

planar imaging sequence; FWHM, Full width at half maximum; CE,

Clinical evaluation.

relevant features for feedback—whether from circumscribed

brain areas (Caria et al., 2007; Rota et al., 2009; Zotev et al.,

2011; Pereira et al., 2015), from the functional connectivity

between brain areas, or from complex neuronal networks—in

order to explore the brain-behavior correlation underlying the

achieved neural modulation (Rota et al., 2011; Ruiz et al., 2011,

2014; Yuan et al., 2014; Ramot et al., 2017), and its potential

clinical uses. In fact, preclinical and clinical studies with rt-fMRI

NF have been quick to develop, for example on patients with

schizophrenia, obsessive compulsive disorder, addiction, autism,

stroke, Parkinson’s disease or depression (Linden et al., 2012;

Buyukturkoglu et al., 2013, 2015; Li et al., 2013; Ruiz et al., 2013;

Young et al., 2014; Pereira et al., 2019; Rana et al., 2020; Vargas

et al., 2021).

Until now, most rt-fMRI NF studies have relied implicitly on

the idea that a patient can learn to modulate their brain activity

toward a healthy neural state. However, because of the alteration

of brain function inherent in different neurological and

psychiatric disorders, psychiatric patients may have difficulties

achieving a healthy brain pattern by neurofeedback of their

own whole brain activity. In depression, it is common to find

abnormal functioning of the emotional network (Li et al., 2018;

Ebneabbasi et al., 2021) so that restoration of healthy neural

activity may be less effective if guided by the patient’s own neural

activity. Thus, such guidance would be more effective if it came

from the neural information of a healthy person, of an external

“tutor” as it were (Ritchey et al., 2011; Williams et al., 2020).

The first step, then, in developing such a system is to distinguish

as closely as possible the neural activity that is associated

with the desired cerebral state of the healthy individual. An

evaluation of the whole neural activity based on a multivariate

pattern system has proved useful to classify the neural activity

corresponding to different complex brain states, such as complex

emotions (LaConte et al., 2005, 2007; Mourão-Miranda et al.,

2005; Sitaram et al., 2011b; Cortese et al., 2016, 2017; Tsumura

et al., 2022). This approach is different from localizationist

implementations as it does not require prior assumptions about

the functional location of the different cognitive or affective

functions to be studied or trained. Rather, it uses the brain
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as a whole and the data analysis delivers a single solution -

considered the best one - to differentiate between different brain

states. There are different approaches for multivariate pattern

analysis, the use of SVM has been one of the most frequently

used (LaConte, 2011; Watanabe et al., 2017; Miller et al., 2020;

Weaverdyck et al., 2020; Taschereau-Dumouchel et al., 2021).

Here we present the methodology and proof of concept for

the creation of an rt-fMRI NF system based on an independent

SVM-based classifier for restoring the neural activity of patients

with depressive symptoms. We tested this rt-fMRI NF approach

in training 7 patients with depressive symptoms to achieve

the brain state associated to “the happiness” of a healthy

female participant.

Experimental protocol

The methodological discussion is divided into 2 sections.

The first section deals with the creation of the brain-state pattern

classifier (i.e. happiness versus motor imagery), trained with the

information of the whole brain activity of a healthy subject. The

second section includes a description of the training protocol,

using the rt-fMRI NF system, for the patients with depressive

symptoms, making use of the classifier created earlier. The aim

of this training is to train the neural activity of a subject with

depressive symptoms so that it matches the neural signal features

of the healthy subject in a happiness mental state (Figure 1).

Development of a brain state pattern
classifier

In order to distinguish between emotional brain states, a

classifier was built as a prerequisite for guiding a patient with

depression toward a positive emotional state in the second part

of this study. The classifier was based on SVM classification and

Effect Mapping of the whole brain of a healthy subject while

performing autobiographical memories of happy moments and

motor imagery. The use of Effect Mapping was chosen as

enhances the classifier based on SVM (Lee et al., 2010) in

particular to classifier emotional states (i.e., happiness and

disgust), as demonstrated in healthy subjects (Sitaram et al.,

2011b).

