
fnhum-16-971062 August 25, 2022 Time: 14:46 # 1

TYPE Study Protocol
PUBLISHED 31 August 2022
DOI 10.3389/fnhum.2022.971062

OPEN ACCESS

EDITED BY

Tamer Demiralp,
Istanbul University, Turkey

REVIEWED BY

Masoud Seraji,
University of Texas at Austin,
United States
Umit Aydin,
King’s College London,
United Kingdom

*CORRESPONDENCE

Jingliang Cheng
fccchengjl@zzu.edu.cn
Yong Zhang
zzuzhangyong2013@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Brain Imaging and Stimulation,
a section of the journal
Frontiers in Human Neuroscience

RECEIVED 16 June 2022
ACCEPTED 01 August 2022
PUBLISHED 31 August 2022

CITATION

Song C, Zhang X, Han S, Ma K, Wang K,
Mao X, Lian Y, Zhang X, Zhu J, Zhang Y
and Cheng J (2022) More than just
statics: Static and temporal dynamic
changes in intrinsic brain activity
in unilateral temporal lobe epilepsy.
Front. Hum. Neurosci. 16:971062.
doi: 10.3389/fnhum.2022.971062

COPYRIGHT

© 2022 Song, Zhang, Han, Ma, Wang,
Mao, Lian, Zhang, Zhu, Zhang and
Cheng. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

More than just statics: Static and
temporal dynamic changes in
intrinsic brain activity in
unilateral temporal lobe epilepsy
Chengru Song1,2,3,4,5,6,7†, Xiaonan Zhang1,2,3,4,5,6,7†,
Shaoqiang Han1,2,3,4,5,6,7, Keran Ma1,2,3,4,5,6,7, Kefan Wang1,2,3,4,5,6,7,
Xinyue Mao1,2,3,4,5,6,7, Yajun Lian8, Xianchang Zhang9,
Jinxia Zhu9, Yong Zhang1,2,3,4,5,6,7* and
Jingliang Cheng1,2,3,4,5,6,7*
1Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2Key Laboratory for Functional Magnetic Resonance Imaging and Molecular
Imaging of Henan Province, Zhengzhou, China, 3Engineering Technology Research Center
for Detection and Application of Brain Function of Henan Province, Zhengzhou, China,
4Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan
Province, Zhengzhou, China, 5Key Laboratory of Magnetic Resonance and Brain Function of Henan
Province, Zhengzhou, China, 6Key Laboratory of Brain Function and Cognitive Magnetic Resonance
Imaging of Zhengzhou, Zhengzhou, China, 7Key Laboratory of Imaging Intelligence Research
Medicine of Henan Province, Zhengzhou, China, 8Department of Neurology, The First Affiliated
Hospital of Zhengzhou University, Zhengzhou, China, 9MR Collaboration, Siemens Healthcare Ltd.,
Beijing, China

Background: Temporal lobe epilepsy (TLE) is the most prevalent refractory

focal epilepsy and is more likely accompanied by cognitive impairment.

The fully understanding of the neuronal activity underlying TLE is of great

significance.

Objective: This study aimed to comprehensively explore the potential brain

activity abnormalities affected by TLE and detect whether the changes were

associated with cognition.

Methods: Six static intrinsic brain activity (IBA) indicators [amplitude of low-

frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity

(ReHo), degree centrality (DC), global signal correlation (GSCorr), and voxel-

mirrored homotopic connectivity (VMHC)] and their corresponding dynamic

indicators, such as dynamic ALFF (dALFF), dynamic fALFF (dfALFF), dynamic

ReHo (dReHo), dynamic DC (dDC), dynamic VMHC (dVMHC), and dynamic

GSCorr (dGSCorr), in 57 patients with unilateral TLE and 42 healthy volunteers

were compared. Correlation analyses were also performed between these

indicators in areas displaying group differences and cognitive function,

epilepsy duration, and severity.

Results: Marked overlap was present among the abnormal brain regions

detected using various static and dynamic indicators, primarily including

increased ALFF/dALFF/fALFF in the bilateral medial temporal lobe and

thalamus, decreased ALFF/dALFF/fALFF in the frontal lobe contralateral to

Frontiers in Human Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.971062
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.971062&domain=pdf&date_stamp=2022-08-31
https://doi.org/10.3389/fnhum.2022.971062
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnhum.2022.971062/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-971062 August 25, 2022 Time: 14:46 # 2

Song et al. 10.3389/fnhum.2022.971062

the epileptogenic side, decreased fALFF, ReHo, dReHo, DC, dDC, GSCorr,

dGSCorr, and VMHC in the temporal neocortex ipsilateral to the epileptogenic

foci, decreased dReHo, dDC, dGSCorr, and dVMHC in the occipital lobe, and

increased ALFF, fALFF, dfALFF, ReHo, and DC in the supplementary motor area

ipsilateral to the epileptogenic foci. Furthermore, most IBA indicators in the

abnormal brain region significantly correlated with the duration of epilepsy

and several cognitive scale scores (P < 0.05).

Conclusion: The combined application of static and dynamic IBA indicators

could comprehensively reveal more real abnormal neuronal activity and

the impairment and compensatory mechanisms of cognitive function in

TLE. Moreover, it might help in the lateralization of epileptogenic foci and

exploration of the transmission and inhibition pathways of epileptic activity.

KEYWORDS

cognition, dynamic, intrinsic brain activity, resting-state functional magnetic
resonance imaging, temporal lobe epilepsy

Introduction

As one of the most common cerebral diseases, epilepsy
affects more than 70 million people worldwide (Thijs et al.,
2019). Temporal lobe epilepsy (TLE) is the most prevalent
refractory focal epilepsy (Engel, 2001), and is more likely
accompanied by cognitive impairment, particularly in memory
and language (Allone et al., 2017). It also impairs advanced
social cognition, such as perception and personality (Schacher
et al., 2006), accompanied by depression, anxiety, or other
psychiatric symptoms (Keezer et al., 2016). Considering the
high morbidity, severe cognitive problems, and poor quality of
life, the neuropathologic mechanisms underlying TLE should be
fully understood to facilitate the development of a more precise
diagnosis and effective treatment (Wang et al., 2021).

Temporal lobe epilepsy is a disorder of large neural
networks affecting brain activity (Spencer, 2002; Cataldi et al.,
2013). Spencer (2002) first proposed the concept of “medial
temporal/limbic network” in 2002, believing that it was
bilateral, cortical, and subcortical, and included hippocampi,
amygdala, entorhinal cortices, lateral temporal neocortices, and
extratemporal components of the medial thalamus and inferior
frontal lobes. In addition, Blumenfeld et al. (2004), (Norden
and Blumenfeld, 2002; Blumenfeld and Taylor, 2003) proposed
a “network inhibition hypothesis” in which complex partial
seizures arising in the temporal lobe propagated to the medial
thalamus and upper brainstem reticular formation, disrupting
their normal activating functions. This, in turn, might lead
secondarily to functional inactivation of widespread regions of
the frontal and parietal association cortices, causing the loss of
consciousness. Thus, anatomical structures that are abnormally
activated or inhibited could contribute to epileptic symptoms,

impaired cognitive function (Holmes et al., 2014; Burianová
et al., 2017), or psychiatric complications (Jiang et al., 2018).
The existence and importance of the temporal epilepsy network
have been confirmed using various modalities (Spencer, 2002),
such as clinical observations, EEG (Bettus et al., 2008), SPECT
(Blumenfeld et al., 2004), PET (Concha et al., 2005), volumetric
(Bernasconi et al., 2003; Araújo et al., 2006), and functional
MRI (Zhang et al., 2010; Maneshi et al., 2014). The study of the
TLE network might contribute to our in-depth understanding
of the TLE pathophysiologic mechanism and is expected to be
an auxiliary tool for the clinical diagnosis or provide a new
direction for the treatment.

