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Objective: Despite its prevalence, insomnia disorder (ID) remains poorly

understood. In this study, we used machine learning to analyze the functional

connectivity (FC) disturbances underlying ID, and identify potential predictors

of treatment response through recurrent transcranial magnetic stimulation

(rTMS) and pharmacotherapy.

Materials and methods: 51 adult patients with chronic insomnia and 42

healthy age and education matched controls underwent baseline anatomical

T1 magnetic resonance imaging (MRI), resting-stage functional MRI (rsfMRI),

and diffusion weighted imaging (DWI). Imaging was repeated for 24 ID patients

following four weeks of treatment with pharmacotherapy, with or without

rTMS. A recently developed machine learning technique, Hollow Tree Super

(HoTS) was used to classify subjects into ID and control groups based on their

FC, and derive network and parcel-based FC features contributing to each

model. The number of FC anomalies within each network was also compared

between responders and non-responders using median absolute deviation at

baseline and follow-up.

Results: Subjects were classified into ID and control with an area under

the receiver operating characteristic curve (AUC-ROC) of 0.828. Baseline FC

anomaly counts were higher in responders than non-responders. Response as

measured by the Insomnia Severity Index (ISI) was associated with a decrease

in anomaly counts across all networks, while all networks showed an increase

in anomaly counts when response was measured using the Pittsburgh Sleep

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.960350
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.960350&domain=pdf&date_stamp=2022-08-10
https://doi.org/10.3389/fnhum.2022.960350
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.960350/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-960350 August 4, 2022 Time: 15:49 # 2

Lu et al. 10.3389/fnhum.2022.960350

Quality Index. Overall, responders also showed greater change in all networks,

with the Default Mode Network demonstrating the greatest change.

Conclusion: Machine learning analysis into the functional connectome in ID

may provide useful insight into diagnostic and therapeutic targets.

KEYWORDS

Insomnia, machine learning, functional connectivity, rTMS, treatment response

Introduction

Insomnia disorder (ID) is the most common form of
sleep disorder, characterized by difficulties in initiating and
maintaining sleep, along with early morning waking (Morin
et al., 2015). Additionally, ID is associated with mood disorders
(e.g., anxiety, depression) and neurodegenerative disorders (e.g.,
Parkinson’s disease and dementia). Even if sufferers experience
insomnia alone, they have an increased risk of developing
both physical and mental health problems (Taylor et al.,
2021). Furthermore, compared to good sleepers, ID sufferers
experience poor daytime performance and poor cognitive
function, with subsequent impairment in quality of life and well-
being (Fortier-Brochu et al., 2012). However, diagnosing ID can
be a complex task given the heterogeneity and lack of specificity
of symptoms; thus, more sophisticated techniques are required
to establish methods for assessing ID.

Early detection and management of ID remains a
clinical priority and is necessary to mitigate the effects
and associated risks of ID. The gold standard for evaluating ID
is polysomnography (PSG), however, PSG data do not reflect the
sleep problems reported by approximately 40% of ID patients
(Krystal et al., 2002). Moreover, PSG is not used regularly due
to the need for a specialized setting and equipment, and how
labor intensive it is. Wrist actigraphy provides similar insights
to PSG, but lacks specificity (Hyde et al., 2007; Morgenthaler
et al., 2007; Gruwez et al., 2017), minimizing its utility in ID
assessment. Due to the limitations of established objective
measures, self-reported sleep instruments remain the most
practical methods for ID assessment in clinical practice (Buysse
et al., 2010; Van de Water et al., 2011). Conversely, while the
clinical utility of self-reported sleep instruments is axiomatic,
these measurements fail to provide objective markers of ID and
do not provide any mechanistic insights or biological targets.

More recently, functional connectivity (FC) derived from
resting state functional magnetic resonance imaging (rsfMRI)
has been used to characterize changes in ID (Pang et al.,
2017; Yan et al., 2018; Fasiello et al., 2022). Functional
connectivity analysis provides an accessible and efficient method
for diagnosis, especially given the large-scale network changes
observed in ID. ID sufferers demonstrate aberrant functional
connectivity across several networks, including the Default

Mode Network (Pang et al., 2017; Li et al., 2018; Ma et al.,
2018; Zhou et al., 2018; Fasiello et al., 2022), Salience Network
(Liu et al., 2018; Wei et al., 2020; Fasiello et al., 2022), Central
Executive Network (Liu et al., 2018; Zhou et al., 2018; Wei et al.,
2020; Fasiello et al., 2022), and Sensorimotor Network (Dai et al.,
2020; Fasiello et al., 2022). However, the significance of these
connectomic differences in ID is not entirely understood, with
inconsistencies in networks and directions of changes across
studies, and discordance between structural and functional
changes (Tahmasian et al., 2018).