Classifier training

The present study was conducted only with female

participants, given that this population has twice the risk of men

in presenting depression (Albert, 2015). Thus, the construction

of the classifier was obtained from healthy right-handed women

without depressive symptoms [i.e. Beck Depressive Symptom

Inventory score, second version, BDI-II (Beck et al., 1996)

and Hamilton Depression Rating Score, HDRS (Hamilton,

1980), below 7 points on both of them], and without any

history of relevant psychiatric or neurological disorders (e.g.

bipolar, depression, anxiety disorder, epilepsy, brain traumatic

injury or brain tumor) or neurodevelopmental condition

(e.g. attention deficit hyperactivity disorder, cognitive deficit,

language disorder). A clinical interview was conducted by a

psychiatrist to rule out any medical or psychiatric condition.

This research was approved by the Ethics Committee of the

Medical Faculty of the Pontificia Universidad Católica de Chile.

FMRI data acquisition

A 3T Siemens Magnetom Skyra whole-body MRI scanner

(Siemens Medical Solutions, Erlangen, Germany) was used to

obtain whole-brain data using a 32-channel head coil. During

the fMRI session, the participants were asked to watch the

screen specially designed to be used inside the MRI scanner,

to remain in the decubitus position comfortably and not

moving. First, a Scout sequence to locate and position the

planes was conducted at the beginning of the data acquisition.

Subsequently, a high-resolution anatomical T1-weighted, three-

dimensional MPRAGE sequence (TR/ TE/ TI / flip angle =

2530 ms/ 2.19 ms/ 1100ms / 7◦; field of view = 256; 176 slices,

1 mm3 isotropic voxels, 1mm slice thickness) was acquired

for the construction of the classifier and further analysis. In

addition, four 2D Echo Planar Imaging (EPI) sequence of 210

volumes and 34 slices, aligned with the anterior and posterior

commissure covering the whole brain (TR/ TE/ flip angle =

2000 ms/ 30 ms/ 90◦; field of view = 220mm; 34 slices, 3 mm3

isotropic voxels, 3mm slice thickness) were used to extract the

information significant in building the classifier.

Block design of functional images

The cognitive task of building the classifier was organized

in a block design consisted on 4 repetitions (7 minutes long

each run). Each repetition of functional images started with

20 seconds of rest followed by a block (40 seconds long each

block) of positive autobiographic memories and a block of

motor imagery (i.e. “imagine opening and closing hands palm

upwards”), and interspersed with 20 seconds of rest. During the

functional sequence participants were asked to look at visual

cues on a screen, i.e. “M” (motor imagery), “H” (happiness)

or “+” (rest). The participants were asked to train the motor

imagery beforehand and to bring a list of 10 happy memories

they considered important to them. Between each run they

were reminded of the block structure of the experiment, the

visual cues to be observed and were also asked about the happy

memories they had used in the previous run. All this was done

to enssure that during the acquisition of the functional images

the participant was performing the cognitive tasks assigned.
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FIGURE 1

Flow chart of the 2-step experimental protocol. 1. Building the classifier with the neural information (BOLD signal) of the healthy subject. 2.

Training of the participant with depressive symptoms using an rt-fMRI NF system based on the classifier.

O	ine pre-processing

In order to reduce the noise of the data, the acquired

functional images were pre-processed. First, the fMRI DICOM

images were converted into NIFTI ones using the Statistical

Parametric Mapping Toolbox (University College London) of

Matlab (The Mathworks, Inc). The initial 10 functional images

were removed in order to delete potential gradient artifact.

Functional images were re-aligned to the first volume of the

run images and time slice correction was applied. Then, the

anatomical scans were co-registered with the mean functional

image and segmented. Finally, images were normalized to the

Montreal Neurological Institute (MNI) system and normalized

using Gaussian kernel (Supplementary Figure 1).