Blood oxygenation level-dependent (BOLD) resting-
state functional magnetic resonance imaging (rs-fMRI)
focuses on spontaneous/intrinsic fluctuations of BOLD
signals in a low-frequency band (<0.1 Hz). Its functional
significance was first proposed by Biswal et al. (1995). Intrinsic
brain activity (IBA) plays a vital role in brain function
(Fox and Raichle, 2007; Raichle, 2010, 2015). A growing
number of rs-fMRI-based IBA measurements have been
proposed, such as functional connectivity (FC) (Biswal
et al., 1995), amplitude of low-frequency fluctuation (ALFF)
(Zang et al., 2007), fractional ALFF (fALFF) (Zou et al.,
2008), regional homogeneity (ReHo) (Zang et al., 2004),
degree centrality (DC) (Zuo et al., 2012), voxel-mirrored
homotopic connectivity (VMHC) (Zuo et al., 2010), global
signal correlation (GSCorr) (Yan et al., 2017), and independent
component analysis (ICA) (Beckmann et al., 2005). Each
method aims to reveal a distinct aspect of intrinsic brain
function (Margulies et al., 2010). The distinctions and
commonalities among these measures are yet to be fully
explored (Yan et al., 2017).
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Temporal lobe epilepsy can affect brain activity. Zhang
et al. (2010) and Singh et al. (2020) demonstrated that patients
with TLE had increasing ALFF in the mesial temporal epilepsy
network regions and decreasing ALFF in the default-mode
network (DMN) regions. Zhang et al. (2010) also demonstrated
that the increases in ALFF and ReHo might be associated
with the interictal epileptiform discharges, and ALFF might
be applied for the lateralization. Previous studies have focused
mainly on ALFF, fALFF, or ReHo (Zeng et al., 2013; Zhao et al.,
2020), and the results were partially inconsistent. Studies on
VMHC (Xu et al., 2014; Shi et al., 2021), DC (Liang et al., 2020;
Nakai et al., 2021), and GSCorr are rare or even missing.

Moreover, the aforementioned traditional IBA
measurements are static, assuming that the BOLD signal
is stationary during the scanning period (Liao et al., 2014).
However, the activity of the human brain is environmentally
sensitive and activity-dependent, implying that the IBA is
highly dynamic and fluctuates over time, which underlies the
integration of brain function (Park et al., 2018). Thus, static
IBA metrics are insufficient to describe the transient changes
in IBA. Fortunately, recent investigations of brain activity
have taken fluctuation over time into account, which can be
quantified by measuring the temporal variance through the
sliding window approach (Chen et al., 2017). By calculating the
standard deviation (SD) or variability of the aforementioned
metrics in all the windows, we can acquire dynamic IBA
metrics, such as dynamic FC (dFC), dynamic ALFF (dALFF),
dynamic fALFF (dfALFF), dynamic ReHo (dReHo), dynamic
DC (dDC), dynamic VMHC (dVMHC), and dynamic GSCorr
(dGSCorr). These metrics, extended from static to dynamic,
reflect the dynamic change degree of each index in the
time dimension. They not only further reflect rich dynamic
information of IBA, but also proved to have high stability
(Yan et al., 2017).

In a literature search of the aforementioned IBA dynamic
indicators, most research on TLE was found to focus on dynamic
FC studies (Jiang et al., 2020; Li et al., 2022; Pang et al.,
2022). However, the relevant studies which applied the other
dynamic indicators, such as dALFF, dfALFF, dReHo, dDC,
dVMHC and dGSCorr, in TLE patients could not be retrieved.
Only one piece of literature has been retrieved to investigate
the dALFF alteration in benign childhood epilepsy (BECTS)
(Morgan et al., 2020).

Consequently, this study was performed to comprehensively
understand the abnormalities of IBA in patients with TLE
and analyze the consistency and complementarity of various
indicators. We studied the static and temporal dynamic
characteristics of IBA in patients with unilateral TLE from
the perspectives of local activity (ALFF and fALFF), local
synchronization or connectivity (ReHo and VMHC), and the
whole brain connectivity (DC and GSCorr). Moreover, the
correlations between abnormal IBA and cognition, epilepsy
duration, or severity were explored. These might enhance

the understanding of the relationship between TLE and
cognition deficits.

Materials and methods

Participants

The participants were divided into two groups. The TLE
group was comprised of 64 patients with unilateral TLE who
had consulted the Neurology Clinic and Inpatient Department
of The First Affiliated Hospital of Zhengzhou University. The
healthy control (HC) group was comprised of 45 healthy
volunteers from the local communities matched for age and sex.

The diagnosis was made based on a detailed history,
neurologic examination, electroencephalography (EEG)
recordings, and imaging findings. The inclusion criteria for
patients were as follows: (1) all right-handed, (2) >14 years old,
and (3) met any 2 or more of the following criteria: ¬ clinical
semiology consistent with seizures of the unilateral left/right
temporal lobe origin, ­ interictal or ictal epileptic discharges
of the unilateral left/right temporal lobe origin according to
scalp EEG or intracranial electrode EEG, ® MRI results that
suggested the left/right hippocampal sclerosis of the patients or
positron emission tomography (PET) results that suggested the
left/right hypometabolic temporal lobe. The exclusion criteria
for patients were as follows: (1) patients with brain structural
abnormalities (except for hippocampal sclerosis), other systemic
diseases, psychiatric disorders, history of alcohol abuse, and so
forth, (2) unidentified lateralization of TLE, and (3) patients
who have taken antiepileptic drugs regularly.

The inclusion criteria for controls were as follows: (1)
normal head MRI results, (2) >14 years old, and (3) all
right-handed. The exclusion criteria for controls were as
follows: patients with any prior history of neurologic or
psychiatric diseases, history of alcohol or cigarette abuse, and
so forth. Handedness was rated according to the Edinburgh
Handedness Inventory.

This study was approved by the Research Ethics Committee
at The First Affiliated Hospital of Zhengzhou University (No.
2019-KY-232), and informed consent was obtained from all
participants or their legal guardian/next of kin.

MRI data acquisition

Resting-state fMRI data were acquired using a 3-T
Magnetom Prisma MRI scanner (Siemens Healthcare, Erlangen,
Germany) with a 64-channel head coil. All participants were
advised to lie down flat, not think, close their eyes, and breathe
quietly. 3D T1-weighted structural images were acquired using
a magnetization prepared rapid acquisition gradient echo
sequence with the following parameters: TR/TE = 2,300/2.32 ms;
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FOV = 240 mm × 240 mm; slice number = 176; and
voxel size = 0.9 × 0.9 × 0.9 mm3. Functional images
were acquired using a simultaneous multi-slice (SMS) echo-
planar imaging sequence with the following parameters
and a total scan time of 400 s: TR/TE = 1,000/30 ms;
FOV = 220 × 220 mm2; slice thickness = 2.2 mm; flip
angle = 70; voxel size = 2.0 × 2.0 × 2.2 mm3; slice number = 52;
volumes = 400; SMS = 4.

Clinical data and neuropsychologic
tests

For all the participants in the TLE and HC groups, the
clinical data such as sex, age, education years, and epilepsy
duration years were recorded. All participants underwent
national hospital seizure severity scale (NHS3) testing and
neuropsychologic testing prior to scanning to measure their
seizure severity and cognitive function. The neuropsychologic
test included Mini-Mental State Examination (MMSE), memory
and executive screening (MES), Montreal cognitive assessment-
basic (MOCA-B), auditory verbal learning test (AVLT),
and shape trail making test-A/B (STT-A/B). The AVLT
test included 6 scores: immediate recall scores (N1, N2,
and N3), 5-min short delayed recall score (N4), 20-min
long-delayed recall score (N5), and reconfiguration. The
scales used in this study were all in Mandarin Chinese
versions. The aforementioned scale was evaluated by the
same physician who had passed the systematic training
and examination.