Given the complexity and scale of both ID and FC, machine
learning approaches may assist in better understanding network
changes in ID, and evaluating whether FC has the potential to
act as a diagnostic tool. While machine learning tools have been
used to identify sleep stages from FC data (Tagliazucchi et al.,
2012; Tagliazucchi and Laufs, 2014), only one previous study
has used machine learning to distinguish ID from controls.
In their work, He et al. utilized simultaneous EEG-fMRI to
record multiple fMRI sessions during a specific sleep stage, to
which they applied a support vector machine for classification
(He et al., 2022). While their model had high accuracy, it was
unable to provide the improved accessibility which would result
from the ability to perform machine learning on a single awake
fMRI for diagnosis. In addition, they were unable to perform
feature importance to identify which features of the machine
learning model, or areas of the brain, were contributing most
to the model’s classification. The identification of these brain
network features is crucial, as they may provide (1) biomarkers
used to diagnose ID, (2) insight into the pathogenesis of
ID, and (3) aid in identification of brain modulation targets
for treatment.

Given its prevalence and burden, several treatment strategies
have been investigated to improve sleep in ID. Cognitive
behavioral therapy (CBT) is often recommended as first-
line treatment; however, it is often underutilized due to
barriers around access to trained providers, time burden, or
economic issues (Rossman, 2019). Given the limitations of CBT,
pharmacotherapy remains a common approach, which is both
effective and accessible, though is associated with potential
adverse effects and dependence (Lie et al., 2015), limiting
its utility. Further understanding of the neural mechanisms
underlying ID may enable utilization of newer techniques,
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such as repetitive transcranial magnetic stimulation (rTMS) to
complement existing therapeutic approaches.

Repetitive transcranial magnetic stimulation (rTMS) has
been suggested as a candidate therapy for reducing cortical
excitability and hyperarousal associated with ID, and in the
long-term, modulating plasticity of neuronal networks which
may promote the release of sleep-related hormones (van der
Werf et al., 2010; Lanza et al., 2015; Feng et al., 2019). Several
studies have demonstrated improved sleep quality following
rTMS in ID, with a recent meta-analysis demonstrating
superiority to sham in improving several sleep-related measures,
including sleep efficiency, sleep time, and number of awakenings
(Ma et al., 2021). Despite its promise, research in other
disorders (such as major depressive disorder) suggests that
rTMS demonstrates substantial variability in treatment efficacy
across individuals (Kar, 2019). Therefore, markers of predicting
rTMS response are key to identifying suitable cohorts who may
benefit from rTMS treatment of ID.

In this study, we applied a recently described machine
learning approach, Hollow Tree Super (HoTS) (Doyen et al.,
2021), specifically designed to handle high-dimensional
functional connectivity fMRI data, to a clinical cohort of ID in
order to investigate two clinically relevant questions. (1) Can
a single awake rsfMRI scan differentiate subjects with ID from
controls; testing the potential utility of fMRI in diagnosing ID.
(2) How do large-scale brain networks respond to combined
pharmacotherapy and rTMS; attempting to identify rTMS
response markers and new potential stimulation targets.

Materials and methods

Study design

The study was an open-label, prospective, randomized
study investigating the functional connectivity disturbances
underlying ID, and how large-scale networks respond to
pharmacotherapy and rTMS among healthy volunteers and
ID patients. We enrolled 51 right-handed older adult patients
with ID and 42 healthy older adult volunteers who were age
and education matched but did not have insomnia (recruited
from Jiangsu, China, from July 2020 to July 2021). A simple
randomization was performed to randomly allocate 24 of the
51 ID patients to drug only or combined pharmacotherapy
and TMS treatment groups. The study was approved by the
hospital’s Human Research Ethics Committee and registered
with the Chinese Clinical Trials Registry (ChiCTR2100049455).
All participants provided written informed consent according to
the Declaration of Helsinki prior to data collection. The clinical
activities were open label to both participants and physicians,
whereas the analysis was performed by blinded authors on de-
identified data. A priori sample size estimation was performed
using G Power version 3.1, according to previous research

(Jiang et al., 2019). Healthy age-matched adult volunteers had
a questionnaire assessment (see Assesment section for details)
and MRI [resting-state functional MRI (rsfMRI), T1-weighted
imaging, and diffusion weighted imaging (DWI) (see Imaging
Protocol section for details)] at baseline. ID patients underwent
questionnaire assessment and MRI scan at baseline and four
weeks following treatment. All questionnaires were carried out
prior to the MRI scan. To classify patients with ID from
healthy controls based on FC, we used a machine learning
method to fit the model, which was evaluated with the mean
area under the receiver operating characteristic curve (AUC-
ROC). The treatment response was dependent on the Pittsburgh
Sleep Quality Index (PSQI) and the Insomnia Severity Index
(ISI) measured before and after treatment. (see Assessment for
specific instructions).