Feature selection and classifier training

The development of a classifier of brain states is enhanced

by a process of feature selection whereby the informative data

is selected to input the classifier training. Previous studies have

shown that information selected by Effect Mapping results in

better classifiers than the use of other approaches (Lee et al.,

2010), mainly when the Effect Mapping is based on a SVM

(Sitaram et al., 2011b). SVMs are a type of classifier that

maximizes the difference between two (or more) classes of

data by computing a hyperplane that separates the two data

in the best possible way. In order to train the classifier, the

BOLD signals from voxels that belong to the whole brain are

extracted by applying an intensity-based thresholding. Linear

trends from BOLD signals were removed and informative

features from brain signals extracted to create input vectors

for training SVM and to obtain the map of effect values

over all voxels. Four cross-validations were carried out to

test the performance of the classifier in question. Three

classifiers and brain masks were developed from three healthy

women (18, 26 and 28 years of age) and the classifier with

superior classification accuracy was selected for use in the

second stage of this study (Table 1). In other words, the

same classifier was subsequently used to guide all young adult

female patients.

Real-time subject independent
classification and rt-fMRI NF training

In the rt-fMRI NF training the informative voxels previously

obtained using Effect Mapping and SVM were used to classify

BOLD activity of a second subject (in this case, a patient) in

real-time during the neurofeedback run (Effect Maps of these 3

classifiers on Supplementary Figures 2, 3). This classification was

converted into real-time visual feedback which was delivered

to the patient to guide the neuromodulation process. The aim

of the neurofeedback protocol, which consisted of 16 training

“runs” performed in 4 days of training over a period of 2 weeks,

was to train patients with depressive symptoms so that they

could match the brain state associated with happy memories

of healthy subjects, in order for the experimenter to evaluate

potential clinical changes.
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TABLE 1 O	ine performance of classifiers in 4 cross-validations.

Participant

(years old)

Cross-

validation

Accuracy Sensitivity Specificity

1 1 0.97 0.95 0.99

(28 yo) 2 0.87 0.86 0.88

3 0.92 0.94 0.90

4 0.84 0.76 0.93

Average 0.90 0.88 0.92

2 1 0.90 0.90 0.90

(26 yo) 2 0.96 0.94 0.99

3 0.96 0.98 0.95

4 0.91 0.86 0.95

Average 0.93 0.92 0.95

3 1 0.76 0.80 0.71

(18 yo) 2 0.86 0.89 0.84

3 0.83 0.81 0.85

4 0.72 0.75 0.69

Average 0.79 0.81 0.77

Visual feedback and block design of the rt-fMRI
NF

The visual feedback was presented to the patients by means

of a “thermometer”, with mobile bars refreshed every 2 seconds

during the functional images or rt-fMRI NF “runs”. These bars

responded contingently to the classification in a binary manner.

Thus, one bar was added to the thermometer if the patient’s

neural information was classified correctly corresponding to the

expected brain state (i.e., Effect maps associated either with the

motor imagery or with the happiness memory blocks of the

healthy subject); in other cases, the bars were subtracted. So, the

training runs were divided into blocks, just as the classifier was

built with neural information from the healthy subject (Section

Offline pre-processing). That is, 4 blocks associated with the

happy autobiographic memories of the healthy participants,

interspersed with 4 blocks associated with the effect mapping

obtained from the motor imagery blocks, and separated by

blocks of rest lasting for 20 seconds. During each rest block

the thermometer was reset to the mean of the results of the

previous block.

In addition to the visual feedback, a monetary reward was

used to enhance the learning process, as reported in other studies

(Sepulveda et al., 2016). This contingent reinforcement was

visually presented in the last 3 seconds of the run and given to

them at the end of the 4 runs of each session. The value showed

was proportional to the accuracy classification of the classifier

on each run. That is, considering a minimum amount of 1.5

USD when the classifier accuracy was 50 percent or less, a linear

calculation was performed with increases of 2 USD for every 5

percent increase in classifier accuracy during the run. This is 3.5

USD when the classification results in a value between 51 and 55

percent, 5.5 USD for values between 56 and 60 percent, 7.5 USD

for values between 61 and 65 percent and so on).