Data analysis

rs-fMRI preprocessing
The rs-fMRI data were preprocessed using the Data

Processing Assistant for Resting-State fMRI Analysis Toolkit
(DPARSF, V5.2) (Chao-Gan and Yu-Feng, 2010). The first 10
volumes were deleted, and then slice-timing and realignment
were performed. Participants with head motion of >2.5 mm
in maximum displacement or >2.5 rotation in angular motion
were excluded. Seven patients with TLE and 3 healthy controls
were excluded because of excessive head motion. Next, the
functional images were spatially normalized to the standard
EPI template and resampled to 3 × 3 × 3 mm3. Several
spurious variances, including 24 head motion parameters,
cerebrospinal fluid signals, and white matter signals, were
regressed by multiple linear regression analysis. Moreover,
the time points whose mean frame-wise displacement (FD)
(Power et al., 2012) value exceeded 0.2 mm and the linear
regression factor were also regressed in this step. Subsequently,
functional images were temporal bandpass filtered between
0.01 and 0.1 Hz.

Calculation of static amplitude of
low-frequency fluctuation, fractional
amplitude of low-frequency fluctuation,
regional homogeneity, degree centrality,
global signal correlation, and voxel-mirrored
homotopic connectivity

The Data Processing and Analysis of Brain Imaging (DPABI,
V6.0_210501) toolbox (Yan et al., 2016) was used to calculate
ALFF, fALFF, ReHo, DC, GSCorr, and VMHC. The calculation
of ALFF was based on the low-frequency range from 0.01 to
0.1 Hz. Then, we calculated fALFF by obtaining the ratio of
the power spectrum of low frequency (0.01–0.1 Hz) to that of
the entire frequency range (0–0.25 Hz). For ReHo, Kendall’s
coefficient of concordance of the time course of every 27 nearest
neighboring voxels was calculated (Zang et al., 2004). DC (Zuo
et al., 2012) was defined as the weighted sum of voxels whose
correlation coefficient with all the other voxels in the whole
brain was above the threshold (r > 0.25 in this study). GSCorr
(Power et al., 2017) was calculated as the Pearson correlation
between the global signal and all the other voxels in the whole
brain with Fisher Z-transformation. Before calculating VMHC,
T1 image segmentation and smooth (with a 6-mm full width
at half-maximum (FWHM)] Gaussian kernel were processed.
Considering the differences in geometric properties between
the bilateral cerebral hemispheres, we re-normalized each T1
structure image to the Montreal Neurological Institute (MNI)
template with symmetrical left and right brains using non-linear
registration. The foregoing MNI templates were applied to the
processed fMRI data. The functional homotopy of each pair
of mirrored voxels was calculated using Pearson’s correlation
coefficient. Subsequently, the Fisher Z-transformation was used
to convert the coefficient values into VMHC values.

Calculation of dynamic amplitude of
low-frequency fluctuation, fractional
amplitude of low-frequency fluctuation,
regional homogeneity, degree centrality,
global signal correlation, and voxel-mirrored
homotopic connectivity

The dynamic parameters (dALFF, dfALFF, dReHo, dDC,
dGSCorr, and VMHC) were analyzed using temporal dynamic
analysis toolkits (Yan et al., 2017) based on DPABI. An approach
based on a sliding window, which was sensitive in detecting
time-dependent variations, was performed to characterize the
temporal dynamic patterns (Hindriks et al., 2016). Ideally,
the length of a window should be small enough to monitor
potentially transient signals and large enough to analyze the
lowest fluctuations of interest in the signals (Sakoğlu et al.,
2010). Previous studies on sliding window connectivity have
applied a sliding window length as small as 10 s (Thompson
et al., 2013) and as long as 180 s (Gonzalez-Castillo et al., 2015).
In this study, a moderate-length sliding rectwin window of 60
TRs (60 s) and a shifting step size of 30 TRs (30 s) were applied.
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We also examined the effect with other window lengths and step
sizes, and they were included in validation analyses.

To track the dALFF (similar to other indicators), we used
a sliding-window approach to separate the full-length BOLD
fMRI time series into a series of small data segments (60 TRs
in this study). After applying the rectwin windows to BOLD
signals, we obtained a windowed time series of 12 windows in
total. Then, within each window, we calculated the ALFF for
every voxel in the brain. The sliding window was systematically
shifted by 30 TRs and the corresponding ALFF was computed.
This process was performed until the entire data length was
covered. The temporal variability of dALFF was defined as the
standard deviation (SD) of dALFF maps across time windows.

The maps of all the static and dynamic indicators were
Z-standardized (Yan et al., 2016) within a gray matter mask
across all the voxels and then spatially smoothed (except
VMHC) with a Gaussian kernel of 6-mm FWHM to reduce the
global effects of variability across participants and improve the
signal-to-noise ratio.

For expanding the study sample size and explaining the
group changes as either ipsilateral or contralateral to left
temporal lobe epilepsy (LTLE) (Blumenfeld et al., 2009; Zeng
et al., 2013), we right/left flipped the maps of the 27 patients with
right temporal lobe epilepsy (RTLE) to obtain the mirror copies
as LTLE and then finally obtained the data of 57 LTLE for the
subsequent statistical analysis.

Statistical analysis

The demographic and cognitive scale scores were evaluated
between the groups of TLE and HC using SPSS software (version
17.0; IBM, IL, United States). Differences in sex were analyzed
with a chi-square test (P < 0.05). Differences in age and
cognitive scale scores were analyzed with a 2-sample t-test or
a non-parametric test (P < 0.05).

To examine the between-group differences in the 12
measurements of static and dynamic indicators, we employed
a 2-sample t-test using DPABI, with age, sex, education, and
mean FD as covariates. Multiple comparison correction was
performed based on the Gaussian random field theory (GRF,
voxelwise P < 0.005, cluster-wise P < 0.05). A similar group
comparison was also applied between LTLE and RTLE groups.
The figures were drawn using both DPABI and BrainNet Viewer
(Xia et al., 2013).

Correlation analysis

With the peak voxels of abnormal regions as spherical
centers, spherical regions of intrest (ROIs) were constructed
around these abnormal regions (with a 6-mm radius). We
used Spearman correlation analysis with SPSS software (version

17.0; IBM, IL, United States) to assess the relationship between
metrics in these abnormal regions and the epilepsy duration,
NHS3, and cognitive scores. Statistical significance was defined
as P < 0.05.

Validation analyses

We carried out additional analyses to validate our findings of
the dynamic IBA indicators. We examined the difference with
other window sizes/step sizes (60/10 TRs and 80/10 TRs) to
validate our results.

Results

Clinical information and
neuropsychologic results

The demographic, clinical, and neuropsychologic
characteristics of 57 patients with TLE and 42 HCs are
listed in Table 1. No remarkable differences were noted in age
and sex between the TLE and HC groups (P > 0.05). Cognitive
decline was observed in patients with TLE. MMSE, MES,
MOCA-B, and AVLT (N1, N2, N3, N4, N5, and recognition)
all decreased in the TLE group compared with the HC group
(P < 0.05). However, STT-A and STT-B increased in the TLE
group (P < 0.05).

TABLE 1 Demographic, clinical, and neuropsychological data.