Patient cohort

Fifty-one patients with Insomnia Disorder were recruited
from the Outpatient Department of Rehabilitation of the
Affiliated Jiangsu Shengze Hospital of Nanjing Medical
University, while 46 healthy volunteers were recruited from
the Wujiang Shengze Zhen Old-age University. Participants
were aged 45–75 and had a junior high school education
or above. All participants met the diagnostic criteria for ID
in the Fifth Edition of the Diagnostic and Statistical Manual
of Mental Disorders (American Psychiatric Association, 2013)
and agreed to participate in the trial on a voluntary basis.
Diagnostic interviews were conducted by two experienced
neurologists. Patients were excluded based on the following
criteria: concurrent psychotherapy or counseling and substance
or alcohol abuse or dependence; evidence of neurological or
other psychiatric diseases; pregnancy or breastfeeding women;
any contraindication for rTMS (including implanted metal and
devices in the body, and history of epilepsy).

Post treatment scans and assessments were collected for 24
participants with ID: 12 patients who received pharmacotherapy
alone, and 12 patients who received both pharmacotherapy
and rTMS. The median age (IQR) was 53.5 (8.0) for the
pharmacotherapy group, and 57 (16.0) for the combined
pharmacotherapy and rTMS group, while the median number
of years of education was 9 for both groups.

Repetitive transcranial magnetic
stimulation protocol

The rTMS was performed using a MagPro device (MagPro
X100, Tonica Elektronik A/SFarum, Denmark) connected with
a figure-8-coil located above the right dorsolateral prefrontal
cortex (rDLPFC) at a horizontal angle of 45◦ relative to the
midline of the nose. The rDLPFC was chosen as a target based
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on emerging literature suggesting this as an effective target
for treating sleep difficulties in both disorders where sleep
difficulties manifest as part of the syndrome [e.g., narcolepsy
(Lanza et al., 2015)], and ID specifically. Magnetic pulses with
a frequency of 1 Hz and an intensity of 90% of the motor
threshold were delivered in 40 trains of 30s on and 8s off.
Sessions were conducted five times per week for four weeks at
1200 pulses per session.

Pharmacotherapy protocol

During the rTMS treatment period, both pharmacotherapy
and combined rTMS and pharmacotherapy groups (24
ID participants) were given the following three phase
pharmacotherapy protocol: the first phase (week 1) consisted
of clonazepam (Enhua Pharma Co., Ltd, Xuzhou, China)
1 mg and zolpidem (Sanofi Pharma Co., Ltd, Hangzhou,
China) 5 mg daily at bedtime; the second phase (weeks 2–3)
consisted of clonazepam 1 mg and zolpidem 2.5 mg; while
in the third phase (week 4) participants were administered
only with clonazepam 1 mg. Throughout the study all ID
patients were required to keep a daily sleep diary and follow the
treatment prescription.

Assessment

All assessments were completed by trained research
assistants, who were blind to whether the patients were receiving
rTMS combined with pharmacotherapy or pharmacotherapy
only. The Alcohol Use Disorders Identification Test (AUDIT)
and the Fagerstrom Test for Nicotine Dependence (FTND)
were performed as baseline features for incorporation into the
model to distinguish ID patients from healthy individuals. The
Epworth Sleepiness Scale (ESS) was used to measure subjective
daytime sleepiness and excessive daytime sleepiness (ESS > 10)
(Arnulf et al., 2002). The Pittsburgh Sleep Quality Index (PSQI),
an index of sleep quality; and the Insomnia Severity Index (ISI),
an index of global insomnia severity; were evaluated to assess
response to therapy.

Imaging protocol

All subjects underwent an MRI scan on a 3.0T GE Discovery
MR750w (SIGNA) scanner 24 channel head coil (Head 24).
A 10-min, gradient-echo echo-planar imaging T2∗ sensitive
pulse sequence was used to acquire resting-state fMRI data
[interleaved sequence, slices = 41, thickness = 3.5 mm, pixel
spacing = 3 × 3 mm, repetition time (TR) = 2500 ms, echo
time (TE) = 30 ms, field of view (FOV) = 192 × 192 mm,
flip angle = 90◦, and acquisition matrix = 64 × 64, percent
sampling= 100%, percent Phase Field of View= 100%].

A three-dimensional, 5-min, spoiled-gradient recalled T1-
weighted sequence (axial 3D T1 BRAVO) was used to acquire
whole-brain structural data with an acquisition time of 301s
(slices = 188, thickness = 1 mm, pixel spacing = 1∗1 mm,
TR = 8.5 ms, TE = 3.2 ms, Inversion Time = 450 ms,
Spacing Between Slice = 1, skip = 0 mm, flip angle = 12◦,
FOV = 256 × 256 mm, and acquisition matrix = 256 × 256,
percent sampling= 100%, percent Phase Field of View= 100%).