Data acquisition and functional images
pre-processing

The MANAS toolbox for Matlab (Mathworks, Inc)

developed by our group (Rana et al., 2013) was used to

pre-process the functional images in real time, extract the

information from them and classify the information using the

previously developed classifier. This toolbox has two important

features: first, it can normalize (MNI space) the functional

images of the patient trained in real time; second, it can

incorporate both the classifier and the brain mask previously

developed to be used in the online classification. Hence, this

toolbox enabled us to perform a rt-fMRI NF based on real-time

subject-independent classification (Figure 1).

Pre-processing is the first step in performing data analysis of

the patient’s functional images. It removes as many artifacts as

possible for use in online classification. The challenge of real-

time classification is to perform all the pre-processing of the

functional image before the next one (i.e. 1 TR or 2 seconds in

this case). In pre-processing the functional image for subject-

independent online classification, the functional images need to

be normalized to a standard MNI space for comparison. This

requires acquisition of a high-definition anatomical image prior

to the functional images, as can be achieved in offline pre-

processing. However, co-registration of the functional images

with the anatomical images is very time consuming, which

makes it impractical to perform in real time. The solution to

this problem was to co-register the anatomical image with the

average image of a functional EPI sequence identical to those

used for online classification, but shorter (i.e. lasting 1 minute).

Thus, the normalization parameters for the functional images

used in the classification come from the Dummy sequence,

significantly reducing analysis time in the online processing. The

images were then smoothed using the Gaussian FWHM kernel,

finalizing the pre-processing (Figure 2).

Feature selection and online SVM classification

To make the analysis more efficient, the most representative

voxels were selected from the pre-processed functional images

of the patient in real time. The most representative voxels were

defined by the brain mask previously made with the functional

images of the healthy participant. For the classification process,

the information contained in each selected voxel was taken as

a vector, and with use of the SVM was compared with the

information contained in the corresponding voxel of the healthy

participant. The result is a positive or negative classification

according to the given condition or block. The classification

results were shown to the patient also in real time by means
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FIGURE 2

Pre-processing of the functional images for online

subject-independent classification. A structural imaging session

and a Dummy functional imaging session are performed prior to

the functional imaging session of the online classification. The

average of the Dummy functional images is co-registered with

the structural neuroimaging to obtain the normalization

parameters that will be used in the abbreviated pre-processing

of the functional neuroimages used in the online classification.

of visual feedback, as previously described. This process was

repeated for each functional image, i.e. every 2 seconds for the

7-minute duration of each functional EPI sequence.

Recruitment of participants with depressive
symptoms

Young right-handed adult women (18 to 31 years of age)

with mild to moderate depressive symptoms (with scores

of between 10 to 29 points on the BDI-II) were recruited.

Participants with severe symptoms (more than 29 points on

the BDI-II) or moderate suicidal risk (2 or more points on

the suicidality question of the BDI-II or scoring 5 or more

points on Okasha’s suicidality scale) were excluded and referred

to emergency psychiatric care. Participants who were referred

to a mental health consultation during the training protocol

were excluded from the sample analysis to reduce potential

confounders (i.e. clinical changes associated with psychotherapy

or antidepressant use). Participants signed the informed consent

prior to starting the research protocol.

Clinical evaluation

During the day preceding the training sessions (CE1), the

day following them (CE2), and 10 days after them (CE3),

clinical evaluations of depressive symptoms were carried out

using two approaches: a standardized self-report scale (BDI-

II) and a standardized clinical evaluation by a certified clinical

psychologist (HDRS). In addition, Okasha’s suicidality scale

(Okasha et al., 1981) was used in case any indicator was

observed, either in the BDI-II or in the HDRS, in the questions

on suicidality. In the case of scores in excess of 2 points on any

FIGURE 3

Group classifier accuracy per day. (Mean ± SD; 2-tailed t-test;

one-sample z test against zero).

one of these three scales, the patient was referred for a psychiatric

evaluation on the same day.