TLE HC Statistic P-value

Age (year) 28.77 ± 11.26 26.79 ± 9.02 Z = –0.716 0.474

Sex (M/F) 25/32 19/23 χ2 = 0.019 0.891

Epilepsy duration (y) 6.91 ± 8.04 – – –

NHS3 8.82 ± 3.33 – – –

MMSE 28.25 ± 1.86 29.10 ± 0.96 Z = –2.206 0.027*

MES 84.35 ± 13.32 95.43 ± 4.51 Z = –5.339 <0.001*

MOCA-B 24.47 ± 3.56 27.45 ± 2.07 Z = –4.572 <0.001*

N1 3.98 ± 1.66 5.36 ± 1.59 Z = –3.800 <0.001*

N2 6.21 ± 1.87 7.17 ± 2.17 Z = –2.342 0.019*

N3 7.54 ± 2.36 8.67 ± 2.00 Z = –2.501 0.012*

N4 5.74 ± 2.95 7.86 ± 1.93 Z = –3.775 <0.001*

N5 4.74 ± 3.00 6.88 ± 2.52 Z = –3.542 <0.001*

Reconfiguration 20.44 ± 2.82 22.40 ± 2.51 Z = –4.266 <0.001*

STT-A (s) 51.91 ± 22.58 38.34 ± 12.34 Z = –3.289 0.001*

STT-B (s) 125.39 ± 54.41 88.30 ± 24.46 Z = –4.559 <0.001*

Data represent mean ± standard deviation; *indicates that the difference in data
between the two groups was statistically significant. HC, healthy control; MES, memory
and executive screening; MMSE, Mini-Mental State Examination; MOCA-B, Montreal
cognitive assessment-basic; NHS3, national hospital seizure severity scale; STT-A, shape
trail making test-A; STT-B, shape trail making test-B; TLE, temporal lobe epilepsy.
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FIGURE 1

Brain regions showing considerably altered static ALFF (A), fALFF
(B), ReHo (C), DC (D), GSCorr (E), and VMHC (F) between TLE
and HCs groups. GRF corrected; voxel-wise P < 0.005,
cluster-wise P < 0.05. The color bar indicates the t-value. Warm
colors indicated increased indicator values, while cold colors
indicated decreased indicator values. ALFF, amplitude of
low-frequency fluctuation; DC, degree centrality; fALFF,
fractional ALFF; GRF, Gaussian random field theory; GSCorr,
global signal correlation; ReHo, regional homogeneity; TLE,
temporal lobe epilepsy; VMHC, voxel-mirrored homotopic
connectivity.

Group differences of intrinsic brain
activity indicators between temporal
lobe epilepsy and healthy control

Intergroup differences in amplitude of
low-frequency fluctuation and dynamic
amplitude of low-frequency fluctuation

Increased ALFF values were observed in the left median
cingulate gyrus (MCG), posterior cingulate gyrus (PCG),

cerebellum 4_5/6/8/9, hippocampus, thalamus, supplementary
motor area (SMA), precuneus, cuneus, right pallidum,
lenticula, amygdala, and parahippocampal gyrus (PHG) in
the TLE group compared with the HC group. However, TLE
displayed decreasing ALFF values in the right cerebellum
Crus1, precentral gyrus (PreCG), postcentral gyrus (PostCG),
triangular inferior frontal gyrus (TIFG), middle frontal
gyrus (MFG), and orbital frontal gyrus (OFG) (GRF
corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 1A and
Table 2).

Increased dALFF variability was observed in the
bilateral MCG, left PCG, left precuneus, left cerebellum
4_5/6/8/10, bilateral hippocampus, thalamus, right basal
ganglia, right amygdala, and bilateral olfactory cortex in
the TLE group compared with the HC group. However,
TLE displayed decreasing dALFF variability in the right
OFG, superior frontal gyrus (SFG), and rectus gyrus (GRF
corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 2A and
Table 2).

Intergroup differences in fractional amplitude
of low-frequency fluctuation and dynamic
amplitude of low-frequency fluctuation

Increased fALFF values were detected in the bilateral
hippocampus, right amygdala, right temporal pole (TP),
left middle temporal gyrus (MTG), inferior temporal gyrus
(ITG), superior marginal gyrus (SMG), SMA, SFG, PHG,
and thalamus in the TLE group compared with the HC
group. However, the fALFF values decreased in the left
SMG, MTG, superior temporal gyrus (STG), angular gyrus
(AG), and right PreCG, PostCG, MFG, and IFG (GRF
corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 1B and
Table 2).

Increased dfALFF variability was detected in the bilateral
SMA, left medial superior frontal gyrus (MSFG), and right
dorsolateral superior frontal gyrus (DSFG) in the TLE group
compared with the HC group (GRF corrected, Pvoxel < 0.005,
Pcluster < 0.05; Figure 2B and Table 2).

Intergroup differences in regional
homogeneity and dynamic regional
homogeneity

Increased ReHo values in the left SMA and MSFG but
decreased ReHo values in the left MTG, STG, ITG, TP, and
SMG were detected in the TLE group compared with the HC
group increased ReHo values were found in the left SMA, MSFG,
but decreased ReHo values were found in the left MTG, STG,
ITG, TP, SMG (GRF corrected, Pvoxel < 0.005, Pcluster < 0.05;
Figure 1C and Table 2).

For dReHo, TLE decreased in left STG, Heschl’s gyrus,
SMG, MTG, and right calcarine cortex (CAL), and cuneus
(GRF corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 2C and
Table 2).
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TABLE 2 Brain regions with significant differences of IBA indicators between TLE and HC groups.

Measurements Brain regions MNI coordinates Cluster size (Voxel) Peak
t-value

x y z

ALFF MCG_L, PCG_L, and Precuneus_L –6 –33 39 171 5.52

Cerebellum 4_5/6/8/9_L –12 –57 –21 149 4.36

Hippocampus_L and Thalamus_L –21 –42 0 113 3.71

SMA_L –6 –6 60 110 4.56

Precuneus_L and Cuneus_L –9 –75 39 95 3.84

Pallidum_R, lenticula_R, Amygdala_R, and PHG_R 18 3 –3 135 4.01

Cerebellum_Crus1_R 48 –66 –24 159 − 5.93

PreCG_R and PostCG_R 60 –3 33 74 − 4.73

TIFG_R and MFG_R 51 36 0 71 − 4.39

OFG_R 18 57 –18 68 − 3.99

dALFF MCG_L/R, PCG_L, and Precuneus_L -9 –36 39 248 4.96

Cerebellum 4_5/6/8/10_L –6 –60 –21 226 4.56

Thalamus_L, Hippocampus_L, and Precuneus_L –6 –33 9 186 4.30

Thalamus_R, Hippocampus_R, and Basal ganglia_R, Amygdala_R and
olfactory cortex_L/R