Diffusion-weighted volume were acquired using
the following parameters: 65 contiguous slices, slice
thickness = 2.1 mm, FOV = 256 × 256 mm,
matrix = 128 × 128 mm, TR = 17000 ms, TE = 95.9 ms,
voxel size = 2 mm isotropic, acquisition number of excitations
(NEX) = 1 partial Fourier, 64 diffusion directions with
b-value= 1000 s/mm2, and 1 image with no diffusion weighting
(b = 0 s/mm2), bandwidth = 250 Hz/pixel. Acquisition time
was 19.16 min per diffusion-weighted scan.

Diffusion tractography preprocessing
steps

Diffusion weighted imaging (DWI) was processed using
the Infinitome software (Omniscient Neurotechnology, 2020),
which employs a standard processing steps in the Python
language (Garyfallidis et al., 2014). This includes the following
steps: (1) the diffusion image is resliced to ensure isotropic
voxels, (2) motion correction is performed using a rigid
body alignment, (2) slices with excess movement (defined as
DVARS > 2 sigma from the mean slice) are eliminated, (3)
the T1 image is skull stripped using a convolutional neural net
(CNN). This is inverted and aligned to the DWI image using
a rigid alignment, which is then used as a mask to skull strip
the DWI image, (4) gradient distortion correction is performed
using a diffeomorphic warping method which aims to locally
similarize the DWI and T1 images, (5) eddy current correction
is performed, (6) the fiber response function is estimated and
the diffusion tensors are calculated using constrained spherical
deconvolution, (7) deterministic tractography is performed with
random seeding, usually creating about 300,000 streamlines per
brain (Doyen et al., 2022).

Creation of a personalized brain atlas
using machine learning based
parcelation

Since we sought to minimize the effects of gyral variation,
we created a machine learning based, subject specific version
of the Human Connectome Project Multimodal Parcelation
(HCP-MMP1) atlas (Glasser et al., 2016) based on diffusion
tractography structural connectivity, which we have described
elsewhere (Doyen et al., 2022). In short, this was created by

Frontiers in Human Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fnhum.2022.960350
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-960350 August 4, 2022 Time: 15:49 # 5

Lu et al. 10.3389/fnhum.2022.960350

training a machine learning model on a separate cohort of 200
normal adult subjects by first processing T1 and DT images
as above. An HCP-MMP1 atlas in NIFTI MNI space was then
warped onto each brain and the structural connectivity was
calculated between every pair of this atlas and a set of ROIs
containing 8 subcortical structures per hemisphere as well as the
brainstem based on the streamlines, which terminated within
an ROI. This step allows the generation of feature vectors and
generates a centroid of the parcelation, which is utilized to
constrain the voxels studied in order to assign these to a given
parcelation that is in a plausible area in the vicinity of its typical
position. These feature vectors for each region were then used
as a training set and the data were modeled using the XGBoost
method (Chen and Guestrin, 2016).

This model was then applied to the new subject by first
warping the HCP-MMP1 atlas to the new brain and collecting
a set of feature vectors for the connectivity of each voxel. The
feature vectors are then used to determine if each voxel belongs
to a parcelation or region or not, and if so to assign the voxel
to that parcelation. This creates a version of the HCP-MMP1
atlas with 180 cortical regions and 9 subcortical structures per
hemisphere, along with the brainstem as one region, which is
independent of brain shape or pathologic distortion, and that is
specific for each subject.

The identified parcels were also automatically labeled
by the Infinitome software to their known affiliations to
large-scale networks, including the Accessory Language
Network, Default Mode Network (DMN), the Central Executive
Network (CEN), Dorsal Attention Network (DAN), Language
Network, Limbic/Paralimbic Network, Salience Network (SN),
Sensorimotor Network (SMN), and Visual Network (VN).

Resting-stage functional magnetic
resonance imaging preprocessing
steps

The rsfMRI images were processed using standard
processing steps which specifically include the following:
(1) motion correction is performed on the T1 and BOLD
images using a rigid body alignment, (2) slices with excess
movement (defined as DVARS > 2 sigma from the mean
slice) are eliminated, (3) the T1 image is skull stripped using
a convolutional neural net (CNN), this is inverted and aligned
to the resting state bold image using a rigid alignment, which
is then used as a mask to skull strip the rsfMRI image, (4) slice
time correction is performed, (5) global intensity normalization
is performed, (6) gradient distortion correction is performed
using a diffeomorphic warping method which aims to locally
similarize the rsfMRI and T1 images, (7) high variance
confounds are calculated using the CompCor method (Behzadi
et al., 2007); these confounds as well as motion confounds are
regressed out of the rsfMRI image, and the linear and quadratic

signals are detrended. Note this method does not perform global
signal regression, (8) spatial smoothing is performed using a
4 mm FWHM Gaussian kernel. The personalized atlas created
in previous steps is registered to the T1 image and localized
to the gray matter regions. Thus, it is ideally positioned for
extracting an average BOLD time series from all 379 areas (180
parcelations × 2 hemispheres, plus 19 subcortical structures).
This yields 143,641 correlations.