O	ine analysis of the rt-fMRI NF

Classifier accuracy during the rt-fMRI NF

In order to demonstrate that the binary classification results

were not better explained by a random event, a “positive result”

had to exceed 50% accuracy (the patient’s brain information

had to be within the hyperplane corresponding to the desired

condition most of the time). Thus, the classifier accuracy of

each patient was evaluated for each run (i.e. the quantity of

positive classifications according to the condition evaluated/

210 (total images per Run ∗100), for each session and for the

whole training. Subsequently, both the results for each patient

and for the entire group were compared against 50, using non-

parametric tests when appropriate.

Learning progression during the rt-fMRI NF

The higher the accuracy values of the classification, the

greater the similarity of the patient’s brain state to the brain state

of the healthy participant. Thus, an improvement in accuracy

could be considered part of the learning process. Comparisons

between the accuracy of the first run and the last run (arithmetic

subtraction between Run16-1); between the first two and the last

two runs (Run15+16-1-2), and between the mean accuracy of

session 4 minus the mean accuracy of session 1 were calculated

for each patient. Each of these results was compared against

zero to assess the statistical significance of the potential changes

resulting from the rt-fMRI NF protocol (non-parametric one-

sample Wilcoxon Signed Rank Test compared with zero, p two-

tailed, 95% confidence). Slopes across runs and sessions per

participant in each group were also obtained.
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FIGURE 4

Di�erence in classifier accuracy between baseline and end of training for patients with depressive symptoms (Mean ± SD. All points plotted.

One-sample Wilcoxon Signed Rank Test compared with zero, p two-tailed, 95% confidence).

Clinical changes analysis

Potential clinical changes associated with training were

assessed immediately after training and 10 days later, using

two methods: first, arithmetic subtraction of CE3 and CE1

and subtraction of CE3 and CE2 per patient was performed,

and the value was then compared against zero to assess

statistical significance. Second, a group pairwise comparison was

performed between CE1 and CE2 and between CE2 and CE3,

using nonparametric measures for analysis when required.

Results

RT-fMRI NF patients

The sample included 7 young adult participants (female,

mean age = 25; range = 19 to 31 years old), right-handed, with

mild to moderate depressive symptoms (BDI-II: Median = 18;

Range = 10 to 29 points/ HDRS: Median = 16; Range = 13

to 19 points), without neurological or psychiatric comorbidity.

Participants performed the protocol that involved 4 training

days of 4 runs per session/day (over a two-week period), in order

to match the selected classifier in both “M” and “H” blocks.

Classifier accuracy

Only 2 participants exceeded 50% overall accuracy (average

of the 16 Runs per participant = 48.90%; SD: 4.23). However,

it was observed that, on the fourth day, 6 of the 7 participants

exceeded 50% (Average, Day 1 = 46.05%; SD = 7.99/Average,

Day 2 = 47.72%; SD = 4.82/ Average, Day 3 = 45.63%; SD =

10.43/ Average, Day 4 = 56.19%; SD = 6.07; one-sample z-test

(50) Day 4 p = 0.0035). In addition, a statistically significant

difference was observed between the accuracy on day 1 and day

4 (2-tailed t-test, p= 0.016), but not between day 1 and day 2 or

day 3 (Figure 3).

Improvements in classifier accuracy toward the end of the

training were observed in 6 of the 7 patients when comparing

the first and last run (Run16–1 Median = 16.88%; Range =

−8,75 to 38,75; Wilcoxon Test (0), 2-tailed p = ns), as well as

when comparing the last 2 with the first two runs (Run (15+16-

1-2)/2 Median = 11.88%; Range = −6.873 to 36.56; Wilcoxon

Test (0), 2-tailed p = 0.031). Moreover, when comparing by

day, improvements in classifier accuracy were observed in all

participants [Day4–1 Median = 6.563%; Range = 4.10–27.34;

Wilcoxon Test (0), 2-tailed p = 0.031] (Figure 4). On the other

hand, all participants showed a positive slope value across runs

[Median(R): 0.12; Range: 0.06–0.3] and across training sessions

[Median(R): 0.09; Range: 0.02–0.35].