15 –12 3 492 5.46

Cerebellum_Crus1_R 45 –66 –24 221 − 5.79

OFG_R, SFG_R, and Rectus gyrus_R 6 66 –3 183 − 3.70

fALFF Hippocampus_R, TP_R, and Amygdala_R 30 –5 118 81 4.80

ITG_L, MTG_L, and SMG_L -63 –42 –21 200 5.80

SMA_L and SFG_L –9 –6 57 150 5.47

Thalamus_L –15 –18 6 71 4.54

Hippocampus_L and PHG_L –21 –6 –21 60 5.07

SMG_L, MTG_L, STG_L, and AG_L –48 –36 24 329 − 4.90

PostCG_R, PreCG_R, MFG_R, and IFG_R 60 -3 33 129 − 5.67

dfALFF SMA_L and MSFG_L –9 –3 57 144 4.65

DSFG_R and SMA_R 21 24 51 128 5.61

ReHo MTG_L, STG_L, ITG_L, TP_L, and SMG_L –51 –24 -6 549 − 4.89

SMA_L and MSFG_L –9 –6 57 170 4.83

dReHo STG_L, Heschl’s gyrus_L, and SMG_L –33 –33 12 102 − 5.11

MTG_L –54 –39 -6 89 − 4.19

CAL_R and Cuneus_R 12 –90 12 97 − 4.72

DC MTG_L, STG_L, ITG_L, SMG_L, and Heschl’s gyrus_L –51 –15 –6 317 − 4.77

Precuneus_L, Cuneus_L, and CAL_L –9 –57 21 156 3.83

SMA_L –9 –6 57 134 4.42

dDC CAL_L, SOG_L, Cuneus_L, and LG_L –9 –102 –3 135 − 6.99

CAL_R and Cuneus_R 9 –87 15 72 − 4.02

CAL_R and Precuneus_R 21 –54 15 70 − 6.46

STG_L –36 –36 15 65 − 5.86

MTG_L –66 –51 –12 73 5.31

GSCorr TP_L, MTG_L, STG_L, and ITG_L –30 6 –36 107 − 4.20

MTG_L, STG_L, and Heschl’s gyrus_L –36 –33 12 202 − 5.36

ITG_L and MTG_L –60 –39 –18 127 4.04

dGSCorr CAL_L, MOG_L, SOG_L, IOG_L, and Cuneus_L –3 –102 –3 144 − 6.87

CAL_R, LG_R, and Cuneus_R 15 –99 0 117 − 4.32

STG_L and Heschl’s gyrus_L –39 –36 15 129 − 5.95

VMHC Bilateral MTG, ITG, STG, and TP ± 51 –3 –27 452 − 5.71

Bilateral Cerebellum Crus1/Crus2/6 ± 27 –57 –36 148 − 4.77

(Continued)
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TABLE 2 (Continued)

Measurements Brain regions MNI coordinates Cluster size (Voxel) Peak
t-value

x y z

Bilateral Precuneus 0 –57 36 83 − 3.64

dVMHC Bilateral CAL and Cuneus ± 9 –96 18 130 − 4.41

Bilateral PCL ± 6 –33 72 61 − 4.07

AG, angular gyrus; ALFF, amplitude of low-frequency fluctuation; CAL, calcarine cortex; dALFF, dynamic fractional ALFF; DC, degree centrality; dDC, dynamic degree centrality;
dGSCorr; dynamic global signal correlation; dfALFF, dynamic fractional ALFF; dReHo, dynamic regional homogeneity; DSFG, dorsolateral superior frontal gyrus; fALFF, fractional
ALFF; GSCorr, dynamic global signal correlation; HC, healthy control; IOG, inferior occipital gyrus; IBA, intrinsic brain activity; ITG, inferior temporal gyrus; L, left; LG, lingual gyrus;
MCG, median cingulate gyrus; MFG, middle frontal gyrus; MOG, middle occipital gyrus; MSFG, medial superior frontal gyrus; MTG, middle temporal gyrus; OFG, orbital orbital frontal
gyrus; PCG, posterior cingulate gyrus; PCL, paracentral lobule; PHG, parahippocampal gyrus; PostCG, poscentral gyrus; PreCG, precentral gyrus; R, right; ReHo, regional homogeneity;
SFG, superior frontal gyrus; SMA, supplementary motor area; SMG, superior marginal gyrus; SOG, superior occipital gyrus; STG, superior temporal gyrus; TIFG, triangular inferior
frontal gyrus; TLE; temporal lobe epilepsy; TP, temporal pole; VMHC, voxel-mirrored homotopic connectivity; dVMHC, dynamic voxel-mirrored homotopic connectivity.

Intergroup differences in degree centrality and
dynamic degree centrality

Increased DC values in the left precuneus, cuneus, CAL,
and SMA but decreased DC values in the left MTG, STG, ITG,
SMG, and Heschl’s gyrus were noted in the TLE group compared
with HC group (GRF corrected, Pvoxel < 0.005, Pcluster < 0.05;
Figure 1D and Table 2).

Increased dDC variability in the left MTG but decreased
dDC variability in bilateral CAL and cuneus, left superior
occipital gyrus (SOG), left lingual gyrus (LG), left STG, and
right precuneus were detected in the TLE group compared with
the HC group (GRF corrected, Pvoxel < 0.005, Pcluster < 0.05;
Figure 2D and Table 2).

Intergroup differences in global signal
correlation and dynamic global signal
correlation

Increased GSCorr values in the left MTG and
ITG but decreased GSCorr values in the left TP,
MTG, STG, ITG, and Heschl’s gyrus were observed in
the TLE group compared with the HC group (GRF
corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 1E and
Table 2).

Decreased dGSCorr variability was detected in the bilateral
CAL, cuneus, left SOG, left middle occipital gyrus (MOG),
left inferior occipital gyrus (IOG), right LG, left STG, and
Heschl’s gyrus in the TLE group compared with the HC group
(GRF corrected, Pvoxel < 0.005, Pcluster < 0.05; Figure 2E and
Table 2).

Intergroup differences in voxel-mirrored
homotopic connectivity and dynamic
voxel-mirrored homotopic connectivity

Decreased VMHC values were noted in the bilateral MTG,
ITG, STG, TP, cerebellum Crus1/Crus2/6, and precuneus in
the TLE group compared with the HC group (GRF corrected,
Pvoxel < 0.005, Pcluster < 0.05; Figure 1F and Table 2).

For dVMHC, TLE decreased in bilateral CAL, cuneus,
and paracentral lobule (PCL) (GRF corrected, Pvoxel < 0.005,
Pcluster < 0.05; Figure 2F and Table 2).

Intergroup differences between left temporal
lobe epilepsy and right temporal lobe epilepsy

We have performed a statistical analysis of the
aforementioned static and dynamic IBA indicators between the
LTLE (30 patients) and RTLE groups (27 patients). However,
no significant cluster was found between LTLE and RTLE
groups after multiple comparison correction (GRF corrected,
Pvoxel < 0.005, Pcluster < 0.05).

Correlation analyses

As depicted in Table 3, significant correlations were detected
between the values of ALFF, fALFF, ReHo, DC, GSCorr, VMHC,
dALFF, dfALFF, dReHo, dDC, and dGSCorr in abnormal brain
regions and several cognitive scales scores (P < 0.05). Moreover,
most of them significantly correlated with the duration of
epilepsy (P < 0.05). However, no significant correlation was
observed between dVMHC and duration of epilepsy, NHS3, or
cognitive scales scores (P > 0.05).

Validation analyses

When other window sizes/step sizes (60/10 TRs and 80/10
TRs) were used to validate the findings of the dynamic
IBA indicators, the results were basically consistent with
our main results.

Discussion

We identified alteration of IBA in patients with TLE using
static and dynamic ALFF, fALFF, ReHo, DC, VMHC, and
GSCorr in TLE and HC groups. A large amount of overlap
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FIGURE 2

Brain regions showing considerably altered dALFF (A), dfALFF
(B), dReHo (C), dDC (D), dGSCorr (E), and dVMHC (F) between
patients with TLE and HCs. GRF corrected; voxel-wise
P < 0.005, cluster-wise P < 0.05. The color bar indicates the
t-value. Warm colors indicated increased indicator values, while
cold colors indicated decreased indicator values. dALFF,
dynamic amplitude of low-frequency fluctuation; dfALFF,
dynamic fractional ALFF; dDC, dynamic degree centrality;
dGSCorr, dynamic global signal correlation; GRF, Gaussian
random field theory; HCs, healthy controls; dReHo, dynamic
regional homogeneity; TLE, temporal lobe epilepsy; dVMHC,
dynamic voxel-mirrored homotopic connectivity.

existed among the abnormal brain regions detected using
various indicators. The convergence of the findings might
suggest the existence of a more fundamental mechanism capable
of revealing more real abnormal neuronal activity in TLE other
than specific effects caused by particular imaging algorithms.