Median absolute deviation outlier
detection

In order to find outliers in functional connectivity in the
ID group, we calculated the median and median absolute
deviation (MAD) within the FC of the healthy controls. We
then determined for each ID patient whether the FC was an
outlier, based on a threshold of 3 or more MAD. The number
of anomalies within each network were then counted and the
mean calculated for responders and non-responders, before and
after treatment. We also calculated the mean change in anomaly
counts before and after treatment to compare responders to
non-responders in the cohort of 24 patients who underwent
treatment. This process was completed for responders on both
the ISI and PSQI. For the ISI, response was defined as a change in
the interpretive category (for example, improving from severe to
moderate insomnia), whereas for the PSQI, the reliable change
index (RCI) (Christensen and Mendoza, 1986) was used, and
a statistically significant response was defined as an RCI of
1.96 or greater.

Mapping of symptoms to brain regions
using Hollow-Tree Super method

Machine learning was used to classify patients with ID from
healthy controls based on the pairwise functional connectivity
between the 379 regions of each individual’s brain atlas. We
used an XGBClassifier, a boosted trees approach to fit the
model, which provides a superior prediction ability than single
trees. All models included age, sex, AUDIT score, and FTND
score as features. We used 5-fold cross-validation, and evaluated
the model with the mean area under the receiver operating
characteristic curve (AUC-ROC).

The black box problem in machine learning poses a
substantial limitation on the ability for machine learning models
to identify which part of the brain a problem arises from, posing
a barrier for clinical translation. To traverse this, we used a
boosted trees approach, called HoTS, described elsewhere (Kar,
2019), to attempt to gain visibility over which features the model
was using to classify subjects based on the input fMRI scans,
with the obvious implication that these features were providing
insight into what brain regions had abnormal connectivity that
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might be linked to the symptom or its response to treatment.
The HoTS method is a useful approach when dealing with high-
dimensional data (for instance functional connectomics) and
can provide directional weights with interpretable magnitudes.
This method has been custom designed for tree based models
(which is used in the current study), built on the ELI5 method
which linearizes a decision tree. In addition, the HoTs method
is custom built for analyzing connectomic pairwise features, i.e.,
parcel-to-parcel connectivity. The extracted feature importances
were visualized at a network-level, based on the importance
of each brain network in the output of the model, and at an
individual brain region level using a SHAP plot of the top 20
features contributing to the model. Each SHAP plot provides a
list of features in descending order of importance, along with
their impact on the model along the x-axis, with the color of
each point indicating whether a high (red), or low (blue) value
of that feature is associated with the model.

Statistical analysis

A Chi-squared test of independence was used to compare
nominal demographic variables between healthy controls and
ID patients, whereas a Mann-Whitney U test was used to
compare continuous variables. Furthermore, Fisher’s exact test
was used to identify whether there was an association between
treatment modality and outcome. All statistical analyses were
performed in R version 4.1.0.

Results

Subject demographics

No study-related serious adverse events were identified.
Table 1 shows the demographics and clinical characteristics of
all subjects at baseline. The median age of healthy controls and
ID patients was 56 years and 57 years, respectively. There was
a significant difference in the ESS (U = 858.5, p = 0.022),
ISI (U = 46.5, p < 0.001), and PSQI (U = 38, p < 0.001)
between healthy controls and ID patients, with patients scoring
significantly higher on each test.

Treatment outcomes following
pharmacotherapy and repetitive
transcranial magnetic stimulation

Table 2 demonstrates the demographics and clinical
characteristics for the 24 subjects who underwent treatment with
combined pharmacotherapy and rTMS, and pharmacotherapy
alone. There was no statistically significant difference between
the demographics of the two treatment groups. Insomnia

TABLE 1 Baseline characteristics for the entire cohort.

Demographic Healthy
controls
(n = 42)

Insomnia
patients
(n = 51)

p-value

Sex F/M (%) 35/7 (83.3/16.7) 37/14 (72.5/27.5) 0.225

Median age
(IQR) years

56.0 (6.9) 57.0 (14.1) 0.375

Median AUDIT
score (IQR)

0 (0) 0 (0) 0.869

Median FTND
score (IQR)

0 (0) 0 (0) 0.908

Median ESS
score (IQR)

2.0 (3.75) 4.0 (6.0) 0.022

Median ISI score
(IQR)

0 (3.0) 15.0 (5.5) < 0.001

Median PSQI
score (IQR)

3.0 (3.75) 16.0 (4.0) < 0.001

AUDIT, Alcohol Screening Tool; FTND, Fagerstrom Test for Nicotine Dependence;
ESS, Epworth Sleepiness Scale; ISI, Insomnia Severity Index; PSQI, Pittsburgh
Sleep Quality Index.

patients who underwent both pharmacotherapy and rTMS
demonstrated a greater decrease in median ESS, ISI, and
PSQI scores at follow-up compared to patients who only
received pharmacotherapy, though this difference was not
statistically significant.