Clinical changes

Clinical improvements were observed at the end of the

intervention for all participants, either in the self-report

assessment [BDI-II CE2-1 Median = 8; Range −1 to 15;

Wilcoxon Test (0), 2-tailed p = 0.031] or the standardized

observation by the clinical psychologist (HDRS CE2-1 Median

= 7; Range 2 to 15; Wilcoxon Test (0), 2-tailed p = 0.016),

an improvement that was maintained without major variation

after the 10-day post-intervention follow-up [(BDI-II CE3-2

Median = 0; Range −1 to 2; Wilcoxon Test (0), 2-tailed p

= 0.50/ HDRS CE3-2 Median = 0; Range −1 to 2; Wilcoxon

Test (0), 2-tailed p = 0.625] (Figures 5A,B). Only one patient
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FIGURE 5

Clinical changes observed. The clinical assessments at baseline, at the end of rt-fMRI NF training, and 10 days later, can be observed for the

BDI-II self-report scale (A) and for the standardized clinical assessment HDRS (B). In addition, the di�erence between depressive

symptomatology evaluated between baseline, the end of training and 10 days after training, is observed for both BDI-II (C) and HDRS (D). The

dots represent the assessments for each patient (All points plotted. Mean ± SD. *p ≤ 0.05; One-sample Wilcoxon Signed Rank Test compared

with zero, p two-tailed, 95% confidence).

reported no improvement at the end of the training (BDI-II),

although a favorable change was found in the standardized

clinical observation (HDRS). Notably, clinical improvements led

to a change from moderate depression to mild depression or

from mild depression to “no depression” in most participants

(6 participants in the BDI-II measurement and 5 participants in

the HDRS assessment) (Figures 5C,D).

Discussion

A number of rtfMRI NF studies have been attempted in

depression. They have been based on our knowledge of the

pathophysiology of depression to decide the region-of-interest

for self-regulation. Amygdala has been a common area for brain

up- and down- regulation (Brühl et al., 2014; Paret et al., 2014,

2018; Young et al., 2014; Herwig et al., 2019) along with other

emotion processing areas (Linden et al., 2012; Hamilton et al.,

2016; Mehler et al., 2018). A few other studies on depression

have attempted to train self-regulation of functional connectivity

between brain regions with neurofeedback (Yamada et al., 2017;

Zahn et al., 2019). All these studies have used the neural

information from the patients to guide the training of their

own brain activity. However, if you prepare a pattern classifier

from a dysfunctional network, you might train the individual

to reproduce the dysfunctional activity due to pattern feedback.

Due to the subjects with depression present an altered emotional

neural network, we hypothesized that rt-fMRI NF training

would be more effective - at both the neural and clinical

levels- by using information extracted from a healthy brain

as a guide. The aim of this study was to create a subject-

independent brain state classifier using information from whole

brain as part of an rt-fMRI NF system that can guide patients

with depression in achieving a healthy brain state, and then to

examine subsequent clinical changes. To our knowledge, this

is the first study to use an emotional state classification system

developed with information from a healthy third party to guide

the neuromodulation process of a subject with depression. On

the other hand, several machine learning techniques have been

studied for diagnosis and treatment prognosis in depression

where SVM has been the most commonly used classification

approach [for a review see: (Gao et al., 2018)]. Thus, designing
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a machine-learning classifier based on SVM seemed to be the

best option to elaborate a robust classification and obtain better

results at both the neural and clinical levels.

For these reasons we designed a 2-step protocol as a proof

of concept. In a first step, a brain classifier based on a SVM was

trained from the neural information of happy autobiographical

imagery and motor imagery blocks received from a healthy

female participant during an MRI session. In the second step, 7

right-handed female patients with mild or moderate depressive

symptoms were trained to match their own neural activity with

the neural activity corresponding to the “happiness emotional

brain state” of the healthy participant. The training (4 training

sessions over 2 weeks) was carried out using the rt-fMRI NF

system guided by the brain-state classifier we had created. Thus,

the informative voxels previously obtained in the first step, using

SVM classification and Effect Mapping, were used to classify

the BOLD activity of the patients and converted into real-time

visual feedback during the neurofeedback training runs. In the

protocol used here, the 7 female patients completed the 2-week

training, at the end of which they reported symptomatologic

improvements that were also observed by a trained clinician.