Regions displaying increased
amplitude of low-frequency
fluctuation/dynamic amplitude of
low-frequency fluctuation/fractional
amplitude of low-frequency
fluctuation and “temporal epilepsy
network”

In our study, brain regions displaying considerable
differences overlapped in ALFF, dALFF, and fALFF, which
increased in the bilateral medial temporal lobe (MTL) and
thalamus. Epileptic seizures could initiate a neural circuit
and lead to aberrant neural communication with brain areas
outside the epileptogenic region. MTL and thalamus were
reported to compose a temporal epilepsy network proposed
previously, which were involved in the initiation, propagation,
and facilitation of epileptic activity (Spencer, 2002). An increase
in ALFF in these regions has been reported in the study by
Zhang et al. (2010). Moreover, the widespread increases in
ALFF/dALFF or fALFF in various cortical and subcortical
structures (cerebellum, CG, precuneus, SMA, and pons
ipsilateral to the epileptogenic foci) besides the MTL and
thalamus might also implicate the pathologic substrates of an
epileptic network in TLE (Schacher et al., 2006).

The ALFF changes in the BOLD signal have been suggested
to be associated with local neuronal activity (Logothetis et al.,
2001; Yang et al., 2007) and interictal epileptic discharges (IEDs)
(Zhang et al., 2010). fALFF represents the ratio of the low-
frequency power spectrum to that of the entire frequency
range, which could effectively suppress the physiologic noise
(Zou et al., 2008). Liao et al. (2019) demonstrated that the
electrophysiologic relevance of ALFF variability depended on
EEG power fluctuations, suggesting a neurophysiologic basis.
Thus, dALFF was supposed to represent the temporal variability
of IBA fluctuation, and higher dALFF represented greater
volatility and instability of the neuronal activity. The increase in
ALFF, fALFF, and dALFF indicated that epileptic activity might
not only induce hyperactivity of neuronal activity in the epilepsy
network but also cause an abnormal unstable state of neuronal
activity, further leading to a chaotic state of brain function.

Medial temporal lobe structures, such as the hippocampus,
PHG, and amygdala, are involved in memory, learning,
and emotion regulation (Burwell, 2000; Viard et al., 2007).
Excessive but unstable brain activity in the hippocampus
and PHG may lead to the failure to accomplish learning
and memory processes efficiently. The hyperactivity of the
amygdala may contribute to the fear aura, emotional lability,
and temperament change. Thalamus was reported to be a relay
center in a complex reciprocal network linking cortices and
other subcortical structures (Behrens et al., 2003; Blumenfeld
et al., 2004) and responsible for information integration and
executive functioning (Tuchscherer et al., 2010). Our correlation
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TABLE 3 Correlations between the values of IBA indicators in abnormal brain regions and epilepsy duration, NHS3, or cognitive scales scores.

Brain regions Epilepsy duration NHS3 MMSE MES MOCA N1 N2 N3 N4 N5 Reconfiguration STT-A STT-B

ALFF

MCG_L r 0.319 − − − − − − − − − − −

P 0.008 − − − − − − − − − − −

Cerebullum 6_L r 0.315 − − −0.243 − − − − − − 0.280 0.237

P 0.008 − − 0.034 − − − − − − 0.017 0.038

Hippocampus_L r 0.286 0.230 − − − − − − − − 0.229 0.235

P 0.016 0.043 − − − − − − − − 0.043 0.039

SMA_L r − − − − − − − − − − − 0.310 − 0.245

P − − − − − − − − − − 0.010 0.033

Precuneus_L r − − 0.373 0.234 0.247 − 0.254 0.262 0.267 0.369 − 0.324 −

P − − 0.002 0.040 0.032 − 0.028 0.024 0.023 0.002 0.007 −

Pallidum_R r 0.504 − − − 0.260 − − − − − − 0.229 0.235

P 0.000 − − 0.025 − − − − − − 0.043 0.039

PostCG_R r − 0.244 − − − − − − − − − − − 0.273

P 0.034 − − − − − − − − − − 0.020

OFG_R r − 0.280 − − − − − − 0.272 − − − 0.246 − −

P 0.017 − − − − − 0.020 − − 0.033 − −

dALFF

Cerebellum 4_5_L r 0.251 − − − − − − − − −

P 0.030 − − − − − − − − −

Thalamus_L r 0.330 − − 0.246 − − − − − 0.419 0.374

P 0.006 − 0.032 − − − − − 0.001 0.002

Thalamus_R r 0.389 − − − 0.223 − − − − 0.275 0.268

P 0.001 − − 0.048 − − − − 0.019 0.022

Cerebellum Crus1_R r − 0.275 − − − − − 0.266 − − − −

P 0.019 − − − − 0.023 − − − −

fALFF

Hippocampus_R r 0.356 − − 0.297 − 0.255 − − − − − − 0.227 0.226 −

P 0.003 − 0.013 0.028 − − − − − 0.045 0.045 −

Hippocampus_L r − − − − 0.280 − − − − − − 0.261 0.256

P − − − 0.018 − − − − − − 0.025 0.027

Thalamus_L r − − − 0.306 − − − − − − − 0.232 −

P − − 0.010 − − − − − − − 0.041 −

PostCG_R r − 0.270 − − − − − − − − − − −

P 0.021 − − − − − − − − − − −

dfALFF

SMA_L r − − 0.297 − − − − − 0.222 − −

P − 0.013 − − − − − 0.048 − −

DSFG_R r 0.238 − 0.229 0.259 − 0.317 0.267 0.309 − 0.245 −

P 0.037 − 0.043 0.026 − 0.008 0.022 0.010 0.033 −

ReHo

MTG_L r − 0.313 − 0.329 0.269 − − − − − − − −

P 0.009 − 0.006 0.022 − − − − − − − −

SMA_L r − − − − − − − − − − − 0.253 −

P − − − − − − − − − − 0.029 −

dReHo

CAL_R r − 0.281 − − − − − − − − − 0.267

P 0.017 − − − − − − − − 0.022

(Continued)
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TABLE 3 (Continued)

Brain regions Epilepsy duration NHS3 MMSE MES MOCA N1 N2 N3 N4 N5 Reconfiguration STT-A STT-B