Next, defining improvement as either an RCI > 1.96 for
the PSQI, and a decrease in severity category for the ISI,
22 subjects (91.7%) demonstrated improvement. 13 subjects
(54.2%) showed improvement on both the PSQI and ISI. When
improvement was measured using the PSQI, 10 subjects showed
improvement if they received combined pharmacotherapy and
rTMS (83.3%), whereas 8 subjects showed improvement if
they received pharmacotherapy alone (66.7%). Fisher’s exact
test did not reveal a significant association between treatment
group and outcome (p= 0.640). When measuring improvement
with the ISI, 9 (75.0%) subjects who received combined
pharmacotherapy and rTMS showed improvement, whereas 8
(66.7%) subjects who only received pharmacotherapy showed
improvement. Fisher’s exact test once again did not show a
significant association between the treatment modality and
outcomes (p= 1).

Machine learning prediction of
functional connectivity changes in
insomnia disorder

Using the entire cohort of 51 ID patients and 42 controls,
machine learning was used to classify subjects into ID and
control groups based on their FC. The best performance
was achieved using an extreme gradient boosting model
with hyperparameter tuning. This model included functional
connectivity, sex, age, along with the AUDIT and FTND scores

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.960350
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-960350 August 4, 2022 Time: 15:49 # 7

Lu et al. 10.3389/fnhum.2022.960350

TABLE 2 Baseline and follow-up characteristics for insomnia patients who underwent treatment.

Demographic Healthy
controls
(n = 42)

Insomnia
patients
(n = 24)

P-value Insomnia patients
drug only
(n = 12)

Insomnia patients
drug + rTMS

(n = 12)

P-value

Sex F/M (%) 35/7 (83.3/16.7) 16/8 (66.7/33.3) 0.212 9/3
(75.0/25.0)

7/5
(58.3/41.7)

0.665

Median age (IQR) years 56.0 (6.9) 54.0 (14.25) 0.936 53.5 (8.0) 57.0 (16.0) 0.729

Median AUDIT score (IQR) 0 (0) 0 (0) 0.251 0 (0) 0 (0) 0.965

Median FTND score (IQR) 0 (0) 0 (0) 0.897 0 (0) 0 (0) 0.359

Median ESS score (IQR)

Baseline 2.0 (3.75) 6.0 (7.0) 0.013 7.5 (6.5) 2.0 (7.0) 0.036

Follow-up – 3.0 (5.0) 4.0 (3.5) 2.0 (3.75) 0.091

Median ISI score (IQR)

Baseline 0 (3.0) 15.0 (7.25) < 0.001 15.5 (7.75) 14.5 (4.5) 0.505

Follow-up – 6.0 (6.0) 9.0 (4.25) 5.0 (3.25) 0.059

Median PSQI score (IQR)

Baseline 3.0 (3.75) 15.5 (4.25) < 0.001 17.0 (5.0) 15.0 (3.5) 0.641

Follow-up – 10.5 (5.25) 13.0 (3.5) 8.0 (5.5) 0.076

AUDIT, Alcohol Screening Tool; FTND, Fagerstrom Test for Nicotine Dependence; ESS, Epworth Sleepiness Scale; ISI, Insomnia Severity Index; PSQI, Pittsburgh Sleep Quality Index;
rTMS, repetitive Transcranial Magnetic Stimulation.

to classify subjects into ID or control. The mean AUC was
0.828. Using the HoTS method to extract feature importance
revealed that the top 20 features were the functional connectivity
among 39 brain regions (Figure 1A). These regions were mostly
right sided, with many in the sensorimotor and insular regions
(Figure 1B). Aggregating SHAP absolute values at a network
level to identify the mean importance of each network revealed
that the functional connectivity of regions within the CEN,
VAN, and SMN had the greatest contribution to the model’s
classification (Figure 1C).

Responders demonstrate a greater
number of anomalies in functional
connectivity

Despite our initial aim, we were unable to predict ISI and
PSQI improvement using machine learning, primarily due to
large class imbalances. The subsequent analysis on improvement
therefore solely utilized MAD outlier detection on the subgroup
of 24 patients who underwent treatment, rather than HoTS-
based machine learning approaches.

For the ISI, baseline anomaly counts were higher in
responders compared to non-responders across all networks
(Figure 2A). The accessory language network had the
greatest number of anomalies in responders, followed by the
Limbic/Paralimbic Network, DMN, and VAN. There was not
a similarly hierarchical trend in anomaly counts in non-
responders at baseline. Mean anomaly counts decreased at
follow-up in responders in all networks, whereas the number
of anomalies increased across all networks in non-responders.
The accessory language network showed the greatest change

following intervention, with the greatest decrease in anomalies
in responders, and greatest increase in non-responders.