Certainly, a control group will be needed to fully assess

the impact of the rtfMRI NF training intervention on the

clinical changes observed, to control for what could be

caused by a process of repeated mental imaging of past

autobiographical memories by itself. In any case, the clinical

results of standard psychological therapies usually take up to

3- 4 weeks to be noticeable (Driessen and Hollon, 2010), an

interval during which the neurofeedback intervention presented

here could serve as a possible co-adjuvant therapy. Moreover,

other neuromodulation techniques based on the patient’s

own information, such as previous EEG-based neurofeedback

systems and rt-fMRI NF, may require longer processes to

provide clinical benefits (Peeters et al., 2014). The rapid clinical

improvement seen with the protocol described here could be

explained, at least in part, by the use of a “tutor” healthy

brain as a source of feedback. It is, the feedback obtained

from the healthy subject’s template that guides the experimental

subject’s neuromodulation process to a different state than the

basal (depressive) one. Another possible explanation for the

rapid clinical changes recorded could be due to the use as

feedback in this protocol of complex neural networks rather than

circumscribed brain areas, as in earlier rt-fMRI NF studies on

depression and other psychiatric disorders (Linden et al., 2012;

Buyukturkoglu et al., 2013, 2015; Li et al., 2013; Ruiz et al.,

2013; Young et al., 2014; Pereira et al., 2019; Rana et al., 2020;

Vargas et al., 2021). Thus, to isolate the effect of NF training

and to demonstrate clinical effectiveness, it would be necessary

to include a control group of matched participants receiving

non-contingent feedback (e.g. sham or yolked feedback). It is

also possible then to compare this protocol with other rt-fMRI

NF systems [e.g., region-of-interest (ROI) neurofeedback], to

systematically analyze the pros and cons of each approach. It

is still unclear, however, whether the observed clinical benefits

would be maintained over time, given that the follow-up at

which the clinical improvements were noted was performed

only 10 days after the intervention. It has been suggested that a

longer period of training could be associated with longer-lasting

benefits (Linden, 2014; Tursic et al., 2020).

Regarding the classification accuracy results, these were

“not consistent” at the beginning of the rt-fMRI NF protocol

and they improved throughout the training sessions. Thus,

the classification was clearly due to non-random factors (and

probably to the training) toward the end of the training protocol,

which further suggests the need to explore protocols with longer

training sessions.

On the other hand, it should be noted that here we used

a population of the same sex and similar age between those

who provided the neural information to develop the classifier

and those who participated in the rt-fMRI NF protocol. It

will be a matter for other studies to confirm whether this

approach is valuable or whether subjects of different sexes or

ages can be used. The same applies for different populations.

For example, it may be better for adolescent depressive patients

to be trained with data from healthy young adults to guide

healthy development rather than using data from adolescents of

the same age. In addition, another question might be whether

a depressive patient with atypical development (e.g. Autism)

needs to be trained with information from a typically developing

subject without depression or whether it would be more effective

to be trained with information from another subject within the

autism spectrum without a mood comorbidity. These questions

are open for future research.

In summary, this study shows that it is possible to use

a subject-independent classifier for depression that potentially

leads to clinical improvements, although further confirmation

studies are needed. Other neural stimulation techniques, such

as transcranial magnetic stimulation and deep brain stimulation

have been found to have positive effects in the treatment of

anxiety and depression, but disadvantages include potential side

effects and invasiveness (Rossi et al., 2020). The results presented

here open the door for further exploration of a new clinical

approach involving “endogenous neuronal modulation” guided

by neuroimages in the treatment of depression, one of the

world’s most burdensome disorders.
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