STG_L r − − − − − − 0.249 − − 0.256 0.255 −

P − − − − − 0.031 − 0.027 0.028 −

DC

Precuneus_L r − − − − − − − − − 0.296 − −

P − − − − − − − − − 0.013 − −

SMA_L r − − − − − − − − − − − 0.258 −

P − − − − − − − − − − 0.026 −

dDC

MTG_L r 0.249 − − − 0.249 0.385 − 0.325 − −

P 0.031 − − − 0.031 0.002 − 0.007 − −

CAL_L r − 0.222 − − − − − 0.223 − − 0.274 − −

P 0.048 − − − − 0.047 − 0.019 − −

CAL_R r − − − − − − 0.271 − − 0.270 − −

P − − − v − 0.021 − 0.021 − −

STG_L r − − − − − − 0.305 − − 0.297 − −

P − − − − − 0.011 − 0.012 − −

GSCorr

ITG_L r − − − − 0.264 0.341 0.306 0.292 0.359 0.307 − −

P − − − − 0.024 0.005 0.010 0.014 0.003 0.010 − −

dGSCorr

CAL_L r − 0.232 − − − − − 0.334 − − 0.408 − −

P 0.041 − − − − 0.006 − 0.001 − −

vSTG_L r − − − − − − 0.223 − − 0.308 − −

P − − − − − 0.047 − 0.010 − −

VMHC

Bilateral MTG r − 0.422 − − 0.240 − − − − − − − −

P 0.001 − − 0.036 − − − − − − − −

Bilateral Cerebellum 6 r − 0.463 − − − − − − − − − − −

P 0.000 − − − − − − − − − − −

Bilateral Precuneus r − 0.222 − − − − − − − − − − − 0.243

P 0.049 − − − − − − − − − − 0.034

ALFF, amplitude of low-frequency fluctuation; CAL_R, right calcarine cortex; dALFF, dynamic fractional ALFF; DC, degree centrality; dDC, dynamic degree centrality; dfALFF, dynamic
fractional ALFF; dGSCorr, dynamic global signal correlation; dReHo, dynamic regional homogeneity; DSFG_R, right dorsolateral superior frontal gyrus; fALFF, fractional ALFF; GSCorr,
global signal correlation; IBA, intrinsic brain activity; ITG_L, left inferior temporal gyrus; MCG_L, left median cingulate gyrus; MES, memory and executive screening; MMSE, Mini-
Mental State Examination; MOCA, Montreal cognitive assessment-basic; MTG_L, left middle temporal gyrus; NHS3, national hospital seizure severity scale; OFG_R, right orbital frontal
gyrus; PostCG_R, right postcentral gyrus; ReHo, regional homogeneity; SMA_L, left supplementary motor area; STG_L, left superior temporal gyrus, STT-A, shape trail making test-A;
STT-B, shape trail making-B; VMHC.

analysis results confirmed that increased ALFF, fALFF, or
dALFF in MTL and thalamus was related to longer epilepsy
duration and more serious cognition decline. These results
suggested that TLE, as a persisting disease, revealed a gradually
aggravated effect on the brain activity and cognition of
patients. Considering the thalamus as an example, the increased
fALFF and dALFF in the thalamus negatively correlated with
MMSE and MES/MOCA, respectively. In addition, increased
fALFF and dALFF both negatively correlated with the time
consumption of STT-A/B. These indicated that excessive but
unstable activity in the thalamus was related to instability
of the information transmission and further execution or
cognition impairment.

Regions displaying decreased
amplitude of low-frequency
fluctuation/dynamic amplitude of
low-frequency fluctuation/fractional
amplitude of low-frequency
fluctuation and “network inhibition
hypothesis”

In our study, regions displaying decreased ALFF, fALFF,
or dALFF, mainly located in the frontal lobe contralateral to
the epileptogenic side, overlapped with the regions of PreCG,
PostCG, IFG, MFG, and OFG. The sensorimotor network
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(SMN) was mainly composed of PreCG, PostCG, and SMA.
The decrease in ALFF and fALFF in SMN might represent
the decline or inhibition of brain activity and lead to a series
of motor symptoms or disorders caused by epilepsy (Laufs
et al., 2014). Moreover, as an advanced cognitive center, the
frontal lobe was also essential for the language, execution,
and control functions (Rosch and Mostofsky, 2019) and was
a component of the cognitive-attention network (Bush, 2011).
OFG could adaptively shape decision-making and affective
behavior (Rudebeck and Rich, 2018). As a structure related to
epileptic activity propagation, the frontal lobe could be highly
affected. Its dysfunction in TLE has been affirmed by behavioral
tests (Hermann et al., 1991), fALFF based on rs-fMRI (Reyes
et al., 2016), as well as PET (Guedj et al., 2015) and SPECT
(Blumenfeld et al., 2004) imaging.

Similar to these studies, our results indicated that the
decreasing ALFF and fALFF values in the contralateral
PostCG negatively correlated with epilepsy duration and STT-
B, suggesting that the activity decline in PostCG was associated
with the impairment of execution-control functions and
cognitive flexibility, which was reflected by STT, and worsened
with prolonged epilepsy duration. According to the “network
inhibition hypothesis” of TLE proposed by Blumenfeld et al.
(2004), (Norden and Blumenfeld, 2002; Blumenfeld and Taylor,
2003), we cautiously speculated that the negative activation
changes in ALFF, fALFF, and dALFF in the frontal lobe
further confirmed the existence of the inhibition network. On
the one hand, the negative activation represented functional
inactivation, which would lead to cognition decline and loss
of consciousness. On the other hand, it might represent an
inhibitory effect of the brain on epileptic activity.

Decreased fractional amplitude of
low-frequency fluctuation, regional
homogeneity, dynamic regional
homogeneity, degree centrality,
dynamic degree centrality, global
signal correlation, dynamic global
signal correlation, and voxel-mirrored
homotopic connectivity in the
temporal neocortex ipsilateral to the
epileptogenic foci

Our study demonstrated that various static and dynamic
IBA indicators, including fALFF, ReHo, dReHo, DC, dDC,
GSCorr, dGSCorr, and VMHC, decreased in the temporal
neocortex ipsilateral to the epileptogenic foci. A previous
VMHC study verified the decisive role of the temporal lobe in
distinguishing TLE from HC (Gao et al., 2021). These highly
consistent results suggested a clinical potential for the disease
classification and lateralization of TLE using IBA indicators.

The temporal neocortex included the structure of STG,
MTG, ITG, TP, and Heschl’s gyrus, and was related to auditory
function, language, memory, cognitive function, and emotion
(Olson et al., 2007). Primary and association auditory cortices
(Brodmann 41 and 42) and partial Wernicke’s area were located
at STG; they were responsible for auditory and language
information processing and also memory and cognitive function
(Fletcher et al., 1995). The dysfunction of the auditory cortex
might induce acousma and impairment of auditory-related
cognition. MTG (Kiehl et al., 2004) and ITG (Dien et al., 2013)
were also thought to be the key regions for language processing
and formulation. Accessory visual areas (Brodmann 20 and
21), which were related to visual perception, were located at
MTG and ITG, respectively. Moreover, the ITG was a key node
in the broad network of frontal, temporal, parietal, occipital,
and subcortical structures. Numerous studies demonstrated
that fMRI revealed abnormality of the temporal neocortex and
its correlation with cognitive function (Vaughan et al., 2016;
Trimmel et al., 2018; Gao et al., 2021).

Similarly, our correlation analysis results further
demonstrated that the abnormal IBA of the temporal neocortex
was associated with multiple cognitive scores and duration of
epilepsy. The decreasing ReHo and VMHC in MTG negatively
correlated with epilepsy duration but positively correlated with
MMSE or MOCA. The GSCorr in ITG positively correlated with
AVLT. These findings indicated that the weakness of local and
global function in the temporal neocortex was a crucial feature
in patients with unilateral TLE, and might be responsible for the
impairment of memory and cognitive function, which would
deteriorate with time.

However, during the correlation assessment of dynamic
indicators, we demonstrated that the decreasing dReHo, dDC,
and dGSCorr were negatively correlated with AVLT. This might
seem contrary to the aforementioned speculation, but in fact, the
lower temporal variability represented a relatively more stable
functional status, which we considered to reflect the existence of
a “decompensatory mechanism” (Yang et al., 2018; Li et al., 2020;
Singh et al., 2020). The existence of functional compensation
has been reported in previous fMRI research (Yang et al.,
2018; Li et al., 2020; Singh et al., 2020). It might improve the
patients’ memory to a certain extent but could not replace the
original functions effectively and might cause other functional
disorders such as the decline in cognitive flexibility due to the
low temporal variability in our study.