Similar to the ISI, for the PSQI response, baseline anomaly
counts were higher in responders relative to non-responders
across all networks (Figure 2B). Interestingly, however, almost
all networks showed an increase in mean anomaly counts at the
follow-up scan, in both responders and non-responders.

When looking at change in anomaly counts between
responders and non-responders across the ISI and PSQI,
responders demonstrated a greater change across all networks
compared to non-responders (Figures 2C,D). For both the ISI
and PSQI, the DMN showed the greatest change in anomalies.
This was followed by the SN and SMN for the ISI, and SMN
and VN for PSQI. However, it is important to note that this
was a measure of absolute change, rather than a decrease or
increase in anomalies.

Finally, we attempted to explore the effect of intervention
(drug vs rTMS + drug) on anomalies in order to identify
whether the addition of rTMS influenced anomaly count. There
was no observable difference in change in anomaly count
between intervention groups (Figure 3).

Discussion

In this study, we performed functional connectivity-
based analysis comparing ID patients with controls at
baseline and post-intervention (pharmacotherapy or combined
pharmacotherapy and rTMS) in order to identify diagnostic
and therapeutic targets. Our machine learning model effectively
classified ID, demonstrating that connectivity within the CEN,
VAN, and SMN were most predictive of ID at baseline.

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.960350
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-960350 August 4, 2022 Time: 15:49 # 8

Lu et al. 10.3389/fnhum.2022.960350

FIGURE 1

Machine learning modeling to classify subjects into Insomnia disorder and controls. (A) The functional connectivity among 39 brain regions
comprised the top 20 features of the model, depicted here in a SHAP plot. The x-axis depicts the impact of each feature on the model output,
while the color of each data point indicates whether a high or low functional connectivity is associated with the output. (B) The regions are
demonstrated on a model brain. (C) The graph demonstrates the mean importance of each network on the model’s classification.

Furthermore, exploration of connectome anomalies suggested
that improvement following pharmacotherapy with or without
rTMS was associated with a greater number of functional
connectivity anomalies at baseline compared to non-responders.
Overall, our results demonstrate that ID is a complex multi-
network disorder which may benefit from machine learning
and connectomic approaches to improve therapeutic options
for patients. Our study is the first to utilize awake rsfMRI-
based FC to differentiate ID from controls, and further extract
features associated with classification, though further studies are
necessary to validate our findings.

Network changes associated with
insomnia disorder

Our analysis highlighted several networks which
contributed to the machine learning model’s classification
of ID from controls, with the CEN demonstrating the greatest

aggregated contribution. Several studies have shown alterations
in the CEN FC in ID, though both increased and reduced
connectivity have been reported (Fasiello et al., 2022). Although
executive function testing has not been performed in the
same studies to identify concordant changes, it is proposed
that FC abnormalities in the CEN may be responsible for
the daytime cognitive and emotional changes observed in
ID (Liu et al., 2018; Zhou et al., 2018; Fasiello et al., 2022).
Connectivity differences in the CEN may also support a
reduced capacity to disengage from processing of external
stimuli, which is consistent with the clinical characteristics of
ID. ID patients have also demonstrated reduced functional
connectivity between the anterior SN and left CEN (Wei
et al., 2020). While the SN was not among the top networks
contributing to our model’s classification, several regions out
of the top 20 features, such as right Area Posterior Insular
1 (R_PoI1), right Frontal Opercular Area 4 (R_FOP4), and
left Supplementary and Cingulate Eye Field (L_SCEF) are
associated with the SN (Akiki and Abdallah, 2019). Given the
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FIGURE 2

Median absolute deviation anomaly detection. Each graph depicts the mean anomaly count at baseline and follow-up for each network when
response was measured using (A) the ISI, and, (B) the PSQI. The mean of the change in anomaly counts from baseline to follow-up in
responders and non-responders have also been graphed for (C) the ISI, and, (D) the PSQI.

proposed role of the SN in switching between the CEN and
DMN (Goulden et al., 2014), these findings may be reflecting
aberrancy in the ability to switch between networks in response
to stimuli. While our analysis did not point to the DMN at
baseline, several studies have inconsistently reported increased
and decreased FC in the DMN in ID (Pang et al., 2017; Li
et al., 2018; Ma et al., 2018; Zhou et al., 2018; Rossman, 2019).
Despite the heterogeneous findings, the DMN’s role in sleep and
introspection are likely associated with disturbed attentional
processing in ID.

Our analysis also pointed to the VAN and SMN in
predicting ID at baseline, echoing many of the connectivity
changes observed in ID relating to alterations in networks
associated with responding to external stimuli. The VAN has
a role in orienting attention to external stimuli (Allan et al.,
2020). While not well studied in ID, abnormal connectivity of
the VAN perhaps contributes to shallow sleep and increased
sensitivity to external stimuli. Furthermore, connectivity
differences in the SMN in ID are well established in the

literature. ID patients reveal increased FC in the visual
pathway (Zhou et al., 2018; Fasiello et al., 2022), and
increased FC connectivity within SMN networks has been
associated with longer ID duration (Dai et al., 2020). Both
the primary and secondary visual cortices, and sensorimotor
regions were among the top 20 features predicting ID in
our model. These findings may suggest that alterations in
the SMN lead to abnormal sensory-perception processing
with increased sensitivity to external stimulation and
consequent hyperarousal.

Taken together, these primary network predictors of
ID may indicate a disrupted sensitivity to, and control
of processing environmental stimuli, leading to a sensory
and motor hypervigilance, supporting the psychopathology
of ID. However, the cross-sectional nature of the extant
literature prevents the identification of a causative relationship
between network changes and ID. Therefore, it is unclear
whether connectivity changes cause ID, are caused by it, or
are an incidental manifestation of ID. Further prospective

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2022.960350
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-960350 August 4, 2022 Time: 15:49 # 10

Lu et al. 10.3389/fnhum.2022.960350

FIGURE 3

Effect of intervention on anomalies. The graph demonstrates the mean change in anomaly count by network for participants who received
pharmacotherapy alone, and those who received pharmacotherapy and TMS.

studies are necessary to clarify the nature of connectomic
disturbances in ID.

Predicting treatment response in
insomnia disorder

There have been several attempts to identify
electroencephalographic, or polysomnographic predictive
markers for treatment response in ID (Espie et al., 2001;
Kalmbach et al., 2020; Sweetman et al., 2021). A reliable
predictor of outcome across treatment modalities has not yet
been found. Given that TMS has only recently been investigated
in the context of ID, there have not been many attempts to
identify predictors of response. One study utilizing EEG-based
connectivity found that weaker connectivity between the region
of the right dorsolateral prefrontal cortex and frontal, insular
and limbic regions was associated with greater change in
PSQI following rTMS over the right DLPFC (Shi et al., 2021).
Despite a small sample size and a lack of a neuro-navigation
system, this study parallels our finding that patients with
more outliers in FC respond better to treatment. Based on

both our findings and those reported by Shi et al. (2021),
it could be speculated that normalization of anomalous FC
may be the mechanism by which therapeutic response is
achieved when using rTMS in ID. Interestingly, the accessory
language network was associated with the greatest change
in ISI in responders following rTMS. While the accessory
language network has not been investigated in the context of
ID, accessory language network regions are associated with
multiple linguistic and cognitive/attentional control functions
that play a role in self-referential and ruminative thoughts,
error monitoring, and affective response (Hertrich et al., 2020),
suggesting a heightened anomaly count within the network
could be contributing to the nociferous patterns of thought
supporting ID.

In our analysis, both responders and non-responders
showed an increase in mean anomaly counts, especially in
PSQI response. It may be suggested that sleep quality treatment
response is solely dependent on baseline connectomics.
Conversely, it may be that some network anomalies facilitate
functional normalization through a compensatory change
in network connectivity. The DMN showing the greatest
change in total anomalies in responders may be indicative
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of this, as plasticity of the DMN may help compensate
for deficits in other networks. Furthermore, given a
greater degree of total change in anomalies across the
ISI and PSQI was associated with treatment response,
connectome plasticity overall, rather than normalization,
may be more predictive of ID improvement. However, these
interpretations are highly speculative and need to be tested in
prospective research.

Though initially planned, we were unable to compare
the efficacy of combined rTMS and pharmacotherapy to
pharmacotherapy alone, and identify the impact of each
modality on FC changes. Our results demonstrated that a
greater percentage of those who received combined rTMS
and pharmacotherapy improved, compared to those who
received pharmacotherapy alone. This was, however, a
marginal difference, and our study was underpowered to find
any statistically significant associations between treatment
modality and outcome. Similarly, while our anomaly analysis
demonstrated no difference between each modality and changes
in anomaly counts, our small sample size prohibits us from
making conclusions about the influence of rTMS in ID.
Larger trials are necessary to evaluate whether rTMS provides
sufficient benefit in ID.

There are several limitations of the current study. As
aforementioned, our small sample size limits the external
validity of our findings. Due to the sample size, it was not
possible to associate connectome changes with treatment
(i.e., pharmacotherapy alone vs. combined pharmacotherapy
and rTMS). Furthermore, the connectome abnormalities
we have identified may not be purely associated with ID,
but instead concomitant depression or anxiety. Therefore,
larger prospective studies with more rigorous designs are
required to validate our findings, and provide a basis
for connectome based rTMS target identification and
clinical translation.

Conclusion

Our findings demonstrate the utility of resting state fMRI
to explore the connectomic disturbances underlying Insomnia
disorder and how networks respond to pharmacotherapy and
rTMS. Specifically, we demonstrate that baseline disruptions in
metacognitive and sensory networks are predictive of treatment
response, suggesting those with more disrupted networks
are better candidates for therapy, however, more research is
necessary to validate these claims.
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