According to the implication represented by each indicator,
we speculated that the dysfunction in the temporal neocortex
was reflected not only in a decline of IBA intensity but also
in reduced functional connectivity among neighboring regions,
interhemispheric homotopic regions, and the remaining brain
regions. Thus, large clusters of neurons were involved in
inducing great interference in global brain function networks.
The highly consistent decreased activation of static and dynamic
IBA indicators might indicate a more fundamental regulatory
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mechanism in TLE, which we prudently speculated to be the
“surround inhibition hypothesis” (Schwartz and Bonhoeffer,
2001; Van Paesschen et al., 2003; Blumenfeld et al., 2004). It
was hypothesized that the regions surrounding the epileptogenic
focus might serve an adaptive function to cut down the
possibility of seizure spread to other regions. Actually, TLE was
mostly confined to the limbic cortex and rarely generalized.
Combined with the aforementioned decreased activation of the
frontal lobe, we further speculated that the temporal neocortex
was also the component of the TLE inhibition network.

Decreased dynamic regional
homogeneity, dynamic degree
centrality, dynamic global signal
correlation, and dynamic
voxel-mirrored homotopic
connectivity in the occipital lobe

In our study, the most impressive result of dynamic
IBA indicators was that dReho, dDC, dGSCorr, and dVMHC
decreased in the bilateral occipital lobe. However, no abnormal
changes in the occipital lobe were detected in the static
indicators, indicating the complementarity of dynamic and
static indicators. The temporal dynamic indicators were
expected to become a novel and more powerful and sensitive
imaging-related neurobiologic indicator.

Visual network (VIN) was part of the sensor cortex systems
and mainly located in the occipital lobe, including CAL, LG,
cuneus, and so forth. As the center of the visual cortex,
the occipital lobe exhibited a range of visual functions, such
as vision processing and visual memory encoding (Mechelli
et al., 2000), and was related to executive function and
attention (Ishai et al., 2002) because the acquisition of visual
information was a prerequisite for attention. Memory and
alertness function depend on sensory-perceptual information
processing, such as vision and audition (Conway, 2001). Thus,
the occipital lobe’s dysfunction was not merely related to a
primary visual abnormality, such as visual hallucinations or
auras, but also to high-order visual function and cognition
impairment (Alessio et al., 2013).

Previous studies detected VIN abnormalities in patients with
TLE (Zhang et al., 2009; Cataldi et al., 2013). Lu et al. (2018)
reported a consistent decline in dynamic ReHo, DC, and ALFF
in the occipital lobe of patients with autism. According to the
implication represented by each static indicator, we speculated
that the decreases in dReho, dVMHC, dDC, and dGSCorr
suggested a lack of essential flexibility and plasticity in functional
connectivity among neighboring regions, interhemispheric
homotopic regions, and the remaining brain regions. We
speculated that inflexible IBA in the visual processing brain areas
might lead to difficulty in instant and efficient management

of visual information, short-term memory, and alertness. The
STT-B mainly evaluated the flexibility of cognitive function
based on the sensitivity and working speed of visual perception.
Our results indicated that the decreasing dReHo values in
CAL negatively correlated with STT-B, which confirmed our
speculation. Besides, the epilepsy duration negatively correlated
with dReHo, dDC, and dGSCorr, indicating that the IBA
flexibility worsened with prolonged epilepsy duration.

Nevertheless, we demonstrated that the decreasing
dDC and dGSCorr negatively correlated with AVLT, which
seemed to contradict our speculation. However, as AVLT
emphasized auditory and verbal memory, we speculated that
this phenomenon might be related to the “decompensation
mechanism” (Yang et al., 2018; Li et al., 2020; Singh et al., 2020)
occurring in VIN after the severe dysfunction of the temporal
neocortex in patients with TLE.

Increased amplitude of low-frequency
fluctuation, fractional amplitude of
low-frequency fluctuation, dynamic
fractional amplitude of low-frequency
fluctuation, regional homogeneity, and
degree centrality in supplementary
motor area ipsilateral to the
epileptogenic foci

Our study demonstrated that ALFF, fALFF, dfALFF, ReHo,
and DC all increased in SMA ipsilateral to the epileptogenic foci.
SMA was a vital motor cortex belonging to the sensorimotor
network and could evoke spasticity and cortical motor aphasia
(Rostomily et al., 1991; Trimmel et al., 2018). SMA plays an
indispensable role in the “intention-action” process (Kalaska,
2009), and participates in the preparation, initiation, and
monitoring of complex movements (Picard and Strick, 1996;
Michelon et al., 2006). Several fMRI studies have reported
the functional changes in the SMA elicited by epilepsy
(O’Muircheartaigh et al., 2012; Laufs et al., 2014; Morgan et al.,
2020). It was suggested that SMA was responsible for motor
dysfunction in patients with epilepsy and positively responded
to drug treatment (Morgan et al., 2020).

The increases in ALFF, fALFF, and dfALFF represent a high
amplitude and excessive unstable state of IBA due to epileptic
activity. Based on this, we speculated that SMA ipsilateral to the
epileptogenic foci was a crucial constituent of the TLE network
and was related to the propagation and facilitation of epileptic
activity. The increased ReHo and DC in SMA further verified
this speculation. Similarly, the increased activation of ALFF and
ReHo in SMA has been reported earlier (Zhang et al., 2010).

The correlation results revealed that the dfALFF and MMSE
negatively correlated, indicating that the over-high temporal
variability in SMA might affect the precise and stable execution
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of higher-order motor and cognitive processes, further inducing
cognition decline.

Limitations

The present study had several limitations. Firstly, the sample
size was small, and all participants came from a single dataset.
Studies involving larger samples or another independent dataset
are required in the future to confirm our findings. Secondly, the
present study compared only the differences between patients
with right/left flipped LTLE and HCs, but the differences among
patients with LTLE and RTLE and HCs were not analyzed
directly due to the small sample size. Previous studies have
shown several brain activity measurements’ differences between
LTLE and RTLE. Zhang et al. (2010) and Amiri et al. (2020)
have separately demonstrated that the utility of ALFF analysis
and graph theory application to brain network analysis might
be a potential biomarker to assist in the determination of TLE
laterality. Pang et al. (Li et al., 2022) found that RTLE patients
exhibited more pronounced aberrant connectivity patterns and
topological properties revealed by static or dynamic functional
connectivity. Consequently, a subgroup analysis is necessary
in the future study. Thirdly, further studies on the other IBA
indicators, such as FC and ICA, etc., are needed to validate
the results, especially the detailed functional connectivity
between abnormally activated brain regions and other regions.
Fourthly, we did not monitor the numbers or frequency of the
epileptic spike during the fMRI scan period simultaneously.
And cause some of the IBA indicators might be affected
by the epileptic spikes, so the application of simultaneous
EEG/fMRI in the future study was important. Fifthly, about
the sliding window technique that we have performed, the
question about the choice of window width has been constantly
discussed, tried and verified. So the application of other dynamic
assessment methods (Chen et al., 2017) to verify our results are
necessary in the future.

Conclusion

We comprehensively estimated the differences in IBA
between patients with TLE and HC using multiple novel
static/dynamic indicators, as well as their correlation with
cognition. IBA abnormalities in patients with TLE were detected
in multiple brain network–related regions, including the
temporal lobe epilepsy network (MTL structure and thalamus),
sensorimotor network (SMA, PreCG, and PostCG), auditory
network (temporal neocortex), and visual network (occipital
lobe). The combined application of static and dynamic IBA
indicators could comprehensively reveal more real abnormal
neuronal activity and the impairment and compensatory
mechanisms of cognitive function in TLE. Moreover, it might

help in the lateralization of epileptogenic foci and exploration of
the transmission and inhibition pathways of epileptic activity.